
Title stata.com

stgen — Generate variables reflecting entire histories

Syntax Menu Description Functions
Remarks and examples Also see

Syntax
stgen

[
type

]
newvar = function

where function is
ever(exp)
never(exp)
always(exp)
min(exp)
max(exp)
when(exp)
when0(exp)
count(exp)
count0(exp)
minage(exp)
maxage(exp)
avgage(exp)
nfailures()
ngaps()
gaplen()
hasgap()

You must stset your data before using stgen; see [ST] stset.

Menu
Statistics > Survival analysis > Setup and utilities > Generate variable reflecting entire histories

Description
stgen provides a convenient way to generate new variables reflecting entire histories—variables

you could create for yourself by using generate (and especially, generate with the by varlist:
prefix) (see [D] generate), but that would require too much thought, and there would be too much
chance of making a mistake.

These functions are intended for use with multiple-record survival data but may be used with
single-record data. With single-record data, each function reduces to one generate, and generate
would be a more natural way to approach the problem.

stgen can be used with multiple-record or single- or multiple-failure st data.

If you want to generate calculated values, such as the survivor function, see [ST] sts.

1

http://stata.com
http://www.stata.com/manuals13/d.pdf#ddatatypes
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals13/ststset.pdf#ststset
http://www.stata.com/manuals13/u11.pdf#u11.1.2byvarlist
http://www.stata.com/manuals13/dgenerate.pdf#dgenerate
http://www.stata.com/manuals13/ststs.pdf#ststs

2 stgen — Generate variables reflecting entire histories

Functions
In the description of the functions below, time units refer to the same units as timevar from stset

timevar, For instance, if timevar is the number of days since 01 January 1960 (a Stata date), time
units are days. If timevar is in years—years since 1960, years since diagnosis, or whatever—time
units are years.

When we say variable X records a “time”, we mean a variable that records when something
occurred in the same units and with the same base as timevar. If timevar is a Stata date, “time” is
correspondingly a Stata date.

t units, or analysis-time units, refer to a variable in the units timevar/scale() from stset
timevar, scale(. . .) If you did not specify a scale(), t units are the same as time units.
Alternatively, say that timevar is recorded as a Stata date and you specified scale(365.25). Then
t units are years. If you specified a nonconstant scale—scale(myvar), where myvar varies from
subject to subject—t units are different for every subject.

“An analysis time” refers to the time something occurred, recorded in the units (timevar-
origin())/scale(). We speak about analysis time only in terms of the beginning and end of each
time-span record.

Although in Description above we said that stgen creates variables reflecting entire histories,
stgen restricts itself to the stset observations, so “entire history” means the entire history as it is
currently stset. If you really want to use entire histories as recorded in the data, type streset,
past or streset, past future before using stgen. Then type streset to reset to the original
analysis sample.

The following functions are available:

ever(exp) creates newvar containing 1 (true) if the expression is ever true (nonzero) and 0 otherwise.
For instance,

. stgen everlow = ever(bp<100)

would create everlow containing, for each subject, uniformly 1 or 0. Every record for a subject
would contain everlow= 1 if, on any stset record for the subject, bp< 100; otherwise, everlow
would be 0.

never(exp) is the reverse of ever(); it creates newvar containing 1 (true) if the expression is always
false (0) and 0 otherwise. For instance,

. stgen neverlow = never(bp<100)

would create neverlow containing, for each subject, uniformly 1 or 0. Every record for a subject
would contain neverlow= 1 if, on every stset record for the subject, bp< 100 is false.

always(exp) creates newvar containing 1 (true) if the expression is always true (nonzero) and 0
otherwise. For instance,

. stgen lowlow = always(bp<100)

would create lowlow containing, for each subject, uniformly 1 or 0. Every record for a subject
would contain lowlow= 1 if, on every stset record for a subject, bp< 100.

min(exp) and max(exp) create newvar containing the minimum or maximum nonmissing value of
exp within id(). min() and max() are often used with variables recording a time (see definition
above), such as min(visitdat).

when(exp) and when0(exp) create newvar containing the time when exp first became true within
the previously stset id(). The result is in time, not t units; see the definition above.

http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions

stgen — Generate variables reflecting entire histories 3

when() and when0() differ about when the exp became true. Records record time spans
(time0, time1]. when() assumes that the expression became true at the end of the time span,
time1. when0() assumes that the expression became true at the beginning of the time span, time0.

Assume that you previously stset myt, failure(eventvar =. . .) when() would be appro-
priate for use with eventvar, and, presumably, when0() would be appropriate for use with the
remaining variables.

count(exp) and count0(exp) create newvar containing the number of occurrences when exp is true
within id().

count() and count0() differ in when they assume that exp occurs. count() assumes that exp
corresponds to the end of the time-span record. Thus even if exp is true in this record, the count
would remain unchanged until the next record.

count0() assumes that exp corresponds to the beginning of the time-span record. Thus if exp is
true in this record, the count is immediately updated.

For example, assume that you previously stset myt, failure(eventvar=. . .) count()
would be appropriate for use with eventvar, and, presumably, count0() would be appropriate for
use with the remaining variables.

minage(exp), maxage(exp), and avgage(exp) return the elapsed time, in time units, because exp is
at the beginning, end, or middle of the record, respectively. exp is expected to evaluate to a time
in time units. minage(), maxage(), and avgage() would be appropriate for use with the result
of when(), when0(), min(), and max(), for instance.

Also see [ST] stsplit; stsplit will divide the time-span records into new time-span records that
record specified intervals of ages.

nfailures() creates newvar containing the cumulative number of failures for each subject as of the
entry time for the observation. nfailures() is intended for use with multiple-failure data; with
single-failure data, nfailures() is always 0. In multiple-failure data,

. stgen nfail = nfailures()

might create, for a particular subject, the following:
id time0 time1 fail x nfail
93 0 20 0 1 0
93 20 30 1 1 0
93 30 40 1 2 1
93 40 60 0 1 2
93 60 70 0 2 2
93 70 80 1 1 2

The total number of failures for this subject is 3, and yet the maximum of the new variable nfail
is 2. At time 70, the beginning of the last record, there had been two failures previously, and there
were two failures up to but not including time 80.

ngaps() creates newvar containing the cumulative number of gaps for each subject as of the entry
time for the record. Delayed entry (an opening gap) is not considered a gap. For example,

. stgen ngap = ngaps()

might create, for a particular subject, the following:
id time0 time1 fail x ngap
94 10 30 0 1 0
94 30 40 0 2 0
94 50 60 0 1 1
94 60 70 0 2 1
94 82 90 1 1 2

http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals13/ststsplit.pdf#ststsplit
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions

4 stgen — Generate variables reflecting entire histories

gaplen() creates newvar containing the time on gap, measured in analysis-time units, for each
subject as of the entry time for the observation. Delayed entry (an opening gap) is not considered
a gap. Continuing with the previous example,

. stgen gl = gaplen()

would produce

id time0 time1 fail x ngap gl
94 10 30 0 1 0 0
94 30 40 0 2 0 0
94 50 60 0 1 1 10
94 60 70 0 2 1 0
94 82 90 1 1 2 12

hasgap() creates newvar containing uniformly 1 if the subject ever has a gap and 0 otherwise.
Delayed entry (an opening gap) is not considered a gap.

Remarks and examples stata.com

stgen does nothing you cannot do in other ways, but it is convenient.

Consider how you would obtain results like those created by stgen should you need something
that stgen will not create for you. Say that we have an st dataset for which we have previously

. stset t, failure(d) id(id)

Assume that these are some of the data:

id t d bp
27 30 0 90
27 50 0 110
27 60 1 85
28 11 0 120
28 40 1 130

If we were to type

. stgen everlow = ever(bp<100)

the new variable, everlow, would contain for these two subjects

id t d bp everlow
27 30 0 90 1
27 50 0 110 1
27 60 1 85 1
28 11 0 120 0
28 40 1 130 0

Variable everlow is 1 for subject 27 because, in two of the three observations, bp< 100, and
everlow is 0 for subject 28 because everlow is never less than 100 in either observation.

Here is one way we could have created everlow for ourselves:

. generate islow = bp<100

. sort id

. by id: generate sumislow = sum(islow)

. by id: generate everlow = sumislow[_N]>0

. drop islow sumislow

The generic term for code like this is explicit subscripting; see [U] 13.7 Explicit subscripting.

http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://stata.com
http://www.stata.com/manuals13/u13.pdf#u13.7Explicitsubscripting

stgen — Generate variables reflecting entire histories 5

Anyway, that is what stgen did for us, although, internally, stgen used denser code that was
equivalent to

. by id, sort: generate everlow=sum(bp<100)

. by id: replace everlow = everlow[_N]>0

Obtaining things like the time on gap is no more difficult. When we stset the data, stset created
variable t0 to record the entry time. stgen’s gaplen() function is equivalent to

. sort id _t

. by id: generate gaplen = _t0-_t[_n-1]

. by id: replace gaplen = 0 if _n == 1

Seeing this, you should realize that if all you wanted was the cumulative length of the gap before
the current record, you could type

. sort id _t

. by id: generate curgap = sum(_t0-_t[_n-1])

If, instead, you wanted a variable that was 1 if there were a gap just before this record and 0 otherwise,
you could type

. sort id _t

. by id: generate iscurgap = (_t0-_t[_n-1])>0

Example 1

Let’s use the stgen commands to real effect. We have a multiple-record, multiple-failure dataset.

. use http://www.stata-press.com/data/r13/mrmf, clear

. st
-> stset t, id(id) failure(d) time0(t0) exit(time .) noshow

id: id
failure event: d != 0 & d < .

obs. time interval: (t0, t]
exit on or before: time .

. stdescribe

per subject
Category total mean min median max

no. of subjects 926
no. of records 1734 1.87257 1 2 4

(first) entry time 0 0 0 0
(final) exit time 470.6857 1 477 960

subjects with gap 6
time on gap if gap 411 68.5 16 57.5 133
time at risk 435444 470.2419 1 477 960

failures 808 .8725702 0 1 3

Also in this dataset are two covariates, x1 and x2. We wish to fit a Cox model on these data but
wish to assume that the baseline hazard for first failures is different from that for second and later
failures.

6 stgen — Generate variables reflecting entire histories

Our data contain six subjects with gaps. Because failures might have occurred during the gap, we
begin by dropping those six subjects:

. stgen hg = hasgap()

. drop if hg
(14 observations deleted)

The six subjects had 14 records among them. We can now create variable nf containing the number
of failures and, from that, create variable group, which will be 0 when subjects have experienced no
previous failures and 1 thereafter:

. stgen nf = nfailures()

. generate byte group = nf>0

We can now fit our stratified model:

. stcox x1 x2, strata(group) vce(robust)

Iteration 0: log pseudolikelihood = -4499.9966
Iteration 1: log pseudolikelihood = -4444.7797
Iteration 2: log pseudolikelihood = -4444.4596
Iteration 3: log pseudolikelihood = -4444.4596
Refining estimates:
Iteration 0: log pseudolikelihood = -4444.4596

Stratified Cox regr. -- Breslow method for ties

No. of subjects = 920 Number of obs = 1720
No. of failures = 800
Time at risk = 432153

Wald chi2(2) = 102.78
Log pseudolikelihood = -4444.4596 Prob > chi2 = 0.0000

(Std. Err. adjusted for 920 clusters in id)

Robust
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

x1 2.087903 .1961725 7.84 0.000 1.736738 2.510074
x2 .2765613 .052277 -6.80 0.000 .1909383 .4005806

Stratified by group

Also see
[ST] stci — Confidence intervals for means and percentiles of survival time

[ST] sts — Generate, graph, list, and test the survivor and cumulative hazard functions

[ST] stset — Declare data to be survival-time data

[ST] stvary — Report variables that vary over time

http://www.stata.com/manuals13/ststci.pdf#ststci
http://www.stata.com/manuals13/ststs.pdf#ststs
http://www.stata.com/manuals13/ststset.pdf#ststset
http://www.stata.com/manuals13/ststvary.pdf#ststvary

