Title stata.com

**stcrreg postestimation** — Postestimation tools for stcrreg

Description Syntax for predict Menu for predict Options for predict Remarks and examples Methods and formulas References Also see

# **Description**

The following postestimation command is of special interest after stcrreg:

| Command | Description                                                      |
|---------|------------------------------------------------------------------|
| stcurve | plot the cumulative subhazard and cumulative incidence functions |

For information on stcurve, see [ST] stcurve.

The following standard postestimation commands are also available:

| Command         | Description                                                                                         |
|-----------------|-----------------------------------------------------------------------------------------------------|
| contrast        | contrasts and ANOVA-style joint tests of estimates                                                  |
| estat ic        | Akaike's and Schwarz's Bayesian information criteria (AIC and BIC)                                  |
| estat summarize | summary statistics for the estimation sample                                                        |
| estat vce       | variance-covariance matrix of the estimators (VCE)                                                  |
| estimates       | cataloging estimation results                                                                       |
| lincom          | point estimates, standard errors, testing, and inference for linear combinations of coefficients    |
| margins         | marginal means, predictive margins, marginal effects, and average marginal effects                  |
| marginsplot     | graph the results from margins (profile plots, interaction plots, etc.)                             |
| nlcom           | point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients |
| predict         | predictions, residuals, influence statistics, and other diagnostic measures                         |
| predictnl       | point estimates, standard errors, testing, and inference for generalized predictions                |
| pwcompare       | pairwise comparisons of estimates                                                                   |
| test            | Wald tests of simple and composite linear hypotheses                                                |
| testnl          | Wald tests of nonlinear hypotheses                                                                  |

# Syntax for predict

```
predict [type] newvar [if] [in] [, sv_statistic nooffset]
predict [type] { stub* | newvarlist } [if] [in], mv_statistic [ partial]
```

### 2 stcrreg postestimation — Postestimation tools for stcrreg

| sv_statistic Description                                    |                                                                                |  |  |  |
|-------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|
| Main                                                        |                                                                                |  |  |  |
| shr                                                         | predicted subhazard ratio, also known as the relative subhazard; the default   |  |  |  |
| xb                                                          | linear prediction $\mathbf{x}_{j}\boldsymbol{\beta}$                           |  |  |  |
| stdp                                                        | standard error of the linear prediction; $SE(\mathbf{x}_j \boldsymbol{\beta})$ |  |  |  |
| *basecif baseline cumulative incidence function (CIF)       |                                                                                |  |  |  |
| <u>basecsh</u> azard baseline cumulative subhazard function |                                                                                |  |  |  |
| * kmcensor                                                  | Kaplan-Meier survivor curve for the censoring distribution                     |  |  |  |

| mv_statistic     | Description                  |  |  |  |
|------------------|------------------------------|--|--|--|
| Main             |                              |  |  |  |
| *scores          | pseudolikelihood scores      |  |  |  |
| *esr             | efficient score residuals    |  |  |  |
| * <u>dfb</u> eta | DFBETA measures of influence |  |  |  |
| * schoenfeld     | Schoenfeld residuals         |  |  |  |

Unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample. Starred statistics are calculated only for the estimation sample, even when if e(sample) is not specified.

nooffset is allowed only with unstarred statistics.

## Menu for predict

Statistics > Postestimation > Predictions, residuals, etc.

## **Options for predict**

Main

shr, the default, calculates the relative subhazard (subhazard ratio), that is, the exponentiated linear prediction,  $\exp(\mathbf{x}_j\widehat{\boldsymbol{\beta}})$ .

xb calculates the linear prediction from the fitted model. That is, you fit the model by estimating a set of parameters,  $\beta_1, \beta_2, \dots, \beta_k$ , and the linear prediction is  $\widehat{\beta}_1 x_{1j} + \widehat{\beta}_2 x_{2j} + \dots + \widehat{\beta}_k x_{kj}$ , often written in matrix notation as  $\mathbf{x}_j \widehat{\boldsymbol{\beta}}$ .

The  $x_{1j}, x_{2j}, \ldots, x_{kj}$  used in the calculation are obtained from the data currently in memory and do not have to correspond to the data on the independent variables used in estimating  $\beta$ .

stdp calculates the standard error of the prediction, that is, the standard error of  $\mathbf{x}_j\widehat{\boldsymbol{\beta}}$ .

basecif calculates the baseline CIF. This is the CIF of the subdistribution for the cause-specific failure process.

basecshazard calculates the baseline cumulative subhazard function. This is the cumulative hazard function of the subdistribution for the cause-specific failure process.

- kmcensor calculates the Kaplan-Meier survivor function for the censoring distribution. These estimates are used to weight within risk pools observations that have experienced a competing event. As such, these values are not predictions or diagnostics in the strict sense, but are provided for those who wish to reproduce the pseudolikelihood calculations performed by stcrreg; see [ST] stcrreg.
- nooffset is allowed only with shr, xb, and stdp, and is relevant only if you specified offset(varname) for stcrreg. It modifies the calculations made by predict so that they ignore the offset variable; the linear prediction is treated as  $\mathbf{x}_i \hat{\boldsymbol{\beta}}$  rather than  $\mathbf{x}_i \hat{\boldsymbol{\beta}} + \text{offset}_i$ .
- scores calculates the pseudolikelihood scores for each regressor in the model. These scores are components of the robust estimate of variance. For multiple-record data, by default only one score per subject is calculated and it is placed on the last record for the subject.

Adding the partial option will produce partial scores, one for each record within subject; see partial below. Partial pseudolikelihood scores are the additive contributions to a subject's overall pseudolikelihood score. In single-record data, the partial pseudolikelihood scores are the pseudolikelihood scores.

One score variable is created for each regressor in the model; the first new variable corresponds to the first regressor, the second to the second, and so on.

esr calculates the efficient score residuals for each regressor in the model. Efficient score residuals are diagnostic measures equivalent to pseudolikelihood scores, with the exception that efficient score residuals treat the censoring distribution (that used for weighting) as known rather than estimated. For multiple-record data, by default only one score per subject is calculated and it is placed on the last record for the subject.

Adding the partial option will produce partial efficient score residuals, one for each record within subject; see partial below. Partial efficient score residuals are the additive contributions to a subject's overall efficient score residual. In single-record data, the partial efficient scores are the efficient scores.

One efficient variable is created for each regressor in the model; the first new variable corresponds to the first regressor, the second to the second, and so on.

dfbeta calculates the DFBETA measures of influence for each regressor of in the model. The DFBETA value for a subject estimates the change in the regressor's coefficient due to deletion of that subject. For multiple-record data, by default only one value per subject is calculated and it is placed on the last record for the subject.

Adding the partial option will produce partial DFBETAS, one for each record within subject; see partial below. Partial DFBETAs are interpreted as effects due to deletion of individual records rather than deletion of individual subjects. In single-record data, the partial DFBETAs are the DFBETAS.

One DFBETA variable is created for each regressor in the model; the first new variable corresponds to the first regressor, the second to the second, and so on.

schoenfeld calculates the Schoenfeld-like residuals. Schoenfeld-like residuals are diagnostic measures analogous to Schoenfeld residuals in Cox regression. They compare a failed observation's covariate values to the (weighted) average covariate values for all those at risk at the time of failure. Schoenfeld-like residuals are calculated only for those observations that end in failure; missing values are produced otherwise.

One Schoenfeld residual variable is created for each regressor in the model; the first new variable corresponds to the first regressor, the second to the second, and so on.

Note: The easiest way to use the preceding four options is, for example,

. predict double stub\*, scores

where *stub* is a short name of your choosing. Stata then creates variables *stub*1, *stub*2, etc. You may also specify each variable name explicitly, in which case there must be as many (and no more) variables specified as there are regressors in the model.

partial is relevant only for multiple-record data and is valid with scores, esr, and dfbeta. Specifying partial will produce "partial" versions of these statistics, where one value is calculated for each record instead of one for each subject. The subjects are determined by the id() option to stset.

Specify partial if you wish to perform diagnostics on individual records rather than on individual subjects. For example, a partial DFBETA would be interpreted as the effect on a coefficient due to deletion of one record, rather than the effect due to deletion of all records for a given subject.

## Remarks and examples

stata.com

Remarks are presented under the following headings:

Baseline functions Null models Measures of influence

### **Baseline functions**

# Example 1: Cervical cancer study

In example 1 of [ST] **stcrreg**, we fit a proportional subhazards model on data from a cervical cancer study.

```
. use \label{lem:http://www.stata-press.com/data/r13/hypoxia} $$(Hypoxia study)$
```

- . stset dftime, failure(failtype == 1)
   (output omitted)
- . stcrreg ifp tumsize pelnode, compete(failtype == 2)
   (output omitted)

| Competing-risks regression       | No. of obs      | = | 109    |
|----------------------------------|-----------------|---|--------|
|                                  | No. of subjects | = | 109    |
| Failure event : failtype == 1    | No. failed      | = | 33     |
| Competing event: failtype == 2   | No. competing   | = | 17     |
|                                  | No. censored    | = | 59     |
|                                  | Wald chi2(3)    | = | 33.21  |
| Log pseudolikelihood = -138.5308 | Prob > chi2     | = | 0.0000 |

| _t      | SHR      | Robust<br>Std. Err. | z     | P> z  | [95% Conf. | Interval] |
|---------|----------|---------------------|-------|-------|------------|-----------|
| ifp     | 1.033206 | .0178938            | 1.89  | 0.059 | .9987231   | 1.068879  |
| tumsize | 1.297332 | .1271191            | 2.66  | 0.008 | 1.070646   | 1.572013  |
| pelnode | .4588124 | .1972067            | -1.81 | 0.070 | .1975931   | 1.065365  |

After fitting the model, we can predict the baseline cumulative subhazard,  $\overline{H}_{1,0}(t)$ , and the baseline CIF,  $CIF_{1,0}(t)$ :

- . predict bch, basecsh
- . predict bcif, basecif
- . list dftime failtype ifp tumsize pelnode bch bcif in 1/15

|     | l      |          |      |         |         |          |          |
|-----|--------|----------|------|---------|---------|----------|----------|
|     | dftime | failtype | ifp  | tumsize | pelnode | bch      | bcif     |
| 1.  | 6.152  | 0        | 8    | 7       | 1       | .0658792 | .063756  |
| 2.  | 8.008  | 0        | 8.2  | 2       | 1       | .0813224 | .0781036 |
| 3.  | .003   | 1        | 8.6  | 10      | 1       | .0260186 | .025683  |
| 4.  | 1.073  | 1        | 3.3  | 8       | 1       | .0379107 | .0372011 |
| 5.  | .003   | 1        | 18.5 | 8       | 0       | .0260186 | .025683  |
| 6.  | 7.929  | 0        | 20   | 8       | 1       | .0813224 | .0781036 |
| 7.  | 8.454  | 0        | 21.8 | 4       | 1       | .0813224 | .0781036 |
| 8.  | 7.107  | 1        | 31.6 | 5       | 1       | .0813224 | .0781036 |
| 9.  | 8.378  | 0        | 16.5 | 5       | 1       | .0813224 | .0781036 |
| 10. | 8.178  | 0        | 31.5 | 3       | 1       | .0813224 | .0781036 |
| 11. | 3.395  | 0        | 18.5 | 4       | 1       | .0658792 | .063756  |
| 12. | .003   | 1        | 12.8 | 5       | 0       | .0260186 | .025683  |
| 13. | 1.35   | 1        | 18.4 | 4       | 1       | .051079  | .0497964 |
| 14. | .003   | 1        | 18.5 | 8       | 1       | .0260186 | .025683  |
| 15. | .512   | 2        | 21   | 10      | 0       | .0260186 | .025683  |
|     |        |          |      |         |         |          |          |

The baseline functions are for subjects who have zero-valued covariates, which in this example are not representative of the data. If baseline is an extreme departure from the covariate patterns in your data, then we recommend recentering your covariates to avoid numerical overflows when predicting baseline functions; see Making baseline reasonable in [ST] stcox postestimation for more details.

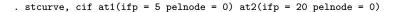
For our data, baseline is close enough to not cause any numerical problems, but far enough to not be of scientific interest (zero tumor size?). You can transform the baseline functions to those for other covariate patterns according to the relationships

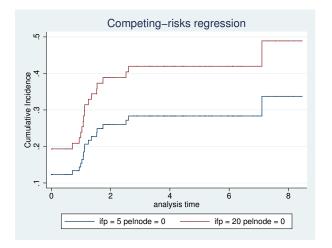
$$\overline{H}_1(t) = \exp(\mathbf{x}\boldsymbol{\beta})\overline{H}_{1,0}(t)$$

and

$$\mathrm{CIF}_1(t) = 1 - \exp\{-\exp(\mathbf{x}\boldsymbol{\beta})\overline{H}_{1,0}(t)\}$$

but it is rare that you will ever have to do that. stcurve will predict, transform, and graph these functions for you. When you use stcurve, you specify the covariate settings, and any you leave unspecified are set at the mean over the data used in the estimation.





Because they were left unspecified, the cumulative incidence curves are for mean tumor size. If you wish to graph cumulative subhazards instead of CIFs, use the stcurve option cumhaz in place of cif.

4

#### **Null models**

Predicting baseline functions after fitting a null model (one without covariates) yields nonparametric estimates of the cumulative subhazard and the CIF.

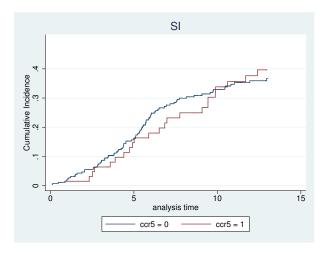
## Example 2: HIV and SI as competing events

In example 4 of [ST] **stcrreg**, we analyzed the incidence of appearance of the SI HIV phenotype, where a diagnosis of AIDS is a competing event. We modeled SI incidence in reference to a genetic mutation indicated by the covariate ccr5. We compared two approaches: one that used stcrreg and assumed that the subhazard of SI was proportional with respect to ccr5 versus one that used stcox and assumed that the cause-specific hazards for both SI and AIDS were each proportional with respect to ccr5. For both approaches, we produced cumulative incidence curves for SI comparing those who did not have the mutation (ccr5==0) to those who did (ccr5==1).

To see which approach better fits these data, we now produce cumulative incidence curves that make no model assumption about the effect of ccr5. We do this by fitting null models on the two subsets of the data defined by ccr5 and predicting the baseline CIF for each. Because the models have no covariates, the estimated baseline CIFs are nonparametric estimators.

```
. stcrreg if !ccr5, compete(status == 1) noshow
                                                   // AIDS is the competing event
                                                   No. of obs
Competing-risks regression
                                                                             259
                                                   No. of subjects
                                                                             259
Failure event : status == 2
                                                   No. failed
                                                                              84
                                                   No. competing
Competing event: status == 1
                                                                             101
                                                   No. censored
                                                                              74
                                                   Wald chi2(0)
                                                                            0.00
Log pseudolikelihood = -435.80148
                                                   Prob > chi2
                              Robust
                             Std. Err.
                                                            [95% Conf. Interval]
                      SHR
                                                 P>|z|
          _t
                                            7.
. predict cif_si_0, basecif
(65 missing values generated)
. label var cif_si_0 "ccr5 = 0"
. stcrreg if ccr5, compete(status == 1) noshow
Competing-risks regression
                                                   No. of obs
                                                                              65
                                                   No. of subjects
                                                                              65
Failure event : status == 2
                                                   No. failed
                                                                              23
Competing event: status == 1
                                                   No. competing
                                                                              12
                                                   No. censored
                                                                              30
                                                   Wald chi2(0)
                                                                            0.00
Log pseudolikelihood = -88.306665
                                                   Prob > chi2
                              Robust
          _t
                      SHR
                             Std. Err.
                                            z
                                                 P>|z|
                                                            [95% Conf. Interval]
```

- . predict cif\_si\_1, basecif (259 missing values generated)
- . label var cif\_si\_1 "ccr5 = 1"
- . twoway line cif\_si\* \_t if \_t<13, connect(J J) sort yscale(range(0 0.5))
- > title(SI) ytitle(Cumulative Incidence) xtitle(analysis time)



After comparing with the graphs produced in [ST] stcrreg, we find that the nonparametric analysis favors the stcox approach over the stcrreg approach.

### □ Technical note

Predicting the baseline CIF after fitting a null model with stcrreg produces a nonparametric CIF estimator that is asymptotically equivalent, but not exactly equal, to an alternate estimator that is often used; see Coviello and Boggess (2004) for the details of that estimator. The estimator used by predict after stcrreg is a competing-risks extension of the Nelson-Aalen estimator (Nelson 1972; Aalen 1978); see *Methods and formulas*. The other is a competing-risks extension of the Kaplan-Meier (1958) estimator.

In large samples with many failures, the difference is negligible.

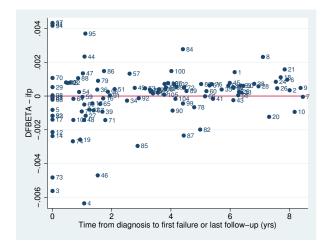
### Measures of influence

With predict after stcrreg, you can obtain pseudolikelihood scores that are used to calculate robust estimates of variance, Schoenfeld residuals that reflect each failure's contribution to the gradient of the log pseudolikelihood, efficient score residuals that represent each subject's (observation's) contribution to the gradient, and DFBETAs that measure the change in coefficients due to deletion of a subject or observation.

### Example 3: DFBETAs

Returning to our cervical cancer study, we obtain DFBETAs for each of the three coefficients in the model and graph those for the first with respect to analysis time.

- . use http://www.stata-press.com/data/r13/hypoxia, clear
  (Hypoxia study)
- . stset dftime, failure(failtype == 1)
   (output omitted)
- . stcrreg ifp tumsize pelnode, compete(failtype == 2)
   (output omitted)
- . predict df\*, dfbeta
- . generate obs = \_n
- . twoway scatter df1 dftime, yline(0) mlabel(obs)



predict created the variables df1, df2, and df3, holding DFBETA values for variables ifp, tumsize, and pelnode, respectively. Based on the graph, we see that subject 4 is the most influential on the coefficient for ifp, the first covariate in the model.

4

In the previous example, we had single-record data. If you have data with multiple records per subject, then by default DFBETAs will be calculated at the subject level, with one value representing each subject and measuring the effect of deleting all records for that subject. If you instead want record-level DFBETAs that measure the change due to deleting single records within subjects, add the partial option; see [ST] stcox postestimation for further details.

## Methods and formulas

Continuing the discussion from Methods and formulas in [ST] stcrreg, the baseline cumulative subhazard function is calculated as

$$\widehat{H}_{1,0}(t) = \sum_{j:t_i \le t} \frac{\delta_j}{\sum_{\ell \in R_j} w_\ell \pi_{\ell j} \exp(z_\ell)}$$

The baseline CIF is  $\widehat{\text{CIF}}_{1,0}(t) = 1 - \exp\{-\widehat{H}_{1,0}(t)\}.$ 

The Kaplan-Meier survivor curve for the censoring distribution is

$$\widehat{S}_c(t) = \prod_{t_{(j)} < t} \left\{ 1 - \frac{\sum_i \gamma_i I(t_i = t_{(j)})}{r(t_{(j)})} \right\}$$

where  $t_{(j)}$  indexes the times at which censorings occur.

Both the pseudolikelihood scores,  $\hat{\mathbf{u}}_i$ , and the efficient score residuals,  $\hat{\boldsymbol{\eta}}_i$ , are as defined previously. DFBETAs are calculated according to Collett (2003):

DFBETA
$$_{i}=\widehat{oldsymbol{\eta}}_{i}^{'}\mathrm{Var}^{*}(\widehat{oldsymbol{eta}})$$

where  $\operatorname{Var}^*(\widehat{\boldsymbol{\beta}})$  is the model-based variance estimator, that is, the inverse of the negative Hessian.

Schoenfeld residuals are  $\mathbf{r}_i = (\widehat{r}_{1i}, \dots, \widehat{r}_{mi})$  with

$$\widehat{r}_{ki} = \delta_i \left( x_{ki} - a_{ki} \right)$$

## References

Aalen, O. O. 1978. Nonparametric inference for a family of counting processes. Annals of Statistics 6: 701-726.

Cleves, M. A., W. W. Gould, R. G. Gutierrez, and Y. V. Marchenko. 2010. An Introduction to Survival Analysis Using Stata. 3rd ed. College Station, TX: Stata Press.

Collett, D. 2003. Modelling Survival Data in Medical Research. 2nd ed. London: Chapman & Hall/CRC.

Coviello, V., and M. M. Boggess. 2004. Cumulative incidence estimation in the presence of competing risks. Stata Journal 4: 103–112.

Fyles, A., M. Milosevic, D. Hedley, M. Pintilie, W. Levin, L. Manchul, and R. P. Hill. 2002. Tumor hypoxia has independent predictor impact only in patients with node-negative cervix cancer. *Journal of Clinical Oncology* 20: 680–687. Geskus, R. B. 2000. On the inclusion of prevalent cases in HIV/AIDS natural history studies through a marker-based estimate of time since seroconversion. *Statistics in Medicine* 19: 1753–1769.

Kaplan, E. L., and P. Meier. 1958. Nonparametric estimation from incomplete observations. *Journal of the American Statistical Association* 53: 457–481.

Milosevic, M., A. Fyles, D. Hedley, M. Pintilie, W. Levin, L. Manchul, and R. P. Hill. 2001. Interstitial fluid pressure predicts survival in patients with cervix cancer independent of clinical prognostic factors and tumor oxygen measurements. *Cancer Research* 61: 6400–6405.

Nelson, W. 1972. Theory and applications of hazard plotting for censored failure data. Technometrics 14: 945-966.

Pintilie, M. 2006. Competing Risks: A Practical Perspective. Chichester, UK: Wiley.

Putter, H., M. Fiocco, and R. B. Geskus. 2007. Tutorial in biostatistics: Competing risks and multi-state models. Statistics in Medicine 26: 2389–2430.

### Also see

[ST] **stcrreg** — Competing-risks regression

[ST] stcurve — Plot survivor, hazard, cumulative hazard, or cumulative incidence function

[U] 20 Estimation and postestimation commands