
Title stata.com

st is — Survival analysis subroutines for programmers

Syntax Description Remarks and examples Also see

Syntax

Verify that data in memory are survival-time data

st is 2 {full | analysis}

Display or do not display summary of survival-time variables

st show
[
noshow

]
Risk-group summaries

st ct "
[

byvars
]
" -> newtvar newpopvar newfailvar

[
newcensvar

[
newentvar

]]
You must have stset your data before using st is, st show, and st ct; see [ST] stset.

Description
These commands are provided for programmers wishing to write new st commands.

st is verifies that the data in memory are survival-time (st) data. If not, it issues the error message
“data not st”, r(119).

st is currently “release 2”, meaning that this is the second design of the system. Programs written
for the previous release continue to work. (The previous release of st corresponds to Stata 5.)

Modern programs code st is 2 full or st is 2 analysis. st is 2 verifies that the dataset
in memory is in release 2 format; if it is in the earlier format, it is converted to release 2 format.
(Older programs simply code st is. This verifies that no new features are stset about the data
that would cause the old program to break.)

The full and analysis parts indicate whether the dataset may include past, future, or past and
future data. Code st is 2 full if the command is suitable for running on the analysis sample and
the past and future data (many data management commands fall into this category). Code st is 2
analysis if the command is suitable for use only with the analysis sample (most statistical commands
fall into this category). See [ST] stset for the definitions of past and future.

st show displays the summary of the survival-time variables or does nothing, depending on what
you specify when stsetting the data. noshow requests that st show display nothing.

st ct is a low-level utility that provides risk-group summaries from survival-time data.

1

http://stata.com
http://www.stata.com/manuals13/ststset.pdf#ststset
http://www.stata.com/manuals13/ststset.pdf#ststset

2 st is — Survival analysis subroutines for programmers

Remarks and examples stata.com

Remarks are presented under the following headings:

Definitions of characteristics and st variables
Outline of an st command
Using the st ct utility
Comparison of st ct with sttoct
Verifying data
Converting data

Definitions of characteristics and st variables

From a programmer’s perspective, st is a set of conventions that specify where certain pieces of
information are stored and how that information should be interpreted, together with a few subroutines
that make it easier to follow the conventions.

At the lowest level, st is nothing more than a set of Stata characteristics that programmers may
access:

char dta[dta] st (marks that the data are st)
char dta[st ver] 2 (version number)
char dta[st id] varname or nothing; id() variable
char dta[st bt0] varname or nothing; t0() variable
char dta[st bt] varname; t variable from stset t, . . .
char dta[st bd] varname or nothing; failure() variable
char dta[st ev] list of numbers or nothing; numlist from failure(varname[==numlist])
char dta[st enter] contents of enter() or nothing; numlist expanded
char dta[st exit] contents of exit() or nothing; numlist expanded
char dta[st orig] contents of origin() or nothing; numlist expanded
char dta[st bs] # or 1; scale() value
char dta[st o] origin or #
char dta[st s] scale or #
char dta[st ifexp] exp or nothing; from stset . . . if exp . . .
char dta[st if] exp or nothing; contents of if()

char dta[st ever] exp or nothing; contents of ever()

char dta[st never] exp or nothing; contents of never()

char dta[st after] exp or nothing; contents of after()

char dta[st befor] exp or nothing; contents of before()

char dta[st wt] weight type or nothing; user-specified weight
char dta[st wv] varname or nothing; user-specified weighting variable
char dta[st w] [weighttype=weightvar] or nothing
char dta[st show] noshow or nothing
char dta[st t] t (for compatibility with release 1)
char dta[st t0] t0 (for compatibility with release 1)
char dta[st d] d (for compatibility with release 1)
char dta[st n0] # or nothing; number of st notes
char dta[st n1] text of first note or nothing
char dta[st n2] text of second note or nothing
char dta[st set] text or nothing. If filled in, streset (see [ST] stset) will refuse

to execute and present this text as the reason

http://stata.com
http://www.stata.com/manuals13/ststset.pdf#ststset

st is — Survival analysis subroutines for programmers 3

All st datasets also have the following four variables:

t0 time of entry (in t units) into risk pool
t time of exit (in t units) from risk pool
d contains 1 if failure, 0 if censoring
st contains 1 if observation is to be used and 0 otherwise

Thus, in a program, you might code
display "the failure/censoring base time variable is _t"
display "and its mean in the uncensored subsample is"
summarize _t if _d

No matter how simple or complicated the data, these four variables exist and are filled in. For
instance, in simple data, t0 might contain 0 for every observation, and d might always contain 1.

Some st datasets also contain the variables

origin evaluated value of origin()
scale evaluated value of scale()

The dta[st o] characteristic contains either the name origin or a number, often 0. It contains
a number when the origin does not vary across observations. dta[st s] works the same way with
the scale() value. Thus the origin and scale are dta[st o] and dta[st s]. In fact, these
characteristics are seldom used because variables t and t0 are already adjusted.

Some st datasets have an id() variable that clusters together records on the same subject. The
name of the variable varies, and the name can be obtained from the dta[st id] characteristic. If
there is no id() variable, the characteristic contains nothing.

Outline of an st command
If you are writing a new st command, place st is near the top of your code to ensure that your

command does not execute on inappropriate data. Also place st show following the parsing of your
command’s syntax to display the key st variables. The minimal outline for an st command is

program st name
version 13
st_is 2 . . .
. . . syntax command . . .
. . . determined there are no syntax errors . . .
st_show

. . . guts of program . . .
end

st is 2 appears even before the input is parsed. This is to avoid irritating users when they type a
command, get a syntax error, work hard to eliminate the error, and then learn that “data not st”.

A fuller outline for an st command, particularly one that performs analysis on the data, is
program st name

version 13
st_is 2 . . .
syntax . . . [, . . . noSHow . . .]

st_show ‘show’

marksample touse
quietly replace ‘touse’ = 0 if _st==0

. . . guts of program . . .
end

4 st is — Survival analysis subroutines for programmers

All calculations and actions are to be restricted, at the least, to observations for which st 6= 0.
Observations with st = 0 are to be ignored.

Using the st ct utility

st ct converts the data in memory to observations containing summaries of risk groups. Consider
the code

st_is 2 analysis
preserve
st_ct "" -> t pop die

Typing this would change the data in memory to contain something akin to count-time data. The
transformed data would have observations containing

t time
pop population at risk at time t
die number who fail at time t

There would be one record per time t, and the data would be sorted by t. The original data are
discarded, which is why you should code preserve; see [P] preserve.

The above three lines of code could be used as the basis for calculating the Kaplan–Meier
product-limit survivor-function estimate. The rest of the code is

keep if die
gen double hazard = die/pop
gen double km = 1-hazard if _n==1
replace km = (1-hazard)*km[_n-1] if _n>1

st ct can be used to obtain risk groups separately for subgroups of the population. The code
st_is 2 analysis
preserve
st_ct "race sex" -> t pop die

would change the data in memory to contain
race
sex
t time
pop population at risk at time t
die number who fail at time t

There would be one observation for each race–sex–t combination, and the data would be sorted
by race sex t.

With this dataset, you could calculate the Kaplan–Meier product-limit survivor-function estimate
for each race–sex group by coding

keep if die
gen double hazard = die/pop
by race sex: gen double km = 1-hazard if _n==1
by race sex: replace km = (1-hazard)*km[_n-1] if _n>1

st ct is a convenient subroutine. The above code fragment works regardless of the complexity of
the underlying survival-time data. It does not matter whether there is one record per subject, no
censoring, and one failure per subject, or multiple records per subject, gaps, and recurring failures
for the same subject. st ct forms risk groups that summarize the events recorded by the data.

st ct can provide the number of censored records and the number who enter the risk group. The
code

st_ct "" -> t pop die cens ent

http://www.stata.com/manuals13/ppreserve.pdf#ppreserve

st is — Survival analysis subroutines for programmers 5

creates records containing

t time
pop population at risk at time t
die number who fail at time t
cens number who are censored at t (after the failures)
ent number who enter at t (after the censorings)

As before,

st_ct "race sex" -> t pop die cens ent

would create a similar dataset with records for each race–sex group.

Comparison of st ct with sttoct

sttoct—see [ST] sttoct—is related to st ct, and in fact, sttoct is implemented in terms of
st ct. The differences between them are that

• sttoct creates ct data, meaning that the dataset is marked as being ct. st ct merely creates a
useful dataset; it does not ctset the data.

• st ct creates a total population at-risk variable—which is useful in programming—but sttoct
creates no such variable.

• sttoct eliminates thrashings—censorings and reentries of the same subject as covariates
change—if there are no gaps, strata shifting, etc. st ct does not do this. Thus, at a par-
ticular time, sttoct might show that there are two lost to censoring and none entered, whereas
st ct might show 12 censorings and 10 entries. This makes no difference in calculating the
number at risk and the number who fail, which are the major ingredients in survival calculations.

• st ct is faster.

Verifying data

As long as you code st is at the top of your program, you need not verify the consistency of
the data. That is, you need not verify that subjects do not fail before they enter, etc.

The dataset is verified when you stset it. If you make a substantive change to the data, you must
rerun stset (which can be done by typing stset or streset without arguments) to reverify that
all is well.

Converting data

If you write a program that converts the data from one form of st data to another, or from st data to
something else, be sure to issue the appropriate stset command. For instance, a command we have
written, stbase, converts the data from st to a simple cross-section in one instance. In our program,
we coded stset, clear so that all other st commands would know that these are no longer st data
and that making st calculations on them would be inappropriate.

Even if we had forgotten, other st programs would have found many of the key st variables missing
and would have ended with a “[such-and-such] not found” error.

http://www.stata.com/manuals13/ststtoct.pdf#ststtoct

6 st is — Survival analysis subroutines for programmers

Also see
[ST] stset — Declare data to be survival-time data

[ST] sttoct — Convert survival-time data to count-time data

[ST] survival analysis — Introduction to survival analysis & epidemiological tables commands

http://www.stata.com/manuals13/ststset.pdf#ststset
http://www.stata.com/manuals13/ststtoct.pdf#ststtoct
http://www.stata.com/manuals13/stsurvivalanalysis.pdf#stsurvivalanalysis

