Contents

intro ... Introduction to survival analysis manual 1
survival analysis Introduction to survival analysis & epidemiological tables commands 2
c .. Count-time data 9
cset ... Declare data to be count-time data 10
cttost .. Convert count-time data to survival-time data 16
discrete .. Discrete-time survival analysis 19
epitab ... Tables for epidemiologists 21
ltable .. Life tables for survival data 77
snapshot ... Convert snapshot data to time-span data 90
st ... Survival-time data 93
st_is .. Survival analysis subroutines for programmers 95
stbase ... Form baseline dataset 101
stci ... Confidence intervals for means and percentiles of survival time 111
stcox ... Cox proportional hazards model 120
stcox PH-assumption tests Tests of proportional-hazards assumption 152
stcox postestimation Postestimation tools for stcox 167
stcrreg .. Competing-risks regression 200
stcrreg postestimation Postestimation tools for stcrreg 226
stcurve ... Plot survivor, hazard, cumulative hazard, or cumulative incidence function 236
stdescribe ... Describe survival-time data 247
stfill ... Fill in by carrying forward values of covariates 251
stgen .. Generate variables reflecting entire histories 254
stir .. Report incidence-rate comparison 260
stpower ... Sample size, power, and effect size for survival analysis 263
stpower cox ... Sample size, power, and effect size for the Cox proportional hazards model 275
stpower exponential Sample size and power for the exponential test 291
stpower logrank ... Sample size, power, and effect size for the log-rank test 320
stptime ... Calculate person-time, incidence rates, and SMR 340
strate ... Tabulate failure rates and rate ratios 347
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>streg</td>
<td>Parametric survival models</td>
<td>358</td>
</tr>
<tr>
<td>streg postestimation</td>
<td>Postestimation tools for streg</td>
<td>391</td>
</tr>
<tr>
<td>sts</td>
<td>Generate, graph, list, and test the survivor and cumulative hazard functions</td>
<td>401</td>
</tr>
<tr>
<td>sts generate</td>
<td>Create variables containing survivor and related functions</td>
<td>417</td>
</tr>
<tr>
<td>sts graph</td>
<td>Graph the survivor, hazard, or cumulative hazard function</td>
<td>420</td>
</tr>
<tr>
<td>sts list</td>
<td>List the survivor or cumulative hazard function</td>
<td>439</td>
</tr>
<tr>
<td>sts test</td>
<td>Test equality of survivor functions</td>
<td>444</td>
</tr>
<tr>
<td>stset</td>
<td>Declare data to be survival-time data</td>
<td>459</td>
</tr>
<tr>
<td>stsplit</td>
<td>Split and join time-span records</td>
<td>501</td>
</tr>
<tr>
<td>stsum</td>
<td>Summarize survival-time data</td>
<td>519</td>
</tr>
<tr>
<td>sttocc</td>
<td>Convert survival-time data to case–control data</td>
<td>525</td>
</tr>
<tr>
<td>sttoct</td>
<td>Convert survival-time data to count-time data</td>
<td>530</td>
</tr>
<tr>
<td>stvary</td>
<td>Report variables that vary over time</td>
<td>532</td>
</tr>
<tr>
<td>Glossary</td>
<td></td>
<td>535</td>
</tr>
<tr>
<td>Subject and author index</td>
<td></td>
<td>545</td>
</tr>
</tbody>
</table>
Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals. For example,

[U] 26 Overview of Stata estimation commands
[R] regress
[D] reshape

The first example is a reference to chapter 26, *Overview of Stata estimation commands*, in the *User's Guide*; the second is a reference to the *regress* entry in the *Base Reference Manual*; and the third is a reference to the *reshape* entry in the *Data Management Reference Manual*.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows
[U] Stata User's Guide
[R] Stata Base Reference Manual
[XT] Stata Longitudinal-Data/Panel-Data Reference Manual
[M] Stata Multiple-Imputation Reference Manual
[PSS] Stata Power and Sample-Size Reference Manual
[SVY] Stata Survey Data Reference Manual
[I] Stata Glossary and Index
This entry describes this manual and what has changed since Stata 12. See the next entry, [ST] survival analysis, for an introduction to Stata’s survival analysis capabilities.

This manual documents commands for survival analysis and epidemiological tables and is referred to as [ST] in cross-references. Following this entry, [ST] survival analysis provides an overview of the commands.

This manual is arranged alphabetically. If you are new to Stata’s survival analysis and epidemiological tables commands, we recommend that you read the following sections first:

- [ST] survival analysis Introduction to survival analysis & epidemiological tables commands
- [ST] st Survival-time data
- [ST] stset Set variables for survival data

Stata is continually being updated, and Stata users are always writing new commands. To find out about the latest survival analysis features, type search survival after installing the latest official updates; see [R] update. To find out about the latest epidemiological features, type search epi.

What’s new

For a complete list of all the new features in Stata 13, see [U] 1.3 What’s new.

Also see

- [U] 1.3 What’s new
- [R] intro — Introduction to base reference manual
survival analysis — Introduction to survival analysis & epidemiological tables commands

Description

Stata’s survival analysis routines are used to compute sample size, power, and effect size and to declare, convert, manipulate, summarize, and analyze survival data. Survival data are time-to-event data, and survival analysis is full of jargon: truncation, censoring, hazard rates, etc. See the glossary in this manual. For a good Stata-specific introduction to survival analysis, see Cleves et al. (2010).

Stata also has several commands for analyzing contingency tables resulting from various forms of observational studies, such as cohort or matched case–control studies.

This manual documents the following commands, which are described in detail in their respective manual entries.

Declaring and converting count data

- **ctset** ([ST] ctset): Declare data to be count-time data
- **cttost** ([ST] cttost): Convert count-time data to survival-time data

Converting snapshot data

- **snapspan** ([ST] snapspan): Convert snapshot data to time-span data

Declaring and summarizing survival-time data

- **stset** ([ST] stset): Declare data to be survival-time data
- **stdescribe** ([ST] stdescribe): Describe survival-time data
- **stsum** ([ST] stsum): Summarize survival-time data

Manipulating survival-time data

- **stvary** ([ST] stvary): Report variables that vary over time
- **stfill** ([ST] stfill): Fill in by carrying forward values of covariates
- **stgen** ([ST] stgen): Generate variables reflecting entire histories
- **stsplit** ([ST] stsplit): Split time-span records
- **stjoin** ([ST] stsplit): Join time-span records
- **stbase** ([ST] stbase): Form baseline dataset

Obtaining summary statistics, confidence intervals, tables, etc.

- **sts** ([ST] sts): Generate, graph, list, and test the survivor and cumulative hazard functions
- **stir** ([ST] stir): Report incidence-rate comparison
- **stci** ([ST] stci): Confidence intervals for means and percentiles of survival time
- **strate** ([ST] strate): Tabulate failure rate
- **stptime** ([ST] stptime): Calculate person-time, incidence rates, and SMR
- **stmh** ([ST] strate): Calculate rate ratios with the Mantel–Haenszel method
- **stmc** ([ST] strate): Calculate rate ratios with the Mantel–Cox method
- **ltable** ([ST] ltable): Display and graph life tables
Fitting regression models

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>stcox</td>
<td>[ST] stcox</td>
</tr>
<tr>
<td>estat</td>
<td>[ST] stcox postestimation</td>
</tr>
<tr>
<td>phtest</td>
<td>[ST] stcox PH-assumption tests</td>
</tr>
<tr>
<td>stphplot</td>
<td>[ST] stcox PH-assumption tests</td>
</tr>
<tr>
<td>stcoxkm</td>
<td>[ST] stcox PH-assumption tests</td>
</tr>
<tr>
<td>streg</td>
<td>[ST] streg</td>
</tr>
<tr>
<td>stcurve</td>
<td>[ST] stcurve</td>
</tr>
<tr>
<td>stcrreg</td>
<td>[ST] stcrreg</td>
</tr>
</tbody>
</table>

Sample-size and power determination for survival analysis

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>stpower</td>
<td>[ST] stpower</td>
</tr>
<tr>
<td>stpower cox</td>
<td>[ST] stpower cox</td>
</tr>
<tr>
<td>stpower exp</td>
<td>[ST] stpower exponential</td>
</tr>
<tr>
<td>stpower log</td>
<td>[ST] stpower logrank</td>
</tr>
</tbody>
</table>

Converting survival-time data

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sttocc</td>
<td>[ST] sttocc</td>
</tr>
<tr>
<td>sttoct</td>
<td>[ST] sttoct</td>
</tr>
</tbody>
</table>

Programmer’s utilities

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>st_*</td>
<td>[ST] st_is</td>
</tr>
</tbody>
</table>

Epidemiological tables

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ir</td>
<td>[ST] epitab</td>
</tr>
<tr>
<td>iri</td>
<td>[ST] epitab</td>
</tr>
<tr>
<td>cs</td>
<td>[ST] epitab</td>
</tr>
<tr>
<td>csi</td>
<td>[ST] epitab</td>
</tr>
<tr>
<td>cc</td>
<td>[ST] epitab</td>
</tr>
<tr>
<td>cci</td>
<td>[ST] epitab</td>
</tr>
<tr>
<td>tabodds</td>
<td>[ST] epitab</td>
</tr>
<tr>
<td>mhodds</td>
<td>[ST] epitab</td>
</tr>
<tr>
<td>mcc</td>
<td>[ST] epitab</td>
</tr>
<tr>
<td>mcci</td>
<td>[ST] epitab</td>
</tr>
</tbody>
</table>
Remarks and examples

Remarks are presented under the following headings:

- Introduction
- Declaring and converting count data
- Converting snapshot data
- Declaring and summarizing survival-time data
- Manipulating survival-time data
- Obtaining summary statistics, confidence intervals, tables, etc.
- Fitting regression models
- Sample size and power determination for survival analysis
- Converting survival-time data
- Programmer’s utilities
- Epidemiological tables

Introduction

All but one entry in this manual deals with the analysis of survival data, which is used to measure the time to an event of interest such as death or failure. Survival data can be organized in two ways. The first way is as count data, which refers to observations on populations, whether people or generators, with observations recording the number of units at a given time that failed or were lost because of censoring. The second way is as survival-time, or time-span, data. In survival-time data, the observations represent periods and contain three variables that record the start time of the period, the end time, and an indicator of whether failure or right-censoring occurred at the end of the period. The representation of the response of these three variables makes survival data unique in terms of implementing the statistical methods in the software.

Survival data may also be organized as snapshot data (a small variation of the survival-time format), in which observations depict an instance in time rather than an interval. When you have snapshot data, you simply use the `snapspan` command to convert it to survival-time data before proceeding.

Stata commands that begin with `ct` are used to convert count data to survival-time data. Survival-time data are analyzed using Stata commands that begin with `st`, known in our terminology as st commands. You can express all the information contained in count data in an equivalent survival-time dataset, but the converse is not true. Thus Stata commands are made to work with survival-time data because it is the more general representation.

The one remaining entry is [ST] `epitab`, which describes epidemiological tables. [ST] `epitab` covers many commands dealing with analyzing contingency tables arising from various observational studies, such as case–control or cohort studies. [ST] `epitab` is included in this manual because the concepts presented there are related to concepts of survival analysis, and both topics use the same terminology and are of equal interest to many researchers.

Declaring and converting count data

Count data must first be converted to survival-time data before Stata’s `st` commands can be used. Count data can be thought of as aggregated survival-time data. Rather than having observations that are specific to a subject and a period, you have data that, at each recorded time, record the number lost because of failure and, optionally, the number lost because of right-censoring.

`ctset` is used to tell Stata the names of the variables in your count data that record the time, the number failed, and the number censored. You `ctset` your data before typing `cttost` to convert it to survival-time data. Because you `ctset` your data, you can type `cttost` without any arguments to perform the conversion. Stata remembers how the data are `ctset`.
Converting snapshot data

Snapshot data are data in which each observation records the status of a given subject at a certain point in time. Usually you have multiple observations on each subject that chart the subject’s progress through the study.

Before using Stata’s survival analysis commands with snapshot data, you must first convert the data to survival-time data; that is, the observations in the data should represent intervals. When you convert snapshot data, the existing time variable in your data is used to record the end of a time span, and a new variable is created to record the beginning. Time spans are created using the recorded snapshot times as breakpoints at which new intervals are to be created. Before converting snapshot data to time-span data, you must understand the distinction between enduring variables and instantaneous variables. Enduring variables record characteristics of the subject that endure throughout the time span, such as sex or smoking status. Instantaneous variables describe events that occur at the end of a time span, such as failure or censoring. When you convert snapshots to intervals, enduring variables obtain their values from the previous recorded snapshot or are set to missing for the first interval. Instantaneous variables obtain their values from the current recorded snapshot because the existing time variable now records the end of the span.

Stata’s snapspan makes this whole process easy. You specify an ID variable identifying your subjects, the snapshot time variable, the name of the new variable to hold the beginning times of the spans, and any variables that you want to treat as instantaneous variables. Stata does the rest for you.

Declaring and summarizing survival-time data

Stata does not automatically recognize survival-time data, so you must declare your survival-time data to Stata by using stset. Every st command relies on the information that is provided when you stset your data. Survival-time data come in different forms. For example, your time variables may be dates, time measured from a fixed date, or time measured from some other point unique to each subject, such as enrollment in the study. You can also consider the following questions. What is the onset of risk for the subjects in your data? Is it time zero? Is it enrollment in the study or some other event, such as a heart transplant? Do you have censoring, and if so, which variable records it? What values does this variable record for censoring/failure? Do you have delayed entry? That is, were some subjects at risk of failure before you actually observed them? Do you have simple data and wish to treat everyone as entering and at risk at time zero?

Whatever the form of your data, you must first stset it before analyzing it, and so if you are new to Stata’s st commands, we highly recommend that you take the time to learn about stset. It is really easy once you get the hang of it, and [ST] stset has many examples to help. For more discussion of stset, see chapter 6 of Cleves et al. (2010).

Once you stset the data, you can use stdescribe to describe the aspects of your survival data. For example, you will see the number of subjects you were successful in declaring, the total number of records associated with these subjects, the total time at risk for these subjects, time gaps for any of these subjects, any delayed entry, etc. You can use stsum to summarize your survival data, for example, to obtain the total time at risk and the quartiles of time-to-failure in analysis-time units.

Manipulating survival-time data

Once your data have been stset, you may want to clean them up a bit before beginning your analysis. Suppose that you had an enduring variable and snapspan recorded it as missing for the interval leading up to the first recorded snapshot time. You can use stfill to fill in missing values of covariates, either by carrying forward the values from previous periods or by making the covariate
equal to its earliest recorded (nonmissing) value for all time spans. You can use `stvary` to check for time-varying covariates or to confirm that certain variables, such as sex, are not time varying. You can use `stgen` to generate new covariates based on functions of the time spans for each given subject. For example, you can create a new variable called `eversmoked` that equals one for all a subject’s observations, if the variable `smoke` in your data is equal to one for any of the subject’s time spans. Think of `stgen` as just a convenient way to do things that could be done using `subject_id:` with survival-time data.

`stsplit` is useful for creating data that have multiple records per subject from data that have one record per subject. Suppose that you have already `stset` your data and wish to introduce a time-varying covariate. You would first need to `stsplit` your data so that separate time spans could be created for each subject, allowing the new covariate to assume different values over time within a subject. `stjoin` is the opposite of `stsplit`. Suppose that you have data with multiple records per subject but then realize that the data could be collapsed into single-subject records with no loss of information. Using `stjoin` would speed up any subsequent analysis using the `st` commands without changing the results.

`stbase` can be used to set every variable in your multiple-record `st` data to the value at baseline, defined as the earliest time at which each subject was observed. It can also be used to convert `st` data to cross-sectional data.

Obtaining summary statistics, confidence intervals, tables, etc.

Stata provides several commands for nonparametric analysis of survival data that can produce a wide array of summary statistics, inference, tables, and graphs. `sts` is a truly powerful command, used to obtain nonparametric estimates, inference, tests, and graphs of the survivor function, the cumulative hazard function, and the hazard function. You can compare estimates across groups, such as smoking versus nonsmoking, and you can adjust these estimates for the effects of other covariates in your data. `sts` can present these estimates as tables and graphs. `sts` can also be used to test the equality of survivor functions across groups.

`stir` is used to estimate incidence rates and to compare incidence rates across groups. `stci` is the survival-time data analog of `ci` and is used to obtain confidence intervals for means and percentiles of time to failure. `strate` is used to tabulate failure rates. `stptime` is used to calculate person-time and standardized mortality/morbidity ratios (SMRs). `stmh` calculates rate ratios by using the Mantel–Haenszel method, and `stmc` calculates rate ratios by using the Mantel–Cox method.

`ltable` displays and graphs life tables for individual-level or aggregate data.

Fitting regression models

Stata has commands for fitting both semiparametric and parametric regression models to survival data. `stcox` fits the Cox proportional hazards model and `predict` after `stcox` can be used to retrieve estimates of the baseline survivor function, the baseline cumulative hazard function, and the baseline hazard contributions. `predict` after `stcox` can also calculate a myriad of Cox regression diagnostic quantities, such as martingale residuals, efficient score residuals, and Schoenfeld residuals. `stcox` has four options for handling tied failures. `stcox` can be used to fit stratified Cox models, where the baseline hazard is allowed to differ over the strata, and it can be used to model multivariate survival data by using a shared-frailty model, which can be thought of as a Cox model with random effects. After `stcox`, you can use `estat phtest` to test the proportional-hazards assumption or `estat concordance` to compute the concordance probability. With `stphplot` and `stcoxkm`, you can graphically assess the proportional-hazards assumption.
Stata offers six parametric regression models for survival data: exponential, Weibull, lognormal, loglogistic, Gompertz, and gamma. All six models are fit using \texttt{streg}, and you can specify the model you want with the \texttt{distribution()} option. All of these models, except for the exponential, have ancillary parameters that are estimated (along with the linear predictor) from the data. By default, these ancillary parameters are treated as constant, but you may optionally model the ancillary parameters as functions of a linear predictor. Stratified models may also be fit using \texttt{streg}. You can also fit frailty models with \texttt{streg} and specify whether you want the frailties to be treated as spell-specific or shared across groups of observations.

\texttt{stcrreg} fits a semiparametric regression model for survival data in the presence of competing risks. Competing risks impede the failure event under study from occurring. An analysis of such competing-risks data focuses on the cumulative incidence function, the probability of failure in the presence of competing events that prevent that failure. \texttt{stcrreg} provides an analogue to \texttt{stcox} for such data. The baseline subhazard function—that which generates failures under competing risks—is left unspecified, and covariates act multiplicatively on the baseline subhazard.

\texttt{stcurve} is for use after \texttt{stcox}, \texttt{streg}, and \texttt{stcrreg} and will plot the estimated survivor, hazard, cumulative hazard, and cumulative incidence function for the fitted model. Covariates, by default, are held fixed at their mean values, but you can specify other values if you wish. \texttt{stcurve} is useful for comparing these functions across different levels of covariates.

Sample size and power determination for survival analysis

Stata has commands for computing sample size, power, and effect size for survival analysis using the log-rank test, the Cox proportional hazards model, and the exponential test comparing exponential hazard rates.

\texttt{stpower logrank} estimates required sample size, power, and effect size for survival analysis comparing survivor functions in two groups using the log-rank test. It provides options to account for unequal allocation of subjects between the two groups, possible withdrawal of subjects from the study (loss to follow-up), and uniform accrual of subjects into the study.

\texttt{stpower cox} estimates required sample size, power, and effect size for survival analysis using Cox proportional hazards (PH) models with possibly multiple covariates. It provides options to account for possible correlation between the covariate of interest and other predictors and for withdrawal of subjects from the study.

\texttt{stpower exponential} estimates required sample size and power for survival analysis comparing two exponential survivor functions using the exponential test (in particular, the Wald test of the difference between hazards or, optionally, of the difference between log hazards). It accommodates unequal allocation between the two groups, flexible accrual of subjects into the study (uniform and truncated exponential), and group-specific losses to follow-up.

The \texttt{stpower} commands allow automated production of customizable tables and have options to assist with the creation of graphs of power curves and more.

Converting survival-time data

Stata has commands for converting survival-time data to case–control and count data. These commands are rarely used, because most of the analyses are performed using data in the survival-time format. \texttt{sttocc} is useful for converting survival data to case–control data suitable for estimation with \texttt{clogit}. \texttt{sttoct} is the opposite of \texttt{cttost} and will convert survival-time data to count data.
Programmer’s utilities

Stata also provides routines for programmers interested in writing their own st commands. These are basically utilities for setting, accessing, and verifying the information saved by \texttt{stset}. For example, \texttt{st_is} verifies that the data have in fact been \texttt{stset} and gives the appropriate error if not. \texttt{st_show} is used to preface the output of a program with key information on the st variables used in the analysis. Programmers interested in writing st code should see \cite{intro}.

Epidemiological tables

See the \textit{Description} section of \cite{epitab} for an overview of Stata’s commands for calculating statistics and performing lists that are useful for epidemiologists.

Reference

Also see

\cite{stset} — Declare data to be survival-time data
\cite{intro} — Introduction to survival analysis manual
The term \textit{ct} refers to count-time data and the commands—all of which begin with the letters “ct”—for analyzing them. If you have data on populations, whether people or generators, with observations recording the number of units under test at time t (subjects alive) and the number of subjects that failed or were lost because of censoring, you have what we call count-time data.

If, on the other hand, you have data on individual subjects with observations recording that this subject came under observation at time t_0 and that later, at t_1, a failure or censoring was observed, you have what we call survival-time data. If you have survival-time data, see \[ST\]\texttt{st}.

Do not confuse count-time data with counting-process data, which can be analyzed using the \texttt{st} commands; see \[ST\]\texttt{st}.

There are two \texttt{ct} commands:

\begin{verbatim}
\texttt{ctset} [\texttt{ST}\texttt{ctset}] \\
\texttt{cttost} [\texttt{ST}\texttt{cttost}]
\end{verbatim}

\texttt{cttost} command. Once you have converted your count-time data to survival-time data, you can use the \texttt{st} commands to analyze the data. The entire process is as follows:

1. \texttt{ctset} your data so that Stata knows that they are count-time data; see \[ST\]\texttt{ctset}.
2. Type \texttt{cttost} to convert your data to survival-time data; see \[ST\]\texttt{cttost}.
3. Use the \texttt{st} commands; see \[ST\]\texttt{st}.

\begin{verbatim}
\texttt{Also see}
\texttt{[ST}\texttt{ctset]} — Declare data to be count-time data
\texttt{[ST}\texttt{cttost]} — Convert count-time data to survival-time data
\texttt{[ST}\texttt{st]} — Survival-time data
\texttt{[ST}\texttt{survival analysis]} — Introduction to survival analysis & epidemiological tables commands
\end{verbatim}
ctset — Declare data to be count-time data

Syntax

Declare data in memory to be count-time data and run checks on data

```
ctset timevar nfailvar [ ncensvar [ nentvar ] ] [ , by(varlist) noshow ]
```

Specify whether to display identities of key ct variables

```
ctset, { show|noshow }
```

Clear ct setting

```
ctset, clear
```

Display identity of key ct variables and rerun checks on data

```
{ ctset | ct }
```

where `timevar` refers to the time of failure, censoring, or entry. It should contain times ≥ 0. `nfailvar` records the number failing at time `timevar`. `ncensvar` records the number censored at time `timevar`. `nentvar` records the number entering at time `timevar`.

Stata sequences events at the same time as

- at `timevar` $nfailvar$ failures occurred,
- then at `timevar + 0` $ncensvar$ censorings occurred,
- finally at `timevar + 0 + 0` $nentvar$ subjects entered the data.

Menu

Statistics > Survival analysis > Setup and utilities > Declare data to be count-time data

Description

ct refers to count-time data and is described here and in [ST] ct. Do not confuse count-time data with counting-process data, which can be analyzed using the st commands; see [ST] st.

In the first syntax, `ctset` declares the data in memory to be ct data, informing Stata of the key variables. When you `ctset` your data, `ctset` also checks that what you have declared makes sense.
In the second syntax, `ctset` changes the value of `show/noshow`. In `show` mode—the default—the other `ct` commands display the identities of the key `ct` variables before their normal output. If you type `ctset, noshow`, they will not do this. If you type `ctset, noshow` and then wish to restore the default behavior, type `ctset, show`.

In the third syntax, `ctset, clear` causes Stata to no longer consider the data to be `ct` data. The dataset itself remains unchanged. It is not necessary to type `ctset, clear` before doing another `ctset`. `ctset, clear` is used mostly by programmers.

In the fourth syntax, `ctset`—which can be abbreviated `ct` here—displays the identities of the key `ct` variables and reruns the checks on your data. Thus `ct` can remind you of what you have `ctset` (especially if you have `ctset, noshow`) and reverify your data if you make changes to the data.

Options

by(`varlist`) indicates that counts are provided by group. For instance, consider data containing records such as

<table>
<thead>
<tr>
<th>t</th>
<th>fail</th>
<th>cens</th>
<th>sex</th>
<th>agecat</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

These data indicate that, in the category `sex = 0` and `agecat = 1`, 10 failed and 2 were censored at time 5; for `sex = 1`, 1 was censored and 6 failed; and so on.

The above data would be declared

```
    . ctset t fail cens, by(sex agecat)
```

The order of the records is not important, nor is it important that there be a record at every time for every group or that there be only one record for a time and group. However, the data must contain the full table of events.

`show` and `noshow` specify whether the identities of the key `ct` variables are to be displayed at the start of every `ct` command. Some users find the report reassuring; others find it repetitive. In any case, you can set and unset `show`, and you can always type `ct` to see the summary.

`clear` makes Stata no longer consider the data to be `ct` data.

Remarks and examples

Remarks are presented under the following headings:

Examples

Data errors flagged by `ctset`

Examples

About all you can do with `ct` data in Stata is convert it to survival-time (`st`) data so that you can use the survival analysis commands. To analyze count-time data with Stata,

```
    . ctset ...
    . cttost
    . (now use any of the `st` commands)
```
Example 1: Simple ct data

We have data on generators that are run until they fail:

```
. use http://www.stata-press.com/data/r13/ctset1
. list, sep(0)
```

<table>
<thead>
<tr>
<th>failtime</th>
<th>fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>22</td>
</tr>
<tr>
<td>2.</td>
<td>30</td>
</tr>
<tr>
<td>3.</td>
<td>40</td>
</tr>
<tr>
<td>4.</td>
<td>52</td>
</tr>
<tr>
<td>5.</td>
<td>54</td>
</tr>
<tr>
<td>6.</td>
<td>55</td>
</tr>
<tr>
<td>7.</td>
<td>85</td>
</tr>
<tr>
<td>8.</td>
<td>97</td>
</tr>
<tr>
<td>9.</td>
<td>100</td>
</tr>
<tr>
<td>10.</td>
<td>122</td>
</tr>
<tr>
<td>11.</td>
<td>140</td>
</tr>
</tbody>
</table>

For instance, at time 54, four generators failed. To `ctset` these data, we could type

```
. ctset failtime fail
```

dataset name: `http://www.stata-press.com/data/r13/ctset1.dta`
time: `failtime`
no. fail: `fail`
no. lost: `--` (meaning 0 lost)
no. enter: `--` (meaning all enter at time 0)

It is not important that there be only 1 observation per failure time. For instance, according to our data, at time 85 there were seven failures. We could remove that observation and substitute two in its place—one stating that at time 85 there were five failures and another that at time 85 there were two more failures. `ctset` would interpret that data just as it did the previous data.

In more realistic examples, the generators might differ from one another. For instance, the following data show the number failing with old-style (`bearings = 0`) and new-style (`bearings = 1`) bearings:

```
. use http://www.stata-press.com/data/r13/ctset2
. list, sepby(bearings)
```

<table>
<thead>
<tr>
<th>bearings</th>
<th>failtime</th>
<th>fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>2.</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>3.</td>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td>4.</td>
<td>0</td>
<td>84</td>
</tr>
<tr>
<td>5.</td>
<td>0</td>
<td>97</td>
</tr>
<tr>
<td>6.</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>7.</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>8.</td>
<td>1</td>
<td>52</td>
</tr>
<tr>
<td>9.</td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td>10.</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>11.</td>
<td>1</td>
<td>122</td>
</tr>
<tr>
<td>12.</td>
<td>1</td>
<td>140</td>
</tr>
</tbody>
</table>
That the data are sorted on bearings is not important. The \texttt{ctset} command for these data is

\texttt{\begin{verbatim}
 ctset failtime fail, by(bearings)
\end{verbatim}}

\begin{verbatim}
dataset name: http://www.stata-press.com/data/r13/ctset2.dta
time: failtime
no. fail: fail
no. lost: -- (meaning 0 lost)
no. enter: -- (meaning all enter at time 0)
by: bearings
\end{verbatim}

\section*{Example 2: \texttt{ct} data with censoring}

In real data, not all units fail in the time allotted. Say that the generator experiment was stopped after 150 days. The data might be

\texttt{\begin{verbatim}
 . use http://www.stata-press.com/data/r13/ctset3

 . list
\end{verbatim}}

\begin{verbatim}
 +----------+----+----+----+--+
<table>
<thead>
<tr>
<th>bearings</th>
<th>failtime</th>
<th>fail</th>
<th>censored</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>0</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>0</td>
<td>54</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>0</td>
<td>84</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>1</td>
<td>97</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>0</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>7.</td>
<td>0</td>
<td>150</td>
<td>0</td>
</tr>
<tr>
<td>8.</td>
<td>1</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>9.</td>
<td>1</td>
<td>52</td>
<td>1</td>
</tr>
<tr>
<td>10.</td>
<td>1</td>
<td>55</td>
<td>1</td>
</tr>
<tr>
<td>11.</td>
<td>1</td>
<td>122</td>
<td>2</td>
</tr>
<tr>
<td>12.</td>
<td>1</td>
<td>140</td>
<td>1</td>
</tr>
<tr>
<td>13.</td>
<td>1</td>
<td>150</td>
<td>0</td>
</tr>
</tbody>
</table>
 +----------+----+----+----+--+
\end{verbatim}

The \texttt{ctset} command for these data is

\texttt{\begin{verbatim}
 . ctset failtime fail censored, by(bearings)
\end{verbatim}}

\begin{verbatim}
dataset name: http://www.stata-press.com/data/r13/ctset3.dta
time: failtime
no. fail: fail	no. lost: censored
no. enter: -- (meaning all enter at time 0)
by: bearings
\end{verbatim}

In some other data, observations might also be censored along the way; that is, the value of \texttt{censored} would not be 0 before time 150. For instance, a record might read

\begin{verbatim}
 +----------+----+----+----+--+
<table>
<thead>
<tr>
<th>bearings</th>
<th>failtime</th>
<th>fail</th>
<th>censored</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>84</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
 +----------+----+----+----+--+
\end{verbatim}

This would mean that at time 84, two failed and one was lost because of censoring. The failure and censoring occurred at the same time, and when we analyze these data, Stata will assume that the censored observation could have failed, that is, that the censoring occurred after the two failures.
Example 3: ct data with delayed entry

Data on survival time of patients with a particular kind of cancer are collected. Time is measured as time since diagnosis. After data collection started, the sample was enriched with some patients from hospital records who had been previously diagnosed. Some of the data are

<table>
<thead>
<tr>
<th>time</th>
<th>die</th>
<th>cens</th>
<th>ent</th>
<th>other variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Fifty patients entered at time 0 (time of diagnosis); five patients entered 1 day after diagnosis; and three, two, and one patients entered 30, 31, and 32 days after diagnosis, respectively. On the 32nd day, one of the previously entered patients died.

If the other variables are named `sex` and `agecat`, the `ctset` command for these data is

```
    . ctset time die cens ent, by(sex agecat)
    time:  time	no. fail:  die	no. lost:  cens
    no. enter:  ent	by:  sex agecat
```

The count-time format is an inferior way to record data like these—data in which every subject does not enter at time 0—because some information is already lost. When did the patient who died on the 32nd day enter? There is no way of telling.

For traditional survival analysis calculations, it does not matter. More modern methods of estimating standard errors, however, seek to identify each patient, and these data do not support using such methods.

This issue concerns the robust estimates of variance and the `vce(robust)` options on some of the `st` analysis commands. After converting the data, you must not use the `vce(robust)` option, even if an `st` command allows it, because the identities of the subjects—tying together when a subject starts and ceases to be at risk—are assigned randomly by `cttost` when you convert your ct to st data. When did the patient who died on the 32nd day enter? For conventional calculations, it does not matter, and `cttost` chooses a time randomly from the available entry times.

Data errors flagged by `ctset`

`ctset` requires only two things of your data: that the counts all be positive or zero and, if you specify an entry variable, that the entering and exiting subjects (failure + censored) balance.

If all subjects enter at time 0, we recommend that you do not specify a number-that-enter variable. `ctset` can determine for itself the number who enter at time 0 by summing the failures and censorings.
Also see

[ST] ct — Count-time data

[ST] cttost — Convert count-time data to survival-time data
cttost — Convert count-time data to survival-time data

Syntax

```plaintext
cctost [ , options ]
```

<table>
<thead>
<tr>
<th>options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>t0(t0var)</td>
<td>name of entry-time variable</td>
</tr>
<tr>
<td>wvar(wvar)</td>
<td>name of frequency-weighted variable</td>
</tr>
<tr>
<td>clear</td>
<td>overwrite current data in memory</td>
</tr>
<tr>
<td>nopreserve</td>
<td>do not save the original data; programmer’s command</td>
</tr>
</tbody>
</table>

You must `ctset` your data before using `cttost`; see [ST] `ctset`. `nopreserve` does not appear in the dialog box.

Menu

Statistics > Survival analysis > Setup and utilities > Convert count-time data to survival-time data

Description

`cttost` converts count-time data to their survival-time format so that they can be analyzed with Stata. Do not confuse count-time data with counting-process data, which can also be analyzed with the st commands; see [ST] `ctset` for a definition and examples of count data.

Options

- **t0(t0var)** specifies the name of the new variable to create that records entry time. (For most ct data, no entry-time variable is necessary because everyone enters at time 0.)

 Even if an entry-time variable is necessary, you need not specify this option. `cttost` will, by default, choose `t0`, `time0`, or `etime` according to which name does not already exist in the data.

- **wvar(wvar)** specifies the name of the new variable to be created that records the frequency weights for the new pseudo-observations. Count-time data are actually converted to frequency-weighted st data, and a variable is needed to record the weights. This sounds more complicated than it is. Understand that `cttost` needs a new variable name, which will become a permanent part of the st data.

 If you do not specify `wvar()`, `cttost` will, by default, choose `w`, `pop`, `weight`, or `wgt` according to which name does not already exist in the data.

- **clear** specifies that it is okay to proceed with the conversion, even though the current dataset has not been saved on disk.
The following option is available with \texttt{cttost} but is not shown in the dialog box: \texttt{nopreserve} speeds the conversion by not saving the original data that can be restored should things go wrong or should you press \textit{Break}. \texttt{nopreserve} is intended for use by programmers who use \texttt{cttost} as a subroutine. Programmers can specify this option if they have already preserved the original data. \texttt{nopreserve} does not affect the conversion.

Remarks and examples

Converting \texttt{ct} to \texttt{st} data is easy. We have some count-time data,

\begin{verbatim}
 . use http://www.stata-press.com/data/r13/cttost
 . ct
dataset name: http://www.stata-press.com/data/r13/cttost.dta
time: time
no. fail: ndead
no. lost: ncens
no. enter: -- (meaning all enter at time 0)
by: agecat treat
 . list in 1/5

<table>
<thead>
<tr>
<th>agecat</th>
<th>treat</th>
<th>time</th>
<th>ndead</th>
<th>ncens</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>464</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>268</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>638</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>803</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>431</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
\end{verbatim}

and to convert it, we type \texttt{cttost}:

\begin{verbatim}
 . cttost
failure event: ndead != 0 & ndead < .
obs. time interval: (0, time]
exit on or before: failure
weight: [fweight=w]
 33 total observations
 0 exclusions
 33 physical observations remaining, equal to
 82 weighted observations, representing
 39 failures in single-record/single-failure data
 48726 total analysis time at risk and under observation
 at risk from t = 0
 earliest observed entry t = 0
 last observed exit t = 1227
\end{verbatim}
Now that it is converted, we can use any of the st commands:

```
. sts test treat, logrank
    failure _d: ndead
    analysis time _t: time
    weight: [fweight=w]
```

Log-rank test for equality of survivor functions

<table>
<thead>
<tr>
<th>treat</th>
<th>Events observed</th>
<th>Events expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>22</td>
<td>17.05</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>21.95</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>39.00</td>
</tr>
</tbody>
</table>

\[\chi^2(1) = 2.73 \]
\[Pr>\chi^2 = 0.0986 \]

Also see

[ST] ct — Count-time data
[ST] ctset — Declare data to be count-time data
Description

As of the date that this manual was printed, Stata does not have a suite of built-in commands for discrete-time survival models matching the \texttt{st} suite for continuous-time models, but a good case could be made that it should. Instead, these models can be fit easily using other existing estimation commands and data manipulation tools.

Discrete-time survival analysis concerns analysis of time-to-event data whenever survival times are either a) intrinsically discrete (for example, numbers of machine cycles) or b) grouped into discrete intervals of time (“interval censoring”). If intervals are of equal length, the same methods can be applied to both a) and b); survival times will be positive integers.

You can fit discrete-time survival models with the maximum likelihood method. Data may contain completed or right-censored spells, and late entry (left-truncation) can also be handled, as well as unobserved heterogeneity (also termed “frailty”). Estimation makes use of the property that the sample likelihood can be rewritten in a form identical to the likelihood for a binary dependent variable multiple regression model and applied to a specially organized dataset (Allison 1984, Jenkins 1995). For models without frailty, you can use, for example, \texttt{logistic} (or \texttt{logit}) to fit the discrete-time logistic hazard model or \texttt{cloglog} to fit the discrete-time proportional hazards model (Prentice and Gloeckler 1978). Models incorporating normal frailty may be fit using \texttt{xtlogit} and \texttt{xtcloglog}. A model with gamma frailty (Meyer 1990) may be fit using \texttt{pgmaz} (Jenkins 1997).

Estimation consists of three steps:

1. \textit{Data organization}: The dataset must be organized so that there is 1 observation for each period when a subject is at risk of experiencing the transition event. For example, if the original dataset contains one row for each subject, \(i \), with information about their spell length, \(T_i \), the new dataset requires \(T_i \) rows for each subject, one row for each period at risk. This may be accomplished using \texttt{expand} or \texttt{stsplit}. (This step is episode splitting at each and every interval.) The result is data of the same form as a discrete panel (\texttt{xt}) dataset with repeated observations on each panel (subject).

2. \textit{Variable creation}: You must create at least three types of variables. First, you will need an interval identification variable, which is a sequence of positive integers \(t = 1, \ldots , T_i \). For example,

\begin{verbatim}
 . sort subject_id
 . by subject_id: generate t = _n
\end{verbatim}

Second, you need a period-specific censoring indicator, \(d_i \). If \(d_i = 1 \) if subject \(i \)'s spell is complete and \(d_i = 0 \) if the spell is right-censored, the new indicator \(d^*_{it} = 1 \) if \(d_i = 1 \) and \(t = T_i \), and \(d^*_{it} = 0 \) otherwise.

Third, you must define variables (as functions of \(t \)) to summarize the pattern of duration dependence. These variables are entered as covariates in the regression. For example, for a duration dependence pattern analogous to that in the continuous-time Weibull model, you could define a new variable \(x_1 = \log t \). For a quadratic specification, you define variables \(x_1 = t \) and \(x_2 = t^2 \). We can achieve a piecewise constant specification by defining a set of dummy variables, with each group of periods sharing the same hazard rate, or a semiparametric model (analogous to the Cox regression model for continuous survival-time data) using separate dummy variables for each and every duration.
interval. No duration variable need be defined if you want to fit a model with a constant hazard rate.

In addition to these three essentials, you may define other time-varying covariates.

3. Estimation: You fit a binary dependent variable multiple regression model, with \(d_{it}^* \) as the dependent variable and covariates, including the duration variables and any other covariates.

For estimation using spell data with late entry, the stages are the same as those outlined above, with one modification and one warning. To fit models without frailty, you must drop all intervals prior to each subject’s entry to the study. For example, if entry is in period \(e_i \), you drop it if \(t < e_i \). If you want to fit frailty models on the basis of discrete-time data with late entry, then be aware that the estimation procedure outlined does not lead to correct estimates. (The sample likelihood in the reorganized data does not account for conditioning for late entry here. You will need to write your own likelihood function by using \texttt{ml}; see \texttt{[R] maximize}.)

To derive predicted hazard rates, use the \texttt{predict} command. For example, after \texttt{logistic} or \texttt{cloglog}, use \texttt{predict, pr}. After \texttt{xtlogit} or \texttt{xtcloglog}, use \texttt{predict, pu0} (which predicts the hazard assuming the individual effect is equal to the mean value). Estimates of the survivor function, \(S_{it} \), can then be derived from the predicted hazard rates, \(p_{it} \), because \(S_{it} = (1 - p_{i1})(1 - p_{i2})(\cdots)(1 - p_{it}) \).

Acknowledgment

We thank Stephen Jenkins of the London School of Economics and Political Science for drafting this initial entry.

References

Also see

[ST] \texttt{stcox} — Cox proportional hazards model
[ST] \texttt{stcrreg} — Competing-risks regression
[ST] \texttt{streg} — Parametric survival models
[D] \texttt{expand} — Duplicate observations
[R] \texttt{cloglog} — Complementary log-log regression
[R] \texttt{logistic} — Logistic regression, reporting odds ratios
[XT] \texttt{xtcloglog} — Random-effects and population-averaged cloglog models
[XT] \texttt{xtlogit} — Fixed-effects, random-effects, and population-averaged logit models
epitab — Tables for epidemiologists

Syntax Menu Description Options
Remarks and examples Stored results Methods and formulas Acknowledgments
References Also see

Syntax

Cohort studies

\[
\text{iri} \ var_{\text{case}} \ var_{\text{exposed}} \ var_{\text{time}} \ [if] \ [in] \ [weight] \ [, \ ir_{-}options]
\]

\[
\text{iri} \ #_a \ #_b \ #_{N_1} \ #_{N_2} \ [, \ tb \ level(#)]
\]

\[
\text{cs} \ var_{\text{case}} \ var_{\text{exposed}} \ [if] \ [in] \ [weight] \ [, \ cs_{-}options]
\]

\[
\text{csi} \ #_a \ #_b \ #_c \ #_d \ [, \ csi_{-}options]
\]

Case–control studies

\[
\text{cc} \ var_{\text{case}} \ var_{\text{exposed}} \ [if] \ [in] \ [weight] \ [, \ cc_{-}options]
\]

\[
\text{cci} \ #_a \ #_b \ #_c \ #_d \ [, \ cci_{-}options]
\]

\[
\text{tabodds} \ var_{\text{case}} \ [expvar] \ [if] \ [in] \ [weight] \ [, \ tabodds_{-}options]
\]

\[
\text{mhodds} \ var_{\text{case}} \ expvar \ [vars_{\text{adjust}}] \ [if] \ [in] \ [weight] \ [, \ mhodds_{-}options]
\]

Matched case–control studies

\[
\text{mcc} \ var_{\text{exposed}_case} \ var_{\text{exposed}_control} \ [if] \ [in] \ [weight] \ [, \ tb \ level(#)]
\]

\[
\text{mcci} \ #_a \ #_b \ #_c \ #_d \ [, \ tb \ level(#)]
\]

\[ir_{-}options\] Description

Options

by(\text{varname}[, \ missing]) stratify on \text{varname}

estandard combine external weights with within-stratum statistics

istandard combine internal weights with within-stratum statistics

standard(\text{varname}) combine user-specified weights with within-stratum statistics

pool display pooled estimate

nocrude do not display crude estimate

nohom do not display homogeneity test

ird calculate standard incidence-rate difference

tb calculate test-based confidence intervals

level(#) set confidence level; default is level(95)
cs_options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>by(varlist[, missing])</td>
<td>stratify on varlist</td>
</tr>
<tr>
<td>estandard</td>
<td>combine external weights with within-stratum statistics</td>
</tr>
<tr>
<td>istandard</td>
<td>combine internal weights with within-stratum statistics</td>
</tr>
<tr>
<td>standard(varname)</td>
<td>combine user-specified weights with within-stratum statistics</td>
</tr>
<tr>
<td>pool</td>
<td>display pooled estimate</td>
</tr>
<tr>
<td>nocrude</td>
<td>do not display crude estimate</td>
</tr>
<tr>
<td>nohom</td>
<td>do not display homogeneity test</td>
</tr>
<tr>
<td>rd</td>
<td>calculate standardized risk difference</td>
</tr>
<tr>
<td>binomial(varname)</td>
<td>number of subjects variable</td>
</tr>
<tr>
<td>or</td>
<td>report odds ratio</td>
</tr>
<tr>
<td>woolf</td>
<td>use Woolf approximation to calculate SE and CI of the odds ratio</td>
</tr>
<tr>
<td>tb</td>
<td>calculate test-based confidence intervals</td>
</tr>
<tr>
<td>exact</td>
<td>calculate Fisher’s exact p</td>
</tr>
<tr>
<td>level(#)</td>
<td>set confidence level; default is level(95)</td>
</tr>
</tbody>
</table>

csi_options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>or</td>
<td>report odds ratio</td>
</tr>
<tr>
<td>woolf</td>
<td>use Woolf approximation to calculate SE and CI of the odds ratio</td>
</tr>
<tr>
<td>tb</td>
<td>calculate test-based confidence intervals</td>
</tr>
<tr>
<td>exact</td>
<td>calculate Fisher’s exact p</td>
</tr>
<tr>
<td>level(#)</td>
<td>set confidence level; default is level(95)</td>
</tr>
</tbody>
</table>

cc_options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>by(varname[, missing])</td>
<td>stratify on varname</td>
</tr>
<tr>
<td>estandard</td>
<td>combine external weights with within-stratum statistics</td>
</tr>
<tr>
<td>istandard</td>
<td>combine internal weights with within-stratum statistics</td>
</tr>
<tr>
<td>standard(varname)</td>
<td>combine user-specified weights with within-stratum statistics</td>
</tr>
<tr>
<td>pool</td>
<td>display pooled estimate</td>
</tr>
<tr>
<td>nocrude</td>
<td>do not display crude estimate</td>
</tr>
<tr>
<td>nohom</td>
<td>do not display homogeneity test</td>
</tr>
<tr>
<td>bd</td>
<td>perform Breslow–Day homogeneity test</td>
</tr>
<tr>
<td>tarone</td>
<td>perform Tarone’s homogeneity test</td>
</tr>
<tr>
<td>binomial(varname)</td>
<td>number of subjects variable</td>
</tr>
<tr>
<td>cornfield</td>
<td>use Cornfield approximation to calculate CI of the odds ratio</td>
</tr>
<tr>
<td>woolf</td>
<td>use Woolf approximation to calculate SE and CI of the odds ratio</td>
</tr>
<tr>
<td>tb</td>
<td>calculate test-based confidence intervals</td>
</tr>
<tr>
<td>exact</td>
<td>calculate Fisher’s exact p</td>
</tr>
<tr>
<td>level(#)</td>
<td>set confidence level; default is level(95)</td>
</tr>
</tbody>
</table>
cci_options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cornfield</code></td>
<td>use Cornfield approximation to calculate CI of the odds ratio</td>
</tr>
<tr>
<td><code>woolf</code></td>
<td>use Woolf approximation to calculate SE and CI of the odds ratio</td>
</tr>
<tr>
<td><code>tb</code></td>
<td>calculate test-based confidence intervals</td>
</tr>
<tr>
<td><code>exact</code></td>
<td>calculate Fisher’s exact p</td>
</tr>
<tr>
<td><code>level(#)</code></td>
<td>set confidence level; default is <code>level(95)</code></td>
</tr>
</tbody>
</table>

tabodds_options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td><code>binomial(varname)</code> number of subjects variable</td>
</tr>
<tr>
<td></td>
<td><code>level(#)</code> set confidence level; default is <code>level(95)</code></td>
</tr>
<tr>
<td></td>
<td><code>or</code> report odds ratio</td>
</tr>
<tr>
<td></td>
<td><code>adjust(varlist)</code> report odds ratios adjusted for the variables in <code>varlist</code></td>
</tr>
<tr>
<td></td>
<td><code>base(#)</code> reference group of control variable for odds ratio</td>
</tr>
<tr>
<td></td>
<td><code>cornfield</code> use Cornfield approximation to calculate CI of the odds ratio</td>
</tr>
<tr>
<td></td>
<td><code>woolf</code> use Woolf approximation to calculate SE and CI of the odds ratio</td>
</tr>
<tr>
<td></td>
<td><code>tb</code> calculate test-based confidence intervals</td>
</tr>
<tr>
<td></td>
<td><code>graph</code> graph odds against categories</td>
</tr>
<tr>
<td></td>
<td><code>ciplot</code> same as <code>graph</code> option, except include confidence intervals</td>
</tr>
<tr>
<td>CI plot</td>
<td><code>ciopts(rcap_options)</code> affect rendition of the confidence bands</td>
</tr>
<tr>
<td>Plot</td>
<td><code>marker_options</code> change look of markers (color, size, etc.)</td>
</tr>
<tr>
<td></td>
<td><code>marker_label_options</code> add marker labels; change look or position</td>
</tr>
<tr>
<td></td>
<td><code>cline_options</code> affect rendition of the plotted points</td>
</tr>
<tr>
<td>Add plots</td>
<td><code>addplot(plot)</code> add other plots to the generated graph</td>
</tr>
<tr>
<td>Y axis, X axis, Titles, Legend, Overall</td>
<td><code>twoway_options</code> any options other than by() documented in [G-3] <code>twoway_options</code></td>
</tr>
</tbody>
</table>

mhodds_options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options</td>
<td><code>by(varlist[, missing])</code> stratify on <code>varlist</code></td>
</tr>
<tr>
<td></td>
<td><code>binomial(varname)</code> number of subjects variable</td>
</tr>
<tr>
<td></td>
<td><code>compare(v1,v2)</code> override categories of the control variable</td>
</tr>
<tr>
<td></td>
<td><code>level(#)</code> set confidence level; default is <code>level(95)</code></td>
</tr>
</tbody>
</table>

fweights are allowed; see [U] 11.1.6 weight.
Menu

ir
Statistics > Epidemiology and related > Tables for epidemiologists > Incidence-rate ratio

iri
Statistics > Epidemiology and related > Tables for epidemiologists > Incidence-rate ratio calculator

cs
Statistics > Epidemiology and related > Tables for epidemiologists > Cohort study risk-ratio etc.

csi
Statistics > Epidemiology and related > Tables for epidemiologists > Cohort study risk-ratio etc. calculator

cc
Statistics > Epidemiology and related > Tables for epidemiologists > Case-control odds ratio

cci
Statistics > Epidemiology and related > Tables for epidemiologists > Case-control odds-ratio calculator

tabodds
Statistics > Epidemiology and related > Tables for epidemiologists > Tabulate odds of failure by category

mhodds
Statistics > Epidemiology and related > Tables for epidemiologists > Ratio of odds of failure for two categories

mcc
Statistics > Epidemiology and related > Tables for epidemiologists > Matched case-control studies

mcci
Statistics > Epidemiology and related > Tables for epidemiologists > Matched case-control calculator

Description

ir is used with incidence-rate (incidence-density or person-time) data. It calculates point estimates and confidence intervals for the incidence-rate ratio and difference, along with attributable or prevented fractions for the exposed and total population. iri is the immediate form of ir; see [U] 19 Immediate commands. Also see [R] poisson and [ST] stcox for related commands.

cs is used with cohort study data with equal follow-up time per subject and sometimes with cross-sectional data. Risk is then the proportion of subjects who become cases. It calculates point estimates and confidence intervals for the risk difference, risk ratio, and (optionally) the odds ratio, along with attributable or prevented fractions for the exposed and total population. csi is the immediate form of cs; see [U] 19 Immediate commands. Also see [R] logistic and [R] glogit for related commands.

cc is used with case–control and cross-sectional data. It calculates point estimates and confidence intervals for the odds ratio, along with attributable or prevented fractions for the exposed and total population. cci is the immediate form of cc; see [U] 19 Immediate commands. Also see [R] logistic and [R] glogit for related commands.
tabodds is used with case–control and cross-sectional data. It tabulates the odds of failure against a categorical explanatory variable expvar. If expvar is specified, tabodds performs an approximate χ^2 test of homogeneity of odds and a test for linear trend of the log odds against the numerical code used for the categories of expvar. Both tests are based on the score statistic and its variance; see Methods and formulas. When expvar is absent, the overall odds are reported. The variable var_case is coded 0/1 for individual and simple frequency records and equals the number of cases for binomial frequency records.

Optionally, tabodds tabulates adjusted or unadjusted odds ratios, using either the lowest levels of expvar or a user-defined level as the reference group. If adjust(varlist) is specified, it produces odds ratios adjusted for the variables in varlist along with a (score) test for trend.

mhodds is used with case–control and cross-sectional data. It estimates the ratio of the odds of failure for two categories of expvar, controlled for specified confounding variables, vars_adjust, and tests whether this odds ratio is equal to one. When expvar has more than two categories but none are specified with the compare() option, mhodds assumes that expvar is a quantitative variable and calculates a 1-degree-of-freedom test for trend. It also calculates an approximate estimate of the log odds-ratio for a one-unit increase in expvar. This is a one-step Newton–Raphson approximation to the maximum likelihood estimate calculated as the ratio of the score statistic, U, to its variance, V (Clayton and Hills 1993, 103).

mcc is used with matched case–control data. It calculates McNemar’s chi-squared; point estimates and confidence intervals for the difference, ratio, and relative difference of the proportion with the factor; and the odds ratio and its confidence interval. mcc is the immediate form of mcc; see [U] 19 Immediate commands. Also see [R] clogit and [R] symmetry for related commands.

Options

Options are listed in the order that they appear in the syntax tables above. The commands for which the option is valid are indicated in parentheses immediately after the option name.

```plaintext
Options (ir, cs, cc, and mhodds) / Main (tabodds)
```

by(varname [, missing]) (ir, cs, cc, and mhodds) specifies that the tables be stratified on varname. Missing categories in varname are omitted from the stratified analysis, unless option missing is specified within by(). Within-stratum statistics are shown and then combined with Mantel–Haenszel weights. If estandard, istandard, or standard(varname) is also specified (see below), the weights specified are used in place of Mantel–Haenszel weights.

estandard, istandard, and standard(varname) (ir, cs, and cc) request that within-stratum statistics be combined with external, internal, or user-specified weights to produce a standardized estimate. These options are mutually exclusive and can be used only when by() is also specified. (When by() is specified without one of these options, Mantel–Haenszel weights are used.)
estandard external weights are the person-time for the unexposed (ir), the total number of unexposed (cs), or the number of unexposed controls (cc).
istandard internal weights are the person-time for the exposed (ir), the total number of exposed (cs), or the number of exposed controls (cc). istandard can be used to produce, among other things, standardized mortality ratios (SMRs).

standard(varname) allows user-specified weights. varname must contain a constant within stratum and be nonnegative. The scale of varname is irrelevant.
pool (ir, cs, and cc) specifies that, in a stratified analysis, the directly pooled estimate also be displayed. The pooled estimate is a weighted average of the stratum-specific estimates using inverse-variance weights, which are the inverse of the variance of the stratum-specific estimate. pool is relevant only if by() is also specified.

nocrude (ir, cs, and cc) specifies that in a stratified analysis the crude estimate—an estimate obtained without regard to strata—not be displayed. nocrude is relevant only if by() is also specified.

nohom (ir, cs, and cc) specifies that a χ^2 test of homogeneity not be included in the output of a stratified analysis. This tests whether the exposure effect is the same across strata and can be performed for any pooled estimate—directly pooled or Mantel–Haenszel. nohom is relevant only if by() is also specified.

ird (ir) may be used only with estandard, istandard, or standard(). It requests that ir calculate the standardized incidence-rate difference rather than the default incidence-rate ratio.

rd (cs) may be used only with estandard, istandard, or standard(). It requests that cs calculate the standardized risk difference rather than the default risk ratio.

bd (cc) specifies that Breslow and Day’s χ^2 test of homogeneity be included in the output of a stratified analysis. This tests whether the exposure effect is the same across strata. bd is relevant only if by() is also specified.

tarone (cc) specifies that Tarone’s χ^2 test of homogeneity, which is a correction to the Breslow–Day test, be included in the output of a stratified analysis. This tests whether the exposure effect is the same across strata. tarone is relevant only if by() is also specified.

binomial(varname) (cs, cc, tabodds, and mhodds) supplies the number of subjects (cases plus controls) for binomial frequency records. For individual and simple frequency records, this option is not used.

or (cs, csi, and tabodds), for cs and csi, reports the calculation of the odds ratio in addition to the risk ratio if by() is not specified. With by(), or specifies that a Mantel–Haenszel estimate of the combined odds ratio be made rather than the Mantel–Haenszel estimate of the risk ratio. In either case, this is the same calculation that would be made by cc and cci. Typically, cc, cci, or tabodds is preferred for calculating odds ratios. For tabodds, or specifies that odds ratios be produced; see base() for details about selecting a reference category. By default, tabodds will calculate odds.

adjust(varlist) (tabodds) specifies that odds ratios adjusted for the variables in varlist be calculated.

base(#) (tabodds) specifies that the #th category of expvar be used as the reference group for calculating odds ratios. If base() is not specified, the first category, corresponding to the minimum value of expvar, is used as the reference group.

cornfield (cc, cci, and tabodds) requests that the Cornfield (1956) approximation be used to calculate the confidence interval of the odds ratio. By default, cc and cci report an exact interval and tabodds reports a standard-error–based interval, with the standard error coming from the square root of the variance of the score statistic.

woolf (cs, csi, cc, cci, and tabodds) requests that the Woolf (1955) approximation, also known as the Taylor expansion, be used for calculating the standard error and confidence interval for the odds ratio. By default, cs and csi with the or option report the Cornfield (1956) interval; cc and cci report an exact interval; and tabodds reports a standard-error–based interval, with the standard error coming from the square root of the variance of the score statistic.
tb (ir, iri, cs, csi, cc, cci, tabodds, mcc, and mcci) requests that test-based confidence intervals (Miettinen 1976) be calculated wherever appropriate in place of confidence intervals based on other approximations or exact confidence intervals. We recommend that test-based confidence intervals be used only for pedagogical purposes and never for research work.

exact (cs, csi, cc, and cci) requests that Fisher’s exact p be calculated rather than the χ^2 and its significance level. We recommend specifying exact whenever samples are small. When the least-frequent cell contains 1,000 cases or more, there will be no appreciable difference between the exact significance level and the significance level based on the χ^2, but the exact significance level will take considerably longer to calculate. exact does not affect whether exact confidence intervals are calculated. Commands always calculate exact confidence intervals where they can, unless cornfield, woolf, or tb is specified.

compare(v_1,v_2) (mhodds) indicates the categories of expvar to be compared; v_1 defines the numerator and v_2, the denominator. When compare() is not specified and there are only two categories, the second is compared to the first; when there are more than two categories, an approximate estimate of the odds ratio for a unit increase in expvar, controlled for specified confounding variables, is given.

level(#) (ir, iri, cs, csi, cc, cci, tabodds, mhodds, mcc, and mcci) specifies the confidence level, as a percentage, for confidence intervals. The default is level(95) or as set by set level; see [R] level.

The following options are for use only with tabodds.

graph (tabodds) produces a graph of the odds against the numerical code used for the categories of expvar. All graph options except connect() are allowed. This option is not allowed with the or option or the adjust() option.

ciplot (tabodds) produces the same plot as the graph option, except that it also includes the confidence intervals. This option may not be used with either the or option or the adjust() option.

ciplot(rcap_options) (tabodds) is allowed only with the ciplot option. It affects the rendition of the confidence bands; see [G-3] rcap_options.

marker_options (tabodds) affect the rendition of markers drawn at the plotted points, including their shape, size, color, and outline; see [G-3] marker_options.

marker_label_options (tabodds) specify if and how the markers are to be labeled; see [G-3] marker_label_options.

cline_options (tabodds) affect whether lines connect the plotted points and the rendition of those lines; see [G-3] cline_options.
addplot(plot) (tabodds) provides a way to add other plots to the generated graph; see [G-3] addplot_option.

twoway_options (tabodds) are any of the options documented in [G-3] twoway_options, excluding by(). These include options for titling the graph (see [G-3] title_options) and options for saving the graph to disk (see [G-3] saving_option).

Remarks and examples

Remarks are presented under the following headings:

- Incidence-rate data
- Stratified incidence-rate data
- Standardized estimates with stratified incidence-rate data
- Cumulative incidence data
- Stratified cumulative incidence data
- Standardized estimates with stratified cumulative incidence data
- Case–control data
- Stratified case–control data
- Case–control data with multiple levels of exposure
- Case–control data with confounders and possibly multiple levels of exposure
- Standardized estimates with stratified case–control data
- Matched case–control data
- Video examples

To calculate appropriate statistics and suppress inappropriate statistics, the ir, cs, cc, tabodds, mhodds, and mcc commands, along with their immediate counterparts, are organized in the way epidemiologists conceptualize data. ir processes incidence-rate data from prospective studies; cs, cohort study data with equal follow-up time (cumulative incidence); cc, tabodds, and mhodds, case–control or cross-sectional (prevalence) data; and mcc, matched case–control data. With the exception of mcc, these commands work with both simple and stratified tables.

Epidemiological data are often summarized in a contingency table from which various statistics are calculated. The rows of the table reflect cases and noncases or cases and person-time, and the columns reflect exposure to a risk factor. To an epidemiologist, cases and noncases refer to the outcomes of the process being studied. For instance, a case might be a person with cancer and a noncase might be a person without cancer.

A factor is something that might affect the chances of being ultimately designated a case or a noncase. Thus a case might be a cancer patient and the factor, smoking behavior. A person is said to be exposed or unexposed to the factor. Exposure can be classified as a dichotomy, smokes or does not smoke, or as multiple levels, such as number of cigarettes smoked per week.

For an introduction to epidemiological methods, see Walker (1991). For an intermediate treatment, see Clayton and Hills (1993) and Lilienfeld and Stolley (1994). For other advanced discussions, see Kleinbaum, Kupper, and Morgenstern (1982) and Rothman, Greenland, and Lash (2008). For an anthology of writings on epidemiology since World War II, see Greenland (1987). See Jewell (2004) for a text aimed at graduate students in the medical professions that uses Stata for much of the analysis. See Dohoo, Martin, and Stryhn (2010) for a graduate-level text on the principles and methods of veterinary epidemiologic research; Stata datasets and do-files are available. Also see Dohoo, Martin, and Stryhn (2012) for a text that is a revision of their veterinary epidemiology text, but examples from human epidemiology are used.
Incidence-rate data

In incidence-rate data from a prospective study, you observe the transformation of noncases into cases. Starting with a group of noncase subjects, you monitor them to determine whether they become cases (for example, stricken with cancer). You monitor two populations: those exposed and those unexposed to the factor (for example, multiple X-rays). A summary of the data is

<table>
<thead>
<tr>
<th></th>
<th>Exposed</th>
<th>Unexposed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>a</td>
<td>b</td>
<td>a+b</td>
</tr>
<tr>
<td>Person-time</td>
<td>N₁</td>
<td>N₀</td>
<td>N₁+N₀</td>
</tr>
</tbody>
</table>

Example 1: iri

It will be easiest to understand these commands if we start with the immediate forms. Remember, in the immediate form, we specify the data on the command line rather than specifying names of variables containing the data; see [U] 19 Immediate commands. We have data (Boice and Monson [1977]; reported in Rothman, Greenland, and Lash [2008, 244]) on breast cancer cases and person-years of observation for women with tuberculosis repeatedly exposed to multiple X-ray fluoroscopies, and those not so exposed:

<table>
<thead>
<tr>
<th>X-ray fluoroscopy</th>
<th>Exposed</th>
<th>Unexposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast cancer cases</td>
<td>41</td>
<td>15</td>
</tr>
<tr>
<td>Person-years</td>
<td>28,010</td>
<td>19,017</td>
</tr>
</tbody>
</table>

Using iri, the immediate form of ir, we specify the values in the table following the command:

```
. iri 41 15 28010 19017
```

<table>
<thead>
<tr>
<th></th>
<th>Exposed</th>
<th>Unexposed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>41</td>
<td>15</td>
<td>56</td>
</tr>
<tr>
<td>Person-time</td>
<td>28010</td>
<td>19017</td>
<td>47027</td>
</tr>
</tbody>
</table>

Incidence rate.

<table>
<thead>
<tr>
<th>Point estimate</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inc. rate diff.</td>
<td>.000675</td>
</tr>
<tr>
<td>Inc. rate ratio</td>
<td>1.855759</td>
</tr>
<tr>
<td>Attr. frac. ex.</td>
<td>.4611368</td>
</tr>
<tr>
<td>Attr. frac. pop</td>
<td>.337618</td>
</tr>
</tbody>
</table>

(midp) Pr(k>=41) = 0.0177 (exact)
(midp) 2*Pr(k>=41) = 0.0355 (exact)

iri shows the table, reports the incidence rates for the exposed and unexposed populations, and then shows the point estimates of the difference and ratio of the two incidence rates along with their confidence intervals. The incidence rate is simply the frequency with which noncases are transformed into cases.

Next iri reports the attributable fraction among the exposed population, an estimate of the proportion of exposed cases attributable to exposure. We estimate that 46.1% of the 41 breast cancer cases among the exposed were due to exposure. (Had the incidence-rate ratio been less than 1, iri would have reported the prevented fraction in the exposed population, an estimate of the net proportion of all potential cases in the exposed population that was prevented by exposure; see the following technical note.)
After that, the table shows the attributable fraction in the total population, which is the net proportion of all cases attributable to exposure. This number, of course, depends on the proportion of cases that are exposed in the base population, which here is taken to be 41/56 and may not be relevant in all situations. We estimate that 33.8% of the 56 cases were due to exposure. We estimate that 18.9 cases were caused by exposure; that is, \(0.338 \times 56 = 0.461 \times 41 = 18.9\).

At the bottom of the table, **iri** reports both one- and two-sided exact significance tests. For the one-sided test, the probability that the number of exposed cases is 41 or greater is 0.0177. This is a “midp” calculation; see Methods and formulas below. The two-sided test is \(2 \times 0.0177 = 0.0354\).

Technical note

When the incidence-rate ratio is less than 1, **iri** (and **ir**, **cs**, **csi**, **cc**, and **cci**) substitutes the prevented fraction for the attributable fraction. Let’s reverse the roles of exposure in the above data, treating as exposed a person who did not receive the X-ray fluoroscopy. You can think of this as a new treatment for preventing breast cancer—the suggested treatment being not to use fluoroscopy.

<table>
<thead>
<tr>
<th>.iri 15 41 19017 28010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
</tr>
<tr>
<td>Cases</td>
</tr>
<tr>
<td>Person-time</td>
</tr>
<tr>
<td>Incidence rate</td>
</tr>
<tr>
<td>Inc. rate diff.</td>
</tr>
<tr>
<td>Inc. rate ratio</td>
</tr>
<tr>
<td>Prev. frac. ex.</td>
</tr>
<tr>
<td>Prev. frac. pop</td>
</tr>
</tbody>
</table>

The prevented fraction among the exposed is the net proportion of all potential cases in the exposed population that were prevented by exposure. We estimate that 46.1% of potential cases among the women receiving the new “treatment” were prevented by the treatment. (Previously, we estimated that the same percentage of actual cases among women receiving the X-rays was caused by the X-rays.)

The prevented fraction for the population, which is the net proportion of all potential cases in the total population that was prevented by exposure, as with the attributable fraction, depends on the proportion of cases that are exposed in the base population—here taken as 15/56—so it may not be relevant in all situations. We estimate that 18.6% of the potential cases were prevented by exposure.

See Greenland and Robins (1988) for a discussion of how to interpret attributable and prevented fractions.
Example 2: ir

ir works like iri, except that it obtains the entries in the tables by summing data. You specify three variables: the first represents the number of cases represented by this observation, the second indicates whether the observation is for subjects exposed to the factor, and the third records the total time the subjects in this observation were observed. An observation may reflect one subject or a group of subjects.

For instance, here is a 2-observation dataset for the table in the previous example:

```
. use http://www.stata-press.com/data/r13/irxmpl
. list
```

<table>
<thead>
<tr>
<th>cases</th>
<th>exposed</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>0</td>
<td>28010</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>19017</td>
</tr>
</tbody>
</table>

If we typed `ir` `cases` `exposed` `time`, we would obtain the same output that we obtained above. Another way the data might be recorded is

```
. use http://www.stata-press.com/data/r13/irxmpl2
. list
```

<table>
<thead>
<tr>
<th>cases</th>
<th>exposed</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0</td>
<td>14000</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>14010</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>19017</td>
</tr>
</tbody>
</table>

Here the first 2 observations will be automatically summed by `ir` because both are exposed. Finally, the data might be individual-level data:

```
. use http://www.stata-press.com/data/r13/irxmpl3
. list in 1/5
```

<table>
<thead>
<tr>
<th>cases</th>
<th>exposed</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The first observation represents a woman who got cancer, was exposed, and was observed for 10 years. The second is a woman who did not get cancer, was exposed, and was observed for 8 years, and so on.

Technical note

`ir` (and all the other commands) assumes that a subject was exposed if the exposed variable is nonzero and not missing, assumes the subject was not exposed if the variable is zero, and ignores the observation if the variable is missing. For `ir`, the case variable and the time variable are restricted to nonnegative integers and are summed within the exposed and unexposed groups to obtain the entries in the table.
Stratified incidence-rate data

Example 3: ir with stratified data

`ir` can work with stratified tables, as well as with single tables. For instance, Rothman (1986, 185) discusses data from Rothman and Monson (1973) on mortality by sex and age for patients with trigeminal neuralgia:

<table>
<thead>
<tr>
<th>Age through 64</th>
<th>Age 65+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>Females</td>
</tr>
<tr>
<td>Deaths</td>
<td>14</td>
</tr>
<tr>
<td>Person-years</td>
<td>1516</td>
</tr>
<tr>
<td>Males</td>
<td>76</td>
</tr>
<tr>
<td>Females</td>
<td>949</td>
</tr>
</tbody>
</table>

Entering the data into Stata, we have the following dataset:

```
. use http://www.stata-press.com/data/r13/rm
(Rothman and Monson 1973 data)
. list
```

<table>
<thead>
<tr>
<th>age</th>
<th>male</th>
<th>deaths</th>
<th>pyears</th>
</tr>
</thead>
<tbody>
<tr>
<td><65</td>
<td>1</td>
<td>14</td>
<td>1516</td>
</tr>
<tr>
<td><65</td>
<td>0</td>
<td>10</td>
<td>1701</td>
</tr>
<tr>
<td>65+</td>
<td>1</td>
<td>76</td>
<td>949</td>
</tr>
<tr>
<td>65+</td>
<td>0</td>
<td>121</td>
<td>2245</td>
</tr>
</tbody>
</table>

The stratified analysis of the incidence-rate ratio is

```
. ir deaths male pyears, by(age)
```

<table>
<thead>
<tr>
<th>Age category</th>
<th>IRR</th>
<th>[95% Conf. Interval]</th>
<th>M-H Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td><65</td>
<td>1.570844</td>
<td>.6489373 3.952809</td>
<td>4.712465 (exact)</td>
</tr>
<tr>
<td>65+</td>
<td>1.485862</td>
<td>1.100305 1.99584</td>
<td>35.95147 (exact)</td>
</tr>
<tr>
<td>Crude</td>
<td>1.099794</td>
<td>.831437 1.449306</td>
<td>(exact)</td>
</tr>
<tr>
<td>M-H combined</td>
<td>1.49571</td>
<td>1.141183 1.960377</td>
<td></td>
</tr>
</tbody>
</table>

Test of homogeneity (M-H) chi2(1) = 0.02 Pr>chi2 = 0.8992

The row labeled M-H combined reflects the combined Mantel–Haenszel estimates.

As with the previous example, it is not important that each entry in the table correspond to 1 observation in the data—`ir` sums the time (`pyears`) and case (`deaths`) variables within the exposure (male) category.

The difference between the unadjusted crude estimate and the Mantel–Haenszel estimate suggests confounding by age: women in the study are older, and older patients are more likely to die. But we should not use the Mantel–Haenszel estimate without checking its homogeneity assumption. The chi-squared test of homogeneity gives a p-value of 0.8992, so we have no evidence that the exposure effect (the effect of being male) differs across age categories. We are justified in using the Mantel–Haenszel estimate.
Technical note

Stratification is one way to deal with confounding; that is, perhaps sex affects the incidence of trigeminal neuralgia and so does age, so the table was stratified by age in an attempt to uncover the sex effect. (We are concerned that age may confound the true association between sex and the incidence of trigeminal neuralgia because the age distributions are so different for males and females. If age affects incidence, the difference in the age distributions would induce different incidences for males and females and thus confound the true effect of sex.)

We do not, however, have to use tables to uncover effects; the estimation alternative when we have aggregate data is Poisson regression, and we can use the same data on which we ran ir with poisson. Poisson regression also works with individual-level data.

(Although age in the previous example appears to be a string, it is actually a numeric variable taking on values 1 and 2. We attached a value label to produce the labels <65 and 65+ to make ir’s output look better; see [U] 12.6.3 Value labels. Stata’s estimation commands will ignore this labeling.)

```
. poisson deaths male age, exposure(pyears) irr
Iteration 0: log likelihood = -10.836732
Iteration 1: log likelihood = -10.734087
Iteration 2: log likelihood = -10.733944
Iteration 3: log likelihood = -10.733944
Poisson regression  Number of obs = 4
Log likelihood = -10.733944

LR chi2(2) = 164.01
Prob > chi2 = 0.0000
Log likelihood = -10.733944
Pseudo R2 = 0.8843

deaths                   IRR  Std. Err.  z  P>|z|  [95% Conf. Interval]
------------------------- ------- -------- ------ ------ ----------------------
male                     1.495096  .2060997  2.92  0.004  1.141118    1.95888
age                      8.888775  1.934943 10.04  0.000  5.801616    13.61867
_cons                    .0006805  .0002908 -17.07  0.000  .0002945   .0015724
ln(pyears)               1 (exposure)
```

Compare these results with the Mantel–Haenszel estimates produced by ir:

```
Source     IR 95% Conf. Int.
Mantel–Haenszel (ir) 1.50 1.14 1.96
poisson     1.50 1.14 1.96
```

The results from poisson agree with the Mantel–Haenszel estimates to two decimal places. But poisson also estimates an incidence-rate ratio for age. Here the estimate is not of much interest, because the outcome variable is total mortality and we already knew that older people have a higher mortality rate. In other contexts, however, the estimate might be of greater interest.

See [R] poisson for an explanation of the poisson command.

Technical note

Both the model fit above and the preceding table asserted that exposure effects are the same across age categories and, if they are not, then both of the previous results are equally inappropriate. The table presented a test of homogeneity, reassuring us that the exposure effects do indeed appear to be constant. The Poisson-regression alternative can be used to reproduce that test by including interactions between the age groups and exposure:
. poisson deaths male age male#c.age, exposure(pyears) irr

Iteration 0: log likelihood = -10.898799
Iteration 1: log likelihood = -10.726225
Iteration 2: log likelihood = -10.725904
Iteration 3: log likelihood = -10.725904

Poisson regression
Number of obs = 4
LR chi2(3) = 164.03
Prob > chi2 = 0.0000
Log likelihood = -10.725904
Pseudo R2 = 0.8843

defaths | IRR Std. Err. z P>|z| [95% Conf. Interval]
---------|----------------------+----------------------
male | 1.660688 1.396496 0.60 0.546 .3195218 8.631283
age | 9.167973 3.01659 6.73 0.000 4.810583 17.47226
male#c.age | 1 .9459 .41539 -0.13 0.899 .3999832 2.236911
_cons | .0006412 .0004097 -11.51 0.000 .0001833 .0022434

ln(pyears) | 1 (exposure)

The significance level of the male#c.age effect is 0.899, the same as previously reported by ir.

Here forming the male-times-age interaction was easy because there were only two age groups. Had there been more groups, the test would have been slightly more difficult—see the following technical note.

Technical note

A word of caution is in order when applying poisson (or any estimation technique) to more than two age categories. Say that in our data, we had three age categories, which we will call categories 0, 1, and 2, and that they are stored in the variable agecat. We might think of the categories as corresponding to age less than 35, 35–64, and 65 and above.

With such data, we might type ir deaths male pyears, by(agecat), but we would not type poisson deaths male agecat, exposure(pyears) to obtain the equivalent Poisson-regression estimated results. Such a model might be reasonable, but it is not equivalent because we would be constraining the age effect in category 2 to be (multiplicatively) twice the effect in category 1.

To poisson (and all of Stata’s estimation commands other than anova), agecat is simply one variable, and only one estimated coefficient is associated with it. Thus the model is

\[\text{Poisson index} = P = \beta_0 + \beta_1 \text{male} + \beta_2 \text{agecat} \]

The expected number of deaths is then \(e^P \), and the incidence-rate ratio associated with a variable is \(e^\beta \); see [R] poisson. Thus the value of the Poisson index when male==0 and agecat==1 is \(\beta_0 + \beta_2 \), and the possibilities are

<table>
<thead>
<tr>
<th>male==0</th>
<th>male==1</th>
</tr>
</thead>
<tbody>
<tr>
<td>agecat==0</td>
<td>(\beta_0)</td>
</tr>
<tr>
<td>agecat==1</td>
<td>(\beta_0 + \beta_2)</td>
</tr>
<tr>
<td>agecat==2</td>
<td>(\beta_0 + 2\beta_2)</td>
</tr>
</tbody>
</table>
The age effect for `agecat==2` is constrained to be twice the age effect for `agecat==1`—the only difference between lines 3 and 2 of the table is that β_2 is replaced with $2\beta_2$. Under certain circumstances, such a constraint might be reasonable, but it does not correspond to the assumptions made in generating the Mantel–Haenszel combined results.

To obtain results equivalent to the Mantel–Haenszel result, we must estimate a separate effect for each age group, meaning that we must replace $2\beta_2$, the constrained effect, with β_3, a new coefficient that is free to take on any value. We can achieve this by creating two new variables and using them in place of `agecat`. `agecat1` will take on the value 1 when `agecat` is 1 and 0 otherwise; `agecat2` will take on the value 1 when `agecat` is 2 and 0 otherwise:

```
generate agecat1 = (agecat==1)
generate agecat2 = (agecat==2)
poisson deaths male agecat1 agecat2 [freq=pop], exposure(pyears) irr
```

In Stata, we do not have to generate these variables for ourselves. We could use factor variables:

```
generate agecat1 = (agecat==1)
generate agecat2 = (agecat==2)
poisson deaths male i.agecat [freq=pop], exposure(pyears) irr
```

See [U] 11.4.3 Factor variables.

To reproduce the homogeneity test with multiple age categories, we could type

```
poisson deaths agecat##male [freq=pop], exp(pyears) irr
testparm agecat#male
```

Poisson regression combined with factor variables generalizes to multiway tables. Suppose that there are three exposure categories. Assume exposure variable `burn` takes on the values 1, 2, and 3 for first-, second-, and third-degree burns. The table itself is estimated by typing

```
poisson deaths i.burn i.agecat [freq=pop], exp(pyears) irr
```

and the test of homogeneity is estimated by typing

```
poisson deaths burn##agecat [freq=pop], exp(pyears) irr
testparm burn#agecat
```

Standardized estimates with stratified incidence-rate data

The `by()` option specifies that the data are stratified and, by default, will produce a Mantel–Haenszel combined estimate of the incidence-rate ratio. With the `estandard`, `istandard`, or `standard(varname)` options, you can specify your own weights and obtain standardized estimates of the incidence-rate ratio or difference.

Example 4: ir with stratified data, using standardized estimates

Rothman, Greenland, and Lash (2008, 264) report results from Doll and Hill (1966) on age-specific coronary disease deaths among British male doctors from cigarette smoking:

<table>
<thead>
<tr>
<th>Age</th>
<th>Smokers Deaths</th>
<th>Smokers Person-years</th>
<th>Non-smokers Deaths</th>
<th>Non-smokers Person-years</th>
</tr>
</thead>
<tbody>
<tr>
<td>35–44</td>
<td>32</td>
<td>52,407</td>
<td>2</td>
<td>18,790</td>
</tr>
<tr>
<td>45–54</td>
<td>104</td>
<td>43,248</td>
<td>12</td>
<td>10,673</td>
</tr>
<tr>
<td>55–64</td>
<td>206</td>
<td>28,612</td>
<td>28</td>
<td>5,710</td>
</tr>
<tr>
<td>65–74</td>
<td>186</td>
<td>12,663</td>
<td>28</td>
<td>2,585</td>
</tr>
<tr>
<td>75–84</td>
<td>102</td>
<td>5,317</td>
<td>31</td>
<td>1,462</td>
</tr>
</tbody>
</table>
We have entered these data into Stata:

```
. use http://www.stata-press.com/data/r13/dollhill3
. list
```

<table>
<thead>
<tr>
<th>agecat</th>
<th>smokes</th>
<th>deaths</th>
<th>pyears</th>
</tr>
</thead>
<tbody>
<tr>
<td>35-44</td>
<td>1</td>
<td>32</td>
<td>52,407</td>
</tr>
<tr>
<td>45-54</td>
<td>1</td>
<td>104</td>
<td>43,248</td>
</tr>
<tr>
<td>55-64</td>
<td>1</td>
<td>206</td>
<td>28,612</td>
</tr>
<tr>
<td>65-74</td>
<td>1</td>
<td>186</td>
<td>12,663</td>
</tr>
<tr>
<td>75-84</td>
<td>1</td>
<td>102</td>
<td>5,317</td>
</tr>
<tr>
<td>35-44</td>
<td>0</td>
<td>2</td>
<td>18,790</td>
</tr>
<tr>
<td>45-54</td>
<td>0</td>
<td>12</td>
<td>10,673</td>
</tr>
<tr>
<td>55-64</td>
<td>0</td>
<td>28</td>
<td>5,710</td>
</tr>
<tr>
<td>65-74</td>
<td>0</td>
<td>28</td>
<td>2,585</td>
</tr>
<tr>
<td>75-84</td>
<td>0</td>
<td>31</td>
<td>1,482</td>
</tr>
</tbody>
</table>

We can obtain the Mantel–Haenszel combined estimate along with the crude estimate for ignoring stratification of the incidence-rate ratio and 90% confidence intervals by typing

```
. ir deaths smokes pyears, by(age) level(90)
```

<table>
<thead>
<tr>
<th>age category</th>
<th>IRR</th>
<th>[90% Conf. Interval]</th>
<th>M-H Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>35-44</td>
<td>5.736638</td>
<td>1.704271</td>
<td>33.61646</td>
</tr>
<tr>
<td>45-54</td>
<td>2.138812</td>
<td>1.274552</td>
<td>3.813282</td>
</tr>
<tr>
<td>55-64</td>
<td>1.46824</td>
<td>1.044915</td>
<td>2.110422</td>
</tr>
<tr>
<td>65-74</td>
<td>1.35606</td>
<td>.9626026</td>
<td>1.953505</td>
</tr>
<tr>
<td>75-84</td>
<td>.9047304</td>
<td>.6375194</td>
<td>1.305412</td>
</tr>
<tr>
<td>Crude</td>
<td>1.719823</td>
<td>1.437544</td>
<td>2.0688</td>
</tr>
<tr>
<td>M-H combined</td>
<td>1.424682</td>
<td>1.194375</td>
<td>1.699399</td>
</tr>
</tbody>
</table>

Test of homogeneity (M-H) chi2(4) = 10.41 Pr>chi2 = 0.0340

Note the presence of heterogeneity revealed by the test; the effect of smoking is not the same across age categories. Moreover, the listed stratum-specific estimates show an effect that appears to be declining with age. (Even if the test of homogeneity is not significant, you should always examine estimates carefully when stratum-specific effects occur on both sides of 1 for ratios and 0 for differences.)

Rothman, Greenland, and Lash (2008, 269) obtain the standardized incidence-rate ratio and 90% confidence intervals, weighting each age category by the population of the exposed group, thus producing the standardized mortality ratio (SMR). This calculation can be reproduced by specifying by(age) to indicate that the table is stratified and istandard to specify that we want the internally standardized rate. We may also specify that we would like to see the pooled estimate (weighted average where the weights are based on the variance of the strata calculations):
We obtained the simple pooled results because we specified the pool option. Note the significance of the homogeneity test; it provides the motivation for standardizing the rate ratios.

If we wanted the externally standardized ratio (weights proportional to the population of the unexposed group), we would substitute estandard for istandard in the above command.

We are not limited to incidence-rate ratios; ir can also estimate incidence-rate differences. Differences may be standardized internally or externally. We will obtain the internally weighted difference (Rothman, Greenland, and Lash 2008, 266–267):

Example 5: ir with user-specified weights

In addition to calculating results by using internal or external weights, ir (and cs and cc) can calculate results for arbitrary weights. If we wanted to obtain the incidence-rate ratio weighting each age category equally, we would type

```
. generate conswgt=1
. ir deaths smokes pyears, by(age) standard(conswgt)
```

> Example 5: ir with user-specified weights

In addition to calculating results by using internal or external weights, ir (and cs and cc) can calculate results for arbitrary weights. If we wanted to obtain the incidence-rate ratio weighting each age category equally, we would type

```
. generate conswgt=1
. ir deaths smokes pyears, by(age) standard(conswgt)
```

<table>
<thead>
<tr>
<th>age category</th>
<th>IRR</th>
<th>[90% Conf. Interval]</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>35-44</td>
<td>5.736638</td>
<td>1.704271</td>
<td>33.61646</td>
</tr>
<tr>
<td>45-54</td>
<td>2.138812</td>
<td>1.274552</td>
<td>3.813282</td>
</tr>
<tr>
<td>55-64</td>
<td>1.46824</td>
<td>1.044915</td>
<td>2.110422</td>
</tr>
<tr>
<td>65-74</td>
<td>1.35606</td>
<td>0.9626026</td>
<td>1.953505</td>
</tr>
<tr>
<td>75-84</td>
<td>0.9047304</td>
<td>0.6375194</td>
<td>1.305412</td>
</tr>
</tbody>
</table>

Crude | 1.719823| 1.437544 | 2.0688 (exact)

Pooled (direct) | 1.355343| 1.134356 | 1.619382

I. Standardized | 1.417609| 1.186541 | 1.693676

Test of homogeneity (direct) $\chi^2(4) = 10.20$ Pr$>\chi^2 = 0.0372$

Test of homogeneity (direct) $\chi^2(4) = 10.20$ Pr$>\chi^2 = 0.0372$

We obtained the simple pooled results because we specified the pool option. Note the significance of the homogeneity test; it provides the motivation for standardizing the rate ratios.

If we wanted the externally standardized ratio (weights proportional to the population of the unexposed group), we would substitute estandard for istandard in the above command.

We are not limited to incidence-rate ratios; ir can also estimate incidence-rate differences. Differences may be standardized internally or externally. We will obtain the internally weighted difference (Rothman, Greenland, and Lash 2008, 266–267):

```
. ir deaths smokes pyears, by(age) level(90) istandard
```

<table>
<thead>
<tr>
<th>age category</th>
<th>IRR</th>
<th>[90% Conf. Interval]</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>35-44</td>
<td>5.736638</td>
<td>1.704271</td>
<td>33.61646</td>
</tr>
<tr>
<td>45-54</td>
<td>2.138812</td>
<td>1.274552</td>
<td>3.813282</td>
</tr>
<tr>
<td>55-64</td>
<td>1.46824</td>
<td>1.044915</td>
<td>2.110422</td>
</tr>
<tr>
<td>65-74</td>
<td>1.35606</td>
<td>0.9626026</td>
<td>1.953505</td>
</tr>
<tr>
<td>75-84</td>
<td>0.9047304</td>
<td>0.6375194</td>
<td>1.305412</td>
</tr>
</tbody>
</table>

Crude | 1.719823| 1.437544 | 2.0688 (exact)

Pooled (direct) | 1.355343| 1.134356 | 1.619382

I. Standardized | 1.417609| 1.186541 | 1.693676

Test of homogeneity (direct) $\chi^2(4) = 10.20$ Pr$>\chi^2 = 0.0372$

We obtained the simple pooled results because we specified the pool option. Note the significance of the homogeneity test; it provides the motivation for standardizing the rate ratios.

If we wanted the externally standardized ratio (weights proportional to the population of the unexposed group), we would substitute estandard for istandard in the above command.

We are not limited to incidence-rate ratios; ir can also estimate incidence-rate differences. Differences may be standardized internally or externally. We will obtain the internally weighted difference (Rothman, Greenland, and Lash 2008, 266–267):

```
. ir deaths smokes pyears, by(age) level(90) istandard
```

<table>
<thead>
<tr>
<th>age category</th>
<th>IRD</th>
<th>[90% Conf. Interval]</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>35-44</td>
<td>.0005042</td>
<td>.0002877</td>
<td>0.007206</td>
</tr>
<tr>
<td>45-54</td>
<td>.0012804</td>
<td>.0006205</td>
<td>0.0019403</td>
</tr>
<tr>
<td>55-64</td>
<td>.0022961</td>
<td>.0005628</td>
<td>0.0040294</td>
</tr>
<tr>
<td>65-74</td>
<td>.0038567</td>
<td>.000521</td>
<td>0.0076614</td>
</tr>
<tr>
<td>75-84</td>
<td>-.0020201</td>
<td>-.0090201</td>
<td>0.00498</td>
</tr>
</tbody>
</table>

Crude | .0018537| .001342 | 0.0023654

I. Standardized | .0013047| .000712 | 0.0018974

Test of homogeneity (direct) $\chi^2(4) = 10.20$ Pr$>\chi^2 = 0.0372$

We obtained the simple pooled results because we specified the pool option. Note the significance of the homogeneity test; it provides the motivation for standardizing the rate ratios.

If we wanted the externally standardized ratio (weights proportional to the population of the unexposed group), we would substitute estandard for istandard in the above command.

We are not limited to incidence-rate ratios; ir can also estimate incidence-rate differences. Differences may be standardized internally or externally. We will obtain the internally weighted difference (Rothman, Greenland, and Lash 2008, 266–267):

```
. ir deaths smokes pyears, by(age) level(90) istandard
```

<table>
<thead>
<tr>
<th>age category</th>
<th>IRR</th>
<th>[90% Conf. Interval]</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>35-44</td>
<td>5.736638</td>
<td>1.463557</td>
<td>49.40468</td>
</tr>
<tr>
<td>45-54</td>
<td>2.138812</td>
<td>1.173714</td>
<td>4.272545</td>
</tr>
<tr>
<td>55-64</td>
<td>1.46824</td>
<td>0.9863624</td>
<td>2.264107</td>
</tr>
<tr>
<td>65-74</td>
<td>1.35606</td>
<td>0.9081925</td>
<td>2.096412</td>
</tr>
<tr>
<td>75-84</td>
<td>0.9047304</td>
<td>0.600757</td>
<td>1.399687</td>
</tr>
</tbody>
</table>

Crude | 1.719823| 1.391992 | 2.14353 |

Standardized | 1.155026| 0.906199 | 1.481295 |
Technical note

estandard and istandard are convenience features; they do nothing different from what you could accomplish by creating the appropriate weights and using the standard() option. For instance, we could duplicate the previously shown results of istandard (example before last) by typing

```
. sort age smokes
. by age: generate wgt=pyears[_N]
. list in 1/4
```

<table>
<thead>
<tr>
<th>agecat</th>
<th>smokes</th>
<th>deaths</th>
<th>pyears</th>
<th>conswgt</th>
<th>wgt</th>
</tr>
</thead>
<tbody>
<tr>
<td>35-44</td>
<td>0</td>
<td>2</td>
<td>18,790</td>
<td>1</td>
<td>52407</td>
</tr>
<tr>
<td>35-44</td>
<td>1</td>
<td>32</td>
<td>52,407</td>
<td>1</td>
<td>52407</td>
</tr>
<tr>
<td>45-54</td>
<td>0</td>
<td>12</td>
<td>10,673</td>
<td>1</td>
<td>43248</td>
</tr>
<tr>
<td>45-54</td>
<td>1</td>
<td>104</td>
<td>43,248</td>
<td>1</td>
<td>43248</td>
</tr>
</tbody>
</table>

```
. ir deaths smokes pyears, by(age) level(90) standard(wgt) i rd
(output omitted)
```

sort age smokes made the exposed group (smokes = 1) the last observation within each age category. by age: gen wgt=pyears[_N] created wgt equal to the last observation in each age category.

Cumulative incidence data

Cumulative incidence data are “follow-up data with denominators consisting of persons rather than person-time” (Rothman 1986, 172). A group of noncases is monitored for some time, during which some become cases. Each subject is also known to be exposed or unexposed. A summary of the data is

<table>
<thead>
<tr>
<th></th>
<th>Exposed</th>
<th>Unexposed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>a</td>
<td>b</td>
<td>a + b</td>
</tr>
<tr>
<td>Noncases</td>
<td>c</td>
<td>d</td>
<td>c + d</td>
</tr>
<tr>
<td>Total</td>
<td>a + c</td>
<td>b + d</td>
<td>a + b + c + d</td>
</tr>
</tbody>
</table>

Data of this type are generally summarized using the risk ratio, \(\frac{a/(a + c)}{b/(b + d)} \). A ratio of 2 means that an exposed subject is twice as likely to become a case than is an unexposed subject, a ratio of one-half means half as likely, and so on. The “null” value—the number corresponding to no effect—is a ratio of 1. If cross-sectional data are analyzed in this format, the risk ratio becomes a prevalence ratio.

Example 6: csi

We have data on diarrhea during a 10-day follow-up period among 30 breast-fed infants colonized with *Vibrio cholerae* 01 according to antilipopolysaccharide antibody titers in the mother’s breast milk (Glass et al. [1983]; reported in Rothman, Greenland, and Lash [2008, 248]):

<table>
<thead>
<tr>
<th>Antibody level</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>No diarrhea</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>
The `csi` command works much like the `iri` command. Our sample is small, so we will specify the `exact` option.

```
csi 7 12 9 2, exact
```

<table>
<thead>
<tr>
<th></th>
<th>Exposed</th>
<th>Unexposed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>7</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>Noncases</td>
<td>9</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>14</td>
<td>30</td>
</tr>
<tr>
<td>Risk</td>
<td>.4375</td>
<td>.8571429</td>
<td>.6333333</td>
</tr>
</tbody>
</table>

Risk difference: -.4196429
Risk ratio: .5104167
Prev. frac. ex.: .4895833
Prev. frac. pop: .2611111

1-sided Fisher’s exact P = 0.0212
2-sided Fisher’s exact P = 0.0259

We find that high antibody levels reduce the risk of diarrhea (the risk falls from 0.86 to 0.44). The difference is just significant at the 2.59% two-sided level. (Had we not specified the `exact` option, a χ^2 value and its significance level would have been reported in place of Fisher’s exact p. The calculated χ^2 two-sided significance level would have been 0.0173, but this calculation is inferior for small samples.)

⚠️ Technical note

By default, `cs` and `csi` do not report the odds ratio, but they will if you specify the `or` option. If you want odds ratios, however, use the `cc` or `cci` commands—the commands appropriate for case–control data—because `cs` and `csi` calculate the attributable (prevented) fraction with the risk ratio, even if you specify `or`:

```
csi 7 12 9 2, or exact
```

<table>
<thead>
<tr>
<th></th>
<th>Exposed</th>
<th>Unexposed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>7</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>Noncases</td>
<td>9</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>14</td>
<td>30</td>
</tr>
<tr>
<td>Risk</td>
<td>.4375</td>
<td>.8571429</td>
<td>.6333333</td>
</tr>
</tbody>
</table>

Risk difference: -.4196429
Risk ratio: .5104167
Prev. frac. ex.: .4895833
Prev. frac. pop: .2611111
Odds ratio: .1296296

1-sided Fisher’s exact P = 0.0212
2-sided Fisher’s exact P = 0.0259
As with \texttt{iri} and \texttt{ir}, \texttt{csi} and \texttt{cs} report either the attributable or the prevented fraction for the exposed and total populations; see the discussion under \textit{Incidence-rate data} above. In example 6, we estimated that 49\% of potential cases in the exposed population were prevented by exposure. We also estimated that exposure accounted for a 26\% reduction in cases over the entire population, but that is based on the exposure distribution of the (small) population (16/30) and probably is of little interest.

\textbf{Example 7: cs}

\texttt{cs} works like \texttt{csi}, except that it obtains its information from the data. The data equivalent to typing \texttt{csi 7 12 9 2} are

\begin{verbatim}
 . use http://www.stata-press.com/data/r13/csxmpl, clear
 . list
 case exp pop
 1. 1 1 7
 2. 1 0 12
 3. 0 1 9
 4. 0 0 2
\end{verbatim}

We could then type \texttt{cs case exp [freq=pop]}. If we had individual-level data, so that each observation reflected a patient and we had 30 observations, we would type \texttt{cs case exp}.

\begin{verbatim}
 . chi2(1) = 4327.92 Pr>chi2 = 0.0000
\end{verbatim}
Stratified cumulative incidence data

Example 8: cs with stratified data

Rothman, Greenland, and Lash (2008, 260) reprint the following age-specific information for deaths from all causes for tolbutamide and placebo treatment groups (University Group Diabetes Program 1970):

<table>
<thead>
<tr>
<th>Age through 54</th>
<th>Age 55 and above</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolbutamide</td>
<td>Placebo</td>
</tr>
<tr>
<td>Dead</td>
<td>8</td>
</tr>
<tr>
<td>Surviving</td>
<td>98</td>
</tr>
<tr>
<td>Tolbutamide</td>
<td>22</td>
</tr>
<tr>
<td>Placebo</td>
<td>76</td>
</tr>
</tbody>
</table>

The data corresponding to these results are

```
use http://www.stata-press.com/data/r13/ugdp
list
```

<table>
<thead>
<tr>
<th>age</th>
<th>case</th>
<th>exposed</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td><55</td>
<td>0</td>
<td>0</td>
<td>115</td>
</tr>
<tr>
<td><55</td>
<td>0</td>
<td>1</td>
<td>98</td>
</tr>
<tr>
<td><55</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td><55</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>55+</td>
<td>0</td>
<td>0</td>
<td>69</td>
</tr>
<tr>
<td>55+</td>
<td>0</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>55+</td>
<td>1</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>55+</td>
<td>1</td>
<td>1</td>
<td>22</td>
</tr>
</tbody>
</table>

The order of the observations is unimportant. If we were now to type `cs case exposed [freq=pop]`, we would obtain a summary for all the data, ignoring the stratification by age. To incorporate the stratification, we type

```
.cs case exposed [freq=pop], by(age)
```

<table>
<thead>
<tr>
<th>Age category</th>
<th>RR</th>
<th>[95% Conf. Interval]</th>
<th>M-H Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td><55</td>
<td>1.811321</td>
<td>.6112044</td>
<td>5.367898</td>
</tr>
<tr>
<td>55+</td>
<td>1.192602</td>
<td>.6712664</td>
<td>2.11883</td>
</tr>
<tr>
<td>Crude</td>
<td>1.435574</td>
<td>.8510221</td>
<td>2.421645</td>
</tr>
<tr>
<td>M-H combined</td>
<td>1.325555</td>
<td>.797907</td>
<td>2.202132</td>
</tr>
</tbody>
</table>

Test of homogeneity (M-H)

```
chi2(1) = 0.447  Pr>chi2 = 0.5037
```

Mantel–Haenszel weights are appropriate when the risks may differ according to the strata but the risk ratio is believed to be the same (homogeneous across strata). Under these assumptions, Mantel–Haenszel weights are designed to use the information efficiently. They are not intended to measure a composite risk ratio when the within-stratum risk ratios differ. Then we want a standardized ratio (see below).

The risk ratios above appear to differ markedly, but the confidence intervals are also broad because of the small sample sizes. The test of homogeneity shows that the differences can be attributed to chance; the use of the Mantel–Haenszel combined test is sensible.
Stratified cumulative incidence tables are not the only way to control for confounding. Another way is logistic regression. However, logistic regression measures effects with odds ratios, not with risk ratios. So before we fit a logistic model, let’s use `cs` to estimate the Mantel–Haenszel odds ratio:

```
.cs case exposed [freq=pop], by(age) or
```

Age category	OR	[95% Conf. Interval]	M-H Weight
<55	1.877551	.6238165 5.637046	2.168142 (Cornfield)
55+	1.248355	.6112772 2.547411	6.644809 (Cornfield)
Crude	1.510673	.8381198 2.722012	
M-H combined	1.403149	.7625152 2.582015	

Test of homogeneity (M-H) \(\chi^2(1) = 0.347 \) \(\text{Pr}>\chi^2 = 0.5556 \)

Test that combined \(OR = 1 \):

Mantel-Haenszel \(\chi^2(1) = 1.19 \)

\(\text{Pr}>\chi^2 = 0.2750 \)

The Mantel–Haenszel odds ratio is 1.40. It measures the association between death and treatment while adjusting for age. A more general way to adjust for age is logistic regression; the outcome variable is `case`, and it is explained by `age` and `exposed`. (As in the incidence-rate example, `age` may appear to be a string variable in our data—we listed the data in the previous example—but it is actually a numeric variable taking on values 0 and 1 with value labels disguising that fact; see [U] 12.6.3 Value labels.)

```
.logistic case exposed age [freq=pop]
```

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|------------|-----------|-----|------|----------------------|
| exposed | 1.404674 | .4374454 | 1.09| 0.275| .7629451 2.568175 |
| age | 4.216299 | 1.431519 | 4.24| 0.000| 2.167361 8.202223 |
| _cons | .0513818 | .0170762 | -8.93| 0.000| .0267868 .0985593 |

Compare these results with the Mantel–Haenszel estimates obtained with `cs`:

<table>
<thead>
<tr>
<th>Source</th>
<th>Odds Ratio</th>
<th>95% Conf. Int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mantel–Haenszel (cs)</td>
<td>1.40</td>
<td>0.76 2.58</td>
</tr>
<tr>
<td>logistic</td>
<td>1.40</td>
<td>0.76 2.59</td>
</tr>
</tbody>
</table>

They are virtually identical.

Logistic regression has advantages over the stratified-table approach. First, we obtained an estimate of the age effect: being 55 years or over significantly increases the odds of death. In addition to the point estimate, 4.22, we have a confidence interval for the effect: 2.17 to 8.20.

A discrete effect at age 55 is not a plausible model of aging. It would be more reasonable to assume that a 54-year-old patient has a higher probability of death, due merely to age, than does a 53-year-old patient; a 53-year-old, a higher probability than a 52-year-old patient; and so on. If we had the underlying data, where each patient’s age is presumably known, we could include the actual age in the model and so better control for the age effect. This would improve our estimate of the effect of being exposed to tolbutamide.
See [R] logistic for an explanation of the logistic command. Also see the technical note in *Stratified incidence-rate data* concerning categorical variables, which applies to logistic regression as well as Poisson regression.

Standardized estimates with stratified cumulative incidence data

As with *ir*, *cs* can produce standardized estimates, and the method is basically the same, although the options for which estimates are to be combined or standardized make it confusing. We showed above that *cs* can produce Mantel–Haenszel weighted estimates of the risk ratio (the default) or the odds ratio (obtained by specifying *or*). *cs* can also produce standardized estimates of the risk ratio (the default) or the risk difference (obtained by specifying *rd*).

> **Example 9: cs with stratified data, using standardized estimates**

To produce an estimate of the internally standardized risk ratio by using our age-specific data on deaths from all causes for tolbutamide and placebo treatment groups (example above), we type

```
.csf case exposed [freq=pop], by(age) istandard
```

<table>
<thead>
<tr>
<th>Age category</th>
<th>RR</th>
<th>[95% Conf. Interval]</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td><55</td>
<td>1.811321</td>
<td>.6112044</td>
<td>5.367898</td>
</tr>
<tr>
<td>55+</td>
<td>1.192602</td>
<td>.6712664</td>
<td>2.11883</td>
</tr>
</tbody>
</table>

Crude

<table>
<thead>
<tr>
<th>RR</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.435574</td>
<td>.8510221</td>
</tr>
</tbody>
</table>

I. Standardized

<table>
<thead>
<tr>
<th>RR</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.312122</td>
<td>.7889772</td>
</tr>
</tbody>
</table>

We could obtain externally standardized estimates by substituting *estandard* for *istandard*.

To produce an estimate of the risk ratio weighting each age category equally, we could type

```
.generate wgt=1
.cs case exposed [freq=pop], by(age) standard(wgt)
```

<table>
<thead>
<tr>
<th>Age category</th>
<th>RR</th>
<th>[95% Conf. Interval]</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td><55</td>
<td>1.811321</td>
<td>.6112044</td>
<td>5.367898</td>
</tr>
<tr>
<td>55+</td>
<td>1.192602</td>
<td>.6712664</td>
<td>2.11883</td>
</tr>
</tbody>
</table>

Crude

<table>
<thead>
<tr>
<th>RR</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.435574</td>
<td>.8510221</td>
</tr>
</tbody>
</table>

Standardized

<table>
<thead>
<tr>
<th>RR</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.304737</td>
<td>.7844994</td>
</tr>
</tbody>
</table>

If we instead wanted the risk difference, we would type

```
.cs case exposed [freq=pop], by(age) standard(wgt) rd
```

<table>
<thead>
<tr>
<th>Age category</th>
<th>RD</th>
<th>[95% Conf. Interval]</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td><55</td>
<td>.033805</td>
<td>-.0278954</td>
<td>.0955055</td>
</tr>
<tr>
<td>55+</td>
<td>.0362545</td>
<td>-.0809204</td>
<td>.1534294</td>
</tr>
</tbody>
</table>

Crude

<table>
<thead>
<tr>
<th>RD</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>.0446198</td>
<td>-.0192936</td>
</tr>
</tbody>
</table>

Standardized

<table>
<thead>
<tr>
<th>RD</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>.0350298</td>
<td>-.0311837</td>
</tr>
</tbody>
</table>
Case–control data

In case–control data, you select a sample on the basis of the outcome under study; that is, cases and noncases are sampled at different rates. If you were examining the link between coffee consumption and heart attacks, for instance, you could select a sample of subjects with and without the heart problem and then examine their coffee-drinking behavior. A subject who has suffered a heart attack is called a case just as with cohort study data. A subject who has never suffered a heart attack, however, is called a control rather than merely a noncase, emphasizing that the sampling was performed with respect to the outcome.

In case–control data, all hope of identifying the risk (that is, incidence) of the outcome (heart attacks) associated with the factor (coffee drinking) vanishes, at least without information on the underlying sampling fractions, but you can examine the proportion of coffee drinkers among the two populations and reason that, if there is a difference, coffee drinking may be associated with the risk of heart attacks. Remarkably, even without the underlying sampling fractions, you can also measure the ratio of the odds of heart attacks if a subject drinks coffee to the odds if a subject does not—the so-called odds ratio.

What is lost is the ability to compare absolute rates, which is not always the same as comparing relative rates; see Fleiss, Levin, and Paik (2003, 123).

Example 10: cci

cci calculates the odds ratio and the attributable risk associated with a 2 × 2 table. Rothman et al. (1979; reprinted in Rothman [1986, 161], and Rothman, Greenland, and Lash [2008, 251]) present case–control data on the history of chlordiazopoxide use in early pregnancy for mothers of children born with and without congenital heart defects:

<table>
<thead>
<tr>
<th>Chlordiazopoxide use</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case mothers</td>
<td>4</td>
<td>386</td>
</tr>
<tr>
<td>Control mothers</td>
<td>4</td>
<td>1250</td>
</tr>
</tbody>
</table>

cci 4 386 4 1250, level(90)

<table>
<thead>
<tr>
<th>Proportion</th>
<th>Exposed</th>
<th>Unexposed</th>
<th>Total</th>
<th>Exposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>4</td>
<td>386</td>
<td>390</td>
<td>0.0103</td>
</tr>
<tr>
<td>Controls</td>
<td>4</td>
<td>1250</td>
<td>1254</td>
<td>0.0032</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>1636</td>
<td>1644</td>
<td>0.0049</td>
</tr>
</tbody>
</table>

Point estimate

<table>
<thead>
<tr>
<th></th>
<th>Odds ratio</th>
<th>Attr. frac. ex.</th>
<th>Attr. frac. pop</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.238342</td>
<td>.6912</td>
<td>.0070892</td>
</tr>
<tr>
<td></td>
<td>.7698467</td>
<td>-.2989599</td>
<td>.9264524 (exact)</td>
</tr>
</tbody>
</table>

ch2(1) = 3.07 Pr>ch2 = 0.0799

We obtain a point estimate of the odds ratio as 3.24 and a χ² value, which is a test that the odds ratio is 1, significant at the 10% level.
Technical note

The epitab commands can calculate four different confidence intervals for the odds ratio: the exact, Woolf, Cornfield, and test-based intervals. The exact interval, illustrated in example 10, is the default. The interval is “exact” because it uses an exact sampling distribution—a distribution with no unknown parameters under the null hypothesis. An exact interval does not use a normal or chi-squared approximation. “Exact” does not describe the coverage probability; the coverage probability of a 90% exact interval is not exactly 90%. The coverage probability is actually bounded below by 90% (Agresti 2013, 606), so a 90% exact interval will always cover the odds ratio with probability at least 90% (if the model is correct).

The Woolf, Cornfield, and test-based intervals, on the other hand, are approximate. They approximate the exact sampling distribution with a normal model and are not guaranteed to maintain their nominal coverage: the coverage probability of a 90% approximate interval fluctuates above and below 90%. The coverage approaches 90% only in the limit as the sample size increases. Exact intervals are conservative; approximate intervals can be conservative or anticonservative (Agresti 2013, 607).

If you wish to maintain nominal coverage, then you should use the exact interval. But you will pay a price for the coverage: the exact interval will usually be wider than the approximate intervals. Example 10 is no exception:

<table>
<thead>
<tr>
<th>Method</th>
<th>90% Conf. Int.</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>exact</td>
<td>0.77 13.60</td>
<td>cci</td>
</tr>
<tr>
<td>Woolf</td>
<td>1.01 10.40</td>
<td>cci, woolf</td>
</tr>
<tr>
<td>test-based</td>
<td>1.07 9.77</td>
<td>cci, tb</td>
</tr>
<tr>
<td>Cornfield</td>
<td>1.07 9.83</td>
<td>cci, cornfield</td>
</tr>
</tbody>
</table>

The exact interval is the widest of the four—so wide that it includes the null value of one—even though the chi-squared p-value of 0.0799 was significant at the 10% level. The exact interval and chi-squared test come from different models, so we should not expect them to always agree on sharp conclusions such as statistical significance.

The odds-ratio intervals are all frequentist methods, so we cannot compare them rigorously with one example. See Brown (1981), Gart and Thomas (1982), and Agresti (1999) for more rigorous comparisons. Agresti (1999) found that the Woolf interval performed well, even for small samples.

Jerome Cornfield (1912–1979) was born in New York City. He majored in history at New York University and took courses in statistics at the U.S. Department of Agriculture Graduate School but otherwise had little formal training. Cornfield held positions at the Bureau of Labor Statistics, the National Cancer Institute, the National Institutes of Health, Johns Hopkins University, the University of Pittsburgh, and George Washington University. He worked on many problems in biomedical statistics, including the analysis of clinical trials, epidemiology (especially case–control studies), and Bayesian approaches.

Barnet Woolf (1902–1983) was born in London. His parents were immigrants from Lithuania. Woolf was educated at Cambridge, where he studied physiology and biochemistry, and proposed methods for linearizing plots in enzyme chemistry that were later rediscovered by others (see Haldane [1957]). His later career in London, Birmingham, Rothamsted, and Edinburgh included lasting contributions to nutrition, epidemiology, public health, genetics, and statistics. He was also active in left-wing causes and penned humorous poems, songs, and revues.
Technical note

By default, cc and cci report exact confidence intervals but an approximate significance test. You can replace the approximate test with Fisher’s exact test by specifying the exact option. We recommend specifying exact whenever any cell count is less than 1,000.

\[.\text{cci 4 386 4 1250, exact level(90)} \]

<table>
<thead>
<tr>
<th>Proportion Exposed</th>
<th>Exposed</th>
<th>Unexposed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>4</td>
<td>386</td>
<td>390</td>
</tr>
<tr>
<td>Controls</td>
<td>4</td>
<td>1250</td>
<td>1254</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>1636</td>
<td>1644</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Point estimate</th>
<th>[90% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odds ratio</td>
<td>3.238342</td>
</tr>
<tr>
<td>Attr. frac. ex.</td>
<td>.6912</td>
</tr>
<tr>
<td>Attr. frac. pop</td>
<td>.0070892</td>
</tr>
</tbody>
</table>

1-sided Fisher’s exact P = 0.0964
2-sided Fisher’s exact P = 0.0964

In this table, the one- and two-sided significance values are equal. This is not a mistake, but it does not happen often. Exact significance values are calculated by summing the probabilities for tables that have the same marginals (row and column sums) but that are less likely (given an odds ratio of 1) than the observed table. When considering each possible table, we might ask if the table is in the same or opposite tail as the observed table. If it is in the same tail, we would count the table under consideration in the one-sided test and, either way, we would count it in the two-sided test. Here all the tables more extreme than this table are in the same tail, so the one- and two-sided tests are the same.

The \(p \)-value of 0.0964 is significant at the 10% level, but the exact confidence interval is not (it includes the null odds ratio of one). It was not surprising that the exact interval disagreed with the chi-squared test; after all, they come from different models. Now the exact interval and Fisher’s exact test also disagree, even though they come from the same model!

The test and interval disagree because the exact sampling distribution is asymmetric, and the test and interval handle the asymmetry differently. The two-sided test, as we have seen, sums the probabilities of all tables at least as unlikely as the observed table, and in example 10, all the unlikely tables fall in the same tail of the distribution. The other tail does not contribute to the \(p \)-value. The exact interval, on the other hand, must always use both tails of the distribution, because the interval inverts two one-sided tests, not one two-sided test (Breslow and Day 1980, 128–129).

Technical note

The reported value of the attributable or prevented fraction among the exposed is calculated using the odds ratio as a proxy for the risk ratio. This can be justified only if the outcome is rare in the population. The extrapolation to the attributable or prevented fraction for the population assumes that the control group is a random sample of the corresponding group in the underlying population.
Example 11: cc equivalent to cci

Equivalent to typing cci 4 386 4 1250 would be typing cc case exposed [freq=pop] with the following data:

```
use http://www.stata-press.com/data/r13/ccxmpl, clear
list
```

<table>
<thead>
<tr>
<th>case</th>
<th>exposed</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>386</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1250</td>
</tr>
</tbody>
</table>

Stratified case–control data

Example 12: cc with stratified data

cc can work with stratified tables. Rothman, Greenland, and Lash (2008, 276) reprint and discuss data from a case–control study on infants with congenital heart disease and Down syndrome and healthy controls, according to maternal spermicide use before conception and maternal age at delivery (Rothman 1982):

<table>
<thead>
<tr>
<th>Maternal age to 34</th>
<th>Maternal age 35+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spermicide used</td>
<td>Spermicide not used</td>
</tr>
<tr>
<td>Maternal age</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>104</td>
<td>5</td>
</tr>
<tr>
<td>1059</td>
<td>86</td>
</tr>
</tbody>
</table>

The data corresponding to these tables are

```
use http://www.stata-press.com/data/r13/downs
list
```

<table>
<thead>
<tr>
<th>case</th>
<th>exposed</th>
<th>pop</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td><35</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td><35</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>104</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1059</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>86</td>
</tr>
</tbody>
</table>
The stratified results for the odds ratio are

```stata
.cc case exposed [freq=pop], by(age) woolf
```

<table>
<thead>
<tr>
<th>Maternal age</th>
<th>OR</th>
<th>[95% Conf. Interval]</th>
<th>M-H Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td><35</td>
<td>3.394231</td>
<td>.9048403</td>
<td>12.73242</td>
</tr>
<tr>
<td>35+</td>
<td>5.733333</td>
<td>.5016418</td>
<td>65.52706</td>
</tr>
<tr>
<td>Crude</td>
<td>3.501529</td>
<td>1.110362</td>
<td>11.04208</td>
</tr>
<tr>
<td>M-H combined</td>
<td>3.781172</td>
<td>1.18734</td>
<td>12.04142</td>
</tr>
</tbody>
</table>

Test of homogeneity (M-H) chi2(1) = 0.14 Pr>chi2 = 0.7105
Test that combined OR = 1:
- Mantel–Haenszel chi2(1) = 5.81
 Pr>chi2 = 0.0159

For no particular reason, we also specified the `woolf` option to obtain Woolf approximations to the within-stratum confidence intervals rather than the default. Had we wanted test-based confidence intervals and Tarone’s test of homogeneity, we would have used

```stata
.cc case exposed [freq=pop], by(age) tb tarone
```

<table>
<thead>
<tr>
<th>Maternal age</th>
<th>OR</th>
<th>[95% Conf. Interval]</th>
<th>M-H Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td><35</td>
<td>3.394231</td>
<td>.976611</td>
<td>11.79672</td>
</tr>
<tr>
<td>35+</td>
<td>5.733333</td>
<td>.6402941</td>
<td>51.33752</td>
</tr>
<tr>
<td>Crude</td>
<td>3.501529</td>
<td>1.189946</td>
<td>10.30358</td>
</tr>
<tr>
<td>M-H combined</td>
<td>3.781172</td>
<td>1.282056</td>
<td>11.15183</td>
</tr>
</tbody>
</table>

Test of homogeneity (M-H) chi2(1) = 0.14 Pr>chi2 = 0.7105
Test of homogeneity (Tarone) chi2(1) = 0.14 Pr>chi2 = 0.7092
Test that combined OR = 1:
- Mantel–Haenszel chi2(1) = 5.81
 Pr>chi2 = 0.0159

We recommend that test-based confidence intervals be used only for pedagogical reasons and never for research work.

Whatever method you choose for calculating confidence intervals, Stata will report a test of homogeneity, which here is $\chi^2(1) = 0.14$ and not significant. That is, the odds of Down syndrome might vary with maternal age, but we cannot reject the hypothesis that the association between Down syndrome and spermicide is the same in the two maternal age strata. This is thus a test to reject the appropriateness of the single, Mantel–Haenszel combined odds ratio—a rejection not justified by these data.

Technical note

The `cc` command includes four tests of homogeneity: Mantel–Haenszel (the default); directly pooled, also known as the Woolf test (available with the `pool` option); Tarone (available with the `tarone` option); and Breslow–Day (available with the `bd` option). The preferred test is Tarone’s (Tarone 1985, 94), which corrected an error in the Breslow–Day test; see Breslow (1996, 17–18) for details of the error and Tarone’s correction.

The other two homogeneity tests, the Mantel–Haenszel and directly pooled, are less useful: they use the logs of the stratum-specific odds ratios, so they are undefined when any stratum has a zero cell. The epitab commands deal with the problem differently: `cs` omits the offending strata, while `cc` substitutes the Tarone test. The Tarone test does not use the stratum-specific odds ratios, so it can still be calculated when there are zero cells.
None of the tests are appropriate for finely-stratified (many strata with only a few observations each) studies (Rothman, Greenland, and Lash 2008, 280). If you have fine stratification, one alternative is multilevel logistic regression; see [ME] melogit.

Technical note

As with cohort study data, an alternative to stratified tables for uncovering effects is logistic regression. From the logistic point of view, case–control data are no different from cohort study data—you must merely ignore the estimated intercept. The intercept is meaningless in case–control data because it reflects the baseline prevalence of the outcome, which you controlled by sampling.

The data we used with cc can be used directly by logistic. (The age variable, which appears to be a string, is really numeric with an associated value label; see [U] 12.6.3 Value labels. age takes on the value 0 for the age-less-than-35 group and 1 for the 35+ group.)

```
.logistic case exposed age [freq=pop]
Logistic regression
Number of obs = 1270
LR chi2(2) = 8.74
Prob > chi2 = 0.0127
Log likelihood = -81.517532 Pseudo R2 = 0.0509

                      case | Odds Ratio  Std. Err.     z  P>|z|     [95% Conf. Interval]
-----------------------+------------------+-----------+------------+---------------------------------------------+-------------------+
     exposed          | 3.787779    | 2.241922  | 2.25      | 0.024   | 1.187334   | 12.0836
     age              | 4.582857    | 2.717352  | 2.57      | 0.010   | 1.433594   | 14.65029
     _cons            | 0.0082631   | 0.0027325 | -14.50    | 0.000   | 0.0043218  | 0.0157988
```

We compare the results with those presented by cc in the previous example:

<table>
<thead>
<tr>
<th>Source</th>
<th>Odds ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mantel–Haenszel (cc)</td>
<td>3.78</td>
<td>1.19</td>
</tr>
<tr>
<td>logistic</td>
<td>3.79</td>
<td>1.19</td>
</tr>
</tbody>
</table>

As with the cohort study data in example 8, results are virtually identical, and all the same comments we made previously apply once again.

To demonstrate an advantage of logistic regression, let’s now ask a question that would be difficult to answer on the basis of a stratified table analysis. We now know that spermicide use appears to increase the risk of having a baby with Down syndrome, and we know that the mother’s age also increases the risk. Is the effect of spermicide use statistically different for mothers in the two age groups?

```
.logistic case exposed age c.age#exposed [freq=pop]
Logistic regression
Number of obs = 1270
LR chi2(3) = 8.87
Prob > chi2 = 0.0311
Log likelihood = -81.451332 Pseudo R2 = 0.0516

                      case | Odds Ratio  Std. Err.     z  P>|z|     [95% Conf. Interval]
-----------------------+------------------+-----------+------------+---------------------------------------------+-------------------+
     exposed          | 3.394231    | 2.289544  | 1.81      | 0.070   | 0.9048403   | 12.73242
     age              | 4.104651    | 2.774868  | 2.09      | 0.037   | 1.091034    | 15.44237
     exposed#c.age    | 1           | 1.689141   | 2.388785  | 0.37    | 0.711       | 27.0045
     1                | 1.689141    | 2.388785  | 0.37      | 0.711   | 1.056563    | 27.0045
     _cons            | 0.0084986   | 0.0028449 | -14.24    | 0.000   | 0.0044097   | 0.0163789
```
The answer is no. The odds ratio and confidence interval reported for exposed now measure the spermicide effect for an \texttt{age==0} (age < 35) mother. The odds ratio and confidence interval reported for \texttt{c.age#exposed} are the (multiplicative) difference in the spermicide odds ratio for an \texttt{age==1} (age 35+) mother relative to a young mother. The point estimate is that the effect is larger for older mothers, suggesting grounds for future research, but the difference is not significant.

See \texttt{[R] logistic} for an explanation of the \texttt{logistic} command. Also see the technical note under \textit{Incidence-rate data} above concerning Poisson regression, which applies equally to logistic regression.

Case–control data with multiple levels of exposure

In a case–control study, subjects with the disease of interest (cases) are compared to disease-free individuals (controls) to assess the relationship between exposure to one or more risk factors and disease incidence. Often exposure is measured qualitatively at several discrete levels or measured on a continuous scale and then grouped into three or more levels. The data can be summarized as

<table>
<thead>
<tr>
<th>Exposure level</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>k</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>(a_1)</td>
<td>(a_2)</td>
<td>...</td>
<td>(a_k)</td>
<td>(M_1)</td>
</tr>
<tr>
<td>Controls</td>
<td>(c_1)</td>
<td>(c_2)</td>
<td>...</td>
<td>(c_k)</td>
<td>(M_0)</td>
</tr>
<tr>
<td>Total</td>
<td>(N_1)</td>
<td>(N_2)</td>
<td>...</td>
<td>(N_k)</td>
<td>(T)</td>
</tr>
</tbody>
</table>

An advantage afforded by having multiple levels of exposure is the ability to examine dose–response relationships. If the association between a risk factor and a disease or outcome is real, we expect the strength of that association to increase with the level and duration of exposure. A dose–response relationship provides strong support for a direct or even causal relationship between the risk factor and the outcome. On the other hand, the lack of a dose–response is usually seen as an argument against causality.

We can use the \texttt{tabodds} command to tabulate the odds of failure or odds ratios against a categorical exposure variable. The test for trend calculated by \texttt{tabodds} can serve as a test for dose–response if the exposure variable is at least ordinal. If the exposure variable has no natural ordering, the trend test is meaningless and should be ignored. See the technical note at the end of this section for more information regarding the test for trend.

Before looking at an example, consider three possible data arrangements for case–control and prevalence studies. The most common data arrangement is individual records, where each subject in the study has his or her own record. Closely related are frequency records where identical individual records are included only once, but with a variable giving the frequency with which the record occurs. The \texttt{fweight weight} option is used for these data to specify the frequency variable. Data can also be arranged as binomial frequency records where each record contains a variable, \(D\), the number of cases; another variable, \(N\), the number of total subjects (cases plus controls); and other variables. An advantage of binomial frequency records is that large datasets can be entered succinctly into a Stata database.

Example 13: \texttt{tabodds}

Consider the following data from the Ille-et-Vilaine study of esophageal cancer, discussed in \textit{Breslow and Day} (1980, chap. 4 and app. I), corresponding to subjects age 55–64 who use from 0 to 9 g of tobacco per day:
Alcohol consumption (g/day)

<table>
<thead>
<tr>
<th></th>
<th>0–39</th>
<th>40–79</th>
<th>80–119</th>
<th>120+</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>2</td>
<td>9</td>
<td>9</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Controls</td>
<td>47</td>
<td>31</td>
<td>9</td>
<td>5</td>
<td>92</td>
</tr>
<tr>
<td>Total</td>
<td>49</td>
<td>40</td>
<td>18</td>
<td>10</td>
<td>117</td>
</tr>
</tbody>
</table>

The study included 24 such tables, each representing one of four levels of tobacco use and one of six age categories. We can create a binomial frequency-record dataset by typing

```
. input alcohol D N agegrp tobacco
   alcohol D N agegrp tobacco
   1. 1 2 49 4 1
   2. 2 9 40 4 1
   3. 3 9 18 4 1
   4. 4 5 10 4 1
   5. end
```

where \(D \) is the number of esophageal cancer cases and \(N \) is the number of total subjects (cases plus controls) for each combination of six age groups (agegrp), four levels of alcohol consumption in g/day (alcohol), and four levels of tobacco use in g/day (tobacco).

Both the `tabodds` and `mhodds` commands can correctly handle all three data arrangements. Binomial frequency records require that the number of total subjects (cases plus controls) represented by each record \(N \) be specified with the `binomial()` option.

We could also enter the data as frequency-weighted data:

```
. input alcohol case freq agegrp tobacco
   alcohol case freq agegrp tobacco
   1. 1 1 2 4 1
   2. 1 0 47 4 1
   3. 2 1 9 4 1
   4. 2 0 31 4 1
   5. 3 1 9 4 1
   6. 3 0 9 4 1
   7. 4 1 5 4 1
   8. 4 0 5 4 1
   9. end
```

If you are planning on using any of the other estimation commands, such as `poisson` or `logistic`, we recommend that you enter your data either as individual records or as frequency-weighted records and not as binomial frequency records, because the estimation commands currently do not recognize the `binomial()` option.

We have entered all the esophageal cancer data into Stata as a frequency-weighted record dataset as previously described. In our data, `case` indicates the esophageal cancer cases and controls, and `freq` is the number of subjects represented by each record (the weight).

We added value labels to the `agegrp`, `alcohol`, and `tobacco` variables in our dataset to ease interpretation in outputs, but these variables are numeric.

We are interested in the association between alcohol consumption and esophageal cancer. We first use `tabodds` to tabulate the odds of esophageal cancer against alcohol consumption:
. use http://www.stata-press.com/data/r13/bdesop, clear
. tabodds case alcohol [fweight=freq]

<table>
<thead>
<tr>
<th>alcohol</th>
<th>cases</th>
<th>controls</th>
<th>odds</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-39</td>
<td>29</td>
<td>386</td>
<td>0.07513</td>
<td>0.05151 0.10957</td>
</tr>
<tr>
<td>40-79</td>
<td>75</td>
<td>280</td>
<td>0.26786</td>
<td>0.20760 0.34560</td>
</tr>
<tr>
<td>80-119</td>
<td>51</td>
<td>87</td>
<td>0.58621</td>
<td>0.41489 0.82826</td>
</tr>
<tr>
<td>120+</td>
<td>45</td>
<td>22</td>
<td>2.04545</td>
<td>1.22843 3.40587</td>
</tr>
</tbody>
</table>

Test of homogeneity (equal odds): \(\chi^2(3) = 158.79 \)
Pr>\(\chi^2 \) = 0.0000

Score test for trend of odds: \(\chi^2(1) = 152.97 \)
Pr>\(\chi^2 \) = 0.0000

The test of homogeneity clearly indicates that the odds of esophageal cancer differ by level of alcohol consumption, and the test for trend indicates a significant increase in odds with increasing alcohol use. This suggests a strong dose–response relation. The graph option can be used to study the shape of the relationship of the odds with alcohol consumption. Most of the heterogeneity in these data can be “explained” by the linear increase in risk of esophageal cancer with increased dosage (alcohol consumption).

We also could have requested that the odds ratios at each level of alcohol consumption be calculated by specifying the or option. For example, tabodds case alcohol [fweight=freq], or would produce odds ratios using the minimum value of alcohol—that is, alcohol = 1 (0–39)—as the reference group, and the command tabodds case alcohol [fweight=freq], or base(2) would use alcohol = 2 (40–79) as the reference group.

Although our results appear to provide strong evidence supporting an association between alcohol consumption and esophageal cancer, we need to be concerned with the possible existence of confounders, specifically age and tobacco use, in our data. We can again use tabodds to tabulate the odds of esophageal cancer against age and against tobacco use, independently:

. tabodds case agegrp [fweight=freq]

<table>
<thead>
<tr>
<th>agegrp</th>
<th>cases</th>
<th>controls</th>
<th>odds</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-34</td>
<td>1</td>
<td>115</td>
<td>0.00870</td>
<td>0.00121 0.06226</td>
</tr>
<tr>
<td>35-44</td>
<td>9</td>
<td>190</td>
<td>0.04737</td>
<td>0.02427 0.09244</td>
</tr>
<tr>
<td>45-54</td>
<td>46</td>
<td>167</td>
<td>0.27545</td>
<td>0.19875 0.38175</td>
</tr>
<tr>
<td>55-64</td>
<td>76</td>
<td>166</td>
<td>0.45783</td>
<td>0.34899 0.60061</td>
</tr>
<tr>
<td>65-74</td>
<td>55</td>
<td>106</td>
<td>0.51887</td>
<td>0.37463 0.71864</td>
</tr>
<tr>
<td>75+</td>
<td>13</td>
<td>31</td>
<td>0.41935</td>
<td>0.21944 0.80138</td>
</tr>
</tbody>
</table>

Test of homogeneity (equal odds): \(\chi^2(5) = 96.94 \)
Pr>\(\chi^2 \) = 0.0000

Score test for trend of odds: \(\chi^2(1) = 83.37 \)
Pr>\(\chi^2 \) = 0.0000
We can see that there is evidence to support our concern that both age and tobacco use are potentially important confounders. Clearly, before we can make any statements regarding the association between esophageal cancer and alcohol use, we must examine and, if necessary, adjust for the effect of any confounder. We will return to this example in the following section.

Technical note

The score test for trend performs a test for linear trend of the log odds against the numerical code used for the exposure variable. The test depends not only on the relationship between dose level and the outcome but also on the numeric values assigned to each level or, to be more accurate, to the distance between the numeric values assigned. For example, the trend test on a dataset with four exposure levels coded 1, 2, 3, and 4 gives the same results as coding the levels 10, 20, 30, and 40 because the distance between the levels in each case is constant. In the first case, the distance is one unit, and in the second case, it is 10 units. However, if we code the exposure levels as 1, 10, 100, and 1,000, we would obtain different results because the distance between exposure levels is not constant. Thus be careful when assigning values to exposure levels. You must determine whether equally spaced numbers make sense for your data or if other more meaningful values should be used.

Remember that we are testing whether a log-linear relationship exists between the odds and the exposure variable. For your particular problem, this relationship may not be correct or even make sense, so you must be careful in interpreting the output of this trend test.

Case–control data with confounders and possibly multiple levels of exposure

In the esophageal cancer data example introduced earlier, we determined that the apparent association between alcohol consumption and esophageal cancer could be confounded by age and tobacco use. You can adjust for the effect of possible confounding factors by stratifying on these factors. This is the method used by both `tabodds` and `mhodds` to adjust for other variables in the dataset. We will compare and contrast these two commands in the following example.

Example 14: `tabodds`, adjusting for confounding factors

We begin by using `tabodds` to tabulate unadjusted odds ratios.
The alcohol = 1 group (0–39) was used by `tabodds` as the reference category for calculating the odds ratios. We could have selected a different group by specifying the `base()` option; however, because the lowest dosage level is most often the appropriate reference group, as it is in these data, the `base()` option is seldom used.

We use `tabodds` with the `adjust()` option to tabulate Mantel–Haenszel age-adjusted odds ratios:

```
. tabodds case alcohol [fweight=freq], adjust(age)
```

Mantel–Haenszel odds ratios adjusted for age

<table>
<thead>
<tr>
<th>alcohol</th>
<th>Odds Ratio</th>
<th>chi2</th>
<th>P>chi2</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-39</td>
<td>1.000000</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>40-79</td>
<td>4.268155</td>
<td>37.36</td>
<td>0.0000</td>
<td>2.570025 7.088314</td>
</tr>
<tr>
<td>80-119</td>
<td>8.018305</td>
<td>59.30</td>
<td>0.0000</td>
<td>4.266893 15.067922</td>
</tr>
<tr>
<td>120+</td>
<td>28.570426</td>
<td>139.70</td>
<td>0.0000</td>
<td>12.146409 67.202514</td>
</tr>
</tbody>
</table>

Score test for trend of odds: `chi2(1) = 135.09`
Pr>chi2 = 0.0000

We observe that the age-adjusted odds ratios are just slightly higher than the unadjusted ones, so it appears that age is not as strong a confounder as it first appeared. Even after adjusting for age, the dose–response relationship, as measured by the trend test, remains strong.

We now perform the same analysis but this time adjust for tobacco use instead of age.

```
. tabodds case alcohol [fweight=freq], adjust(tobacco)
```

Mantel-Haenszel odds ratios adjusted for tobacco

<table>
<thead>
<tr>
<th>alcohol</th>
<th>Odds Ratio</th>
<th>chi2</th>
<th>P>chi2</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-39</td>
<td>1.000000</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>40-79</td>
<td>3.261178</td>
<td>28.53</td>
<td>0.0000</td>
<td>2.059764 5.163349</td>
</tr>
<tr>
<td>80-119</td>
<td>6.771638</td>
<td>62.54</td>
<td>0.0000</td>
<td>3.908113 11.733306</td>
</tr>
<tr>
<td>120+</td>
<td>19.919526</td>
<td>123.93</td>
<td>0.0000</td>
<td>9.443830 42.015528</td>
</tr>
</tbody>
</table>

Score test for trend of odds: `chi2(1) = 135.09`
Pr>chi2 = 0.0000

Again we observe a significant dose–response relationship and not much difference between the adjusted and unadjusted odds ratios. We could also adjust for the joint effect of both age and tobacco use by specifying `adjust(tobacco age)`, but we will not bother here.

A different approach to analyzing these data is to use the `mhodds` command. This command estimates the ratio of the odds of failure for two categories of an exposure variable, controlling
for any specified confounding variables, and it tests whether this odds ratio is equal to one. For multiple exposures, if two exposure levels are not specified with \texttt{compare()}, then \texttt{mhodds} assumes that exposure is quantitative and calculates a 1-degree-of-freedom test for trend. This test for trend is the same one that \texttt{tabodds} reports.

\section*{Example 15: \texttt{mhodds}, controlling for confounding factors}

We first use \texttt{mhodds} to estimate the effect of alcohol controlled for age:

\begin{verbatim}
 . mhodds case alcohol agegrp [fweight=freq]
 Score test for trend of odds with alcohol controlling for agegrp
 (The Odds Ratio estimate is an approximation to the odds ratio for a one unit increase in alcohol)

<table>
<thead>
<tr>
<th>Odds Ratio</th>
<th>chi2(1)</th>
<th>P>chi2</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.845895</td>
<td>135.09</td>
<td>0.0000</td>
<td>2.385749 3.394792</td>
</tr>
</tbody>
</table>
\end{verbatim}

Because \texttt{alcohol} has more than two levels, \texttt{mhodds} estimates and reports an approximate age-adjusted odds ratio for a one-unit increase in alcohol consumption. The χ^2 value reported is identical to that reported by \texttt{tabodds} for the score test for trend on the previous page.

We now use \texttt{mhodds} to estimate the effect of alcohol controlled for age, and while we are at it, we do this by levels of tobacco consumption:

\begin{verbatim}
 . mhodds case alcohol agegrp [fweight=freq], by(tobacco)
 Score test for trend of odds with alcohol controlling for agegrp by tobacco
 note: only 19 of the 24 strata formed in this analysis contribute information about the effect of the explanatory variable
 (The Odds Ratio estimate is an approximation to the odds ratio for a one unit increase in alcohol)

<table>
<thead>
<tr>
<th>tobacco</th>
<th>Odds Ratio</th>
<th>chi2(1)</th>
<th>P>chi2</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-9</td>
<td>3.579667</td>
<td>75.95</td>
<td>0.0000</td>
<td>2.68710 4.76871</td>
</tr>
<tr>
<td>10-19</td>
<td>2.303580</td>
<td>25.77</td>
<td>0.0000</td>
<td>1.66913 3.17920</td>
</tr>
<tr>
<td>20-29</td>
<td>2.364135</td>
<td>13.27</td>
<td>0.0003</td>
<td>1.48810 3.75889</td>
</tr>
<tr>
<td>30+</td>
<td>2.217946</td>
<td>8.84</td>
<td>0.0029</td>
<td>1.31184 3.74992</td>
</tr>
</tbody>
</table>
\end{verbatim}

\text{Mantel-Haenszel estimate controlling for agegrp and tobacco}

\begin{verbatim}

<table>
<thead>
<tr>
<th>Odds Ratio</th>
<th>chi2(1)</th>
<th>P>chi2</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.751236</td>
<td>118.37</td>
<td>0.0000</td>
<td>2.292705 3.301471</td>
</tr>
</tbody>
</table>

 Test of homogeneity of ORs (approx): \text{chi2(3)} = 5.46
 \text{Pr>chi2} = 0.1409
\end{verbatim}

Again, because \texttt{alcohol} has more than two levels, \texttt{mhodds} estimates and reports an approximate Mantel–Haenszel age and tobacco-use adjusted odds ratio for a one-unit increase in alcohol consumption. The χ^2 test for trend reported with the Mantel–Haenszel estimate is again the same one that \texttt{tabodds} produces if \texttt{adjust(agegrp tobacco)} is specified.
The results from this analysis also show an effect of alcohol, controlled for age, of about $\times 2.7$, which is consistent across different levels of tobacco consumption. Similarly,

```
. mhodds case tobacco agegrp [fweight=freq], by(alcohol)
Score test for trend of odds with tobacco
controlling for agegrp
by alcohol
note: only 18 of the 24 strata formed in this analysis contribute
information about the effect of the explanatory variable
(The Odds Ratio estimate is an approximation to the odds ratio
for a one unit increase in tobacco)
```

<table>
<thead>
<tr>
<th>alcohol</th>
<th>Odds Ratio</th>
<th>chi2(1)</th>
<th>P>chi2</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-39</td>
<td>2.420650</td>
<td>15.61</td>
<td>0.0001</td>
<td>1.56121 3.75320</td>
</tr>
<tr>
<td>40-79</td>
<td>1.427713</td>
<td>5.75</td>
<td>0.0165</td>
<td>1.06717 1.91007</td>
</tr>
<tr>
<td>80-119</td>
<td>1.472218</td>
<td>3.38</td>
<td>0.0659</td>
<td>0.97483 2.22339</td>
</tr>
<tr>
<td>120+</td>
<td>1.214815</td>
<td>0.59</td>
<td>0.4432</td>
<td>0.73876 1.99763</td>
</tr>
</tbody>
</table>

Mantel-Haenszel estimate controlling for agegrp and alcohol

<table>
<thead>
<tr>
<th>Odds Ratio</th>
<th>chi2(1)</th>
<th>P>chi2</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.553437</td>
<td>20.07</td>
<td>0.0000</td>
<td>1.281160 1.883580</td>
</tr>
</tbody>
</table>

Test of homogeneity of ORs (approx): chi2(3) = 5.26
Pr>chi2 = 0.1540

shows an effect of tobacco, controlled for age, of about $\times 1.5$, which is consistent across different levels of alcohol consumption.

Comparisons between particular levels of alcohol and tobacco consumption can be made by generating a new variable with levels corresponding to all combinations of alcohol and tobacco, as in

```
. egen alctob = group(alcohol tobacco)
. mhodds case alctob [fweight=freq], compare(16,1)
Maximum likelihood estimate of the odds ratio
Comparing alctob==16 vs. alctob==1
```

<table>
<thead>
<tr>
<th>Odds Ratio</th>
<th>chi2(1)</th>
<th>P>chi2</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>93.333333</td>
<td>103.21</td>
<td>0.0000</td>
<td>14.766136 589.938431</td>
</tr>
</tbody>
</table>

which yields an odds ratio of 93 between subjects with the highest levels of alcohol and tobacco and those with the lowest levels. Similar results can be obtained simultaneously for all levels of alctob using alctob = 1 as the comparison group by specifying tabodds D alctob, bin(N) or.
Standardized estimates with stratified case–control data

Example 16: cc with stratified data, using standardized estimates

You obtain standardized estimates (here for the odds ratio) by using cc just as you obtain standardized estimates by using ir or cs. Along with the by() option, you specify one of estandard, istandard, or standard(varname).

Case–control studies can provide standardized rate-ratio estimates when density sampling is used, or when the disease is rare (Rothman, Greenland, and Lash 2008, 269). Rothman, Greenland, and Lash (2008, 276) report the SMR for the case–control study on infants with congenital heart disease and Down syndrome. We can reproduce their estimates along with the pooled estimates by typing

```stata
use http://www.stata-press.com/data/r13/downs, clear
cc case exposed [freq=pop], by(age) istandard pool
```

<table>
<thead>
<tr>
<th>Maternal age</th>
<th>OR</th>
<th>[95% Conf. Interv]</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td><35</td>
<td>3.394231</td>
<td>.5812415</td>
<td>13.87412</td>
</tr>
<tr>
<td>35+</td>
<td>5.733333</td>
<td>.0911619</td>
<td>85.89602</td>
</tr>
<tr>
<td>Crude</td>
<td>3.501529</td>
<td>.8080857</td>
<td>11.78958</td>
</tr>
<tr>
<td>Pooled (direct)</td>
<td>3.824166</td>
<td>1.196437</td>
<td>12.22316</td>
</tr>
<tr>
<td>I. Standardized</td>
<td>3.779749</td>
<td>1.180566</td>
<td>12.10141</td>
</tr>
</tbody>
</table>

Test of homogeneity (direct) chi2(1) = 0.14 Pr>chi2 = 0.7109

Using the distribution of the nonexposed subjects in the source population as the standard, we can obtain an estimate of the standardized rate ratio (SRR):

```stata
use http://www.stata-press.com/data/r13/downs, clear
cc case exposed [freq=pop], by(age) estandard
```

<table>
<thead>
<tr>
<th>Maternal age</th>
<th>OR</th>
<th>[95% Conf. Interv]</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td><35</td>
<td>3.394231</td>
<td>.5812415</td>
<td>13.87412</td>
</tr>
<tr>
<td>35+</td>
<td>5.733333</td>
<td>.0911619</td>
<td>85.89602</td>
</tr>
<tr>
<td>Crude</td>
<td>3.501529</td>
<td>.8080857</td>
<td>11.78958</td>
</tr>
<tr>
<td>E. Standardized</td>
<td>3.979006</td>
<td>1.176096</td>
<td>13.46191</td>
</tr>
</tbody>
</table>

Finally, if we wanted to weight the two age groups equally, we could type

```stata
generate wgt=1
cc case exposed [freq=pop], by(age) standard(wgt)
```

<table>
<thead>
<tr>
<th>Maternal age</th>
<th>OR</th>
<th>[95% Conf. Interv]</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td><35</td>
<td>3.394231</td>
<td>.5812415</td>
<td>13.87412</td>
</tr>
<tr>
<td>35+</td>
<td>5.733333</td>
<td>.0911619</td>
<td>85.89602</td>
</tr>
<tr>
<td>Crude</td>
<td>3.501529</td>
<td>.8080857</td>
<td>11.78958</td>
</tr>
<tr>
<td>Standardized</td>
<td>5.275104</td>
<td>1.180566</td>
<td>44.6385</td>
</tr>
</tbody>
</table>

Matched case–control data

Matched case–control studies are performed to gain sample-size efficiency and to control for important confounding factors. In a matched case–control design, each case is matched with a control on the basis of demographic characteristics, clinical characteristics, etc. Thus their difference with respect to the outcome must be due to something other than the matching variables. If the only difference between them was exposure to the factor, we could attribute any difference in outcome to the factor.
A summary of the data is

<table>
<thead>
<tr>
<th>Cases</th>
<th>Exposed</th>
<th>Unexposed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>a</td>
<td>b</td>
<td>M_1</td>
</tr>
<tr>
<td>Unexposed</td>
<td>c</td>
<td>d</td>
<td>M_0</td>
</tr>
<tr>
<td>Total</td>
<td>N_1</td>
<td>N_0</td>
<td>$T = a + b + c + d$</td>
</tr>
</tbody>
</table>

Each entry in the table represents the number of case–control pairs. For instance, in a of the pairs, both members were exposed; in b of the pairs, the case was exposed but the control was not; and so on. In total, T pairs were observed.

Example 17: mcci

Rothman (1986, 257) discusses data from Jick et al. (1973) on a matched case–control study of myocardial infarction and drinking six or more cups of coffee per day (persons drinking from one to five cups per day were excluded):

<table>
<thead>
<tr>
<th>Controls</th>
<th>Cases</th>
<th>6+ cups</th>
<th>0 cups</th>
</tr>
</thead>
<tbody>
<tr>
<td>6+ cups</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>0 cups</td>
<td>3</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

mcci analyzes matched case–control data:

```
mcci 8 8 3 8
```

<table>
<thead>
<tr>
<th>Cases</th>
<th>Exposed</th>
<th>Unexposed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Unexposed</td>
<td>3</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>16</td>
<td>27</td>
</tr>
</tbody>
</table>

McNemar’s $\chi^2(1) = 2.27$ Prob $> \chi^2 = 0.1317$

Exact McNemar significance probability = 0.2266

Proportion with factor

| Cases | .5925926 |
| Controls | .4074074 |

[95% Conf. Interval]

difference | .1851852 |
ratio	1.445454
rel. diff.	.3125
odds ratio	2.666667

The point estimate states that the odds of drinking 6 or more cups of coffee per day is 2.67 times greater among the myocardial infarction patients. The confidence interval is wide, however, and the p-value of 0.1317 from McNemar’s test is not statistically significant.

mcc works like the other nonimmediate commands but does not handle stratified data. If you have stratified matched case–control data, you can use conditional logistic regression to estimate odds ratios; see \[R\] clogit.

Matched case–control studies can also be analyzed using mhodds by controlling on the variable used to identify the matched sets. For example, if the variable set is used to identify the matched set for each subject,

```
mhodds fail xvar set
```
will do the job. Any attempt to control for further variables will restrict the analysis to the comparison of cases and matched controls that share the same values of these variables. In general, this would lead to the omission of many records from the analysis. Similar considerations usually apply when investigating effect modification by using the by() option. An important exception to this rule is that a variable used in matching cases to controls may appear in the by() option without loss of data.

Example 18: mhodds with matched case–control data

Let’s use mhodds to analyze matched case–control studies using the study of endometrial cancer and exposure to estrogen described in Breslow and Day (1980, chap. 5). In this study, there are four controls matched to each case. Cases and controls are matched on age, marital status, and time living in the community. The data collected include information on the daily dose of conjugated estrogen therapy. Breslow and Day created four levels of the dose variable and began by analyzing the 1:1 study formed by using the first control in each set. We examine the effect of exposure to estrogen:

```
. use http://www.stata-press.com/data/r13/bdendo11, clear
. describe
obs: 126
vars: 13 3 Mar 2013 23:29
size: 2,394
storage  display value
variable name  type  format  label  variable label
set          int  %8.0g  Set number
fail        byte  %8.0g  Case=1/Control=0
gall       byte  %8.0g  Gallbladder dis
hyp        byte  %8.0g  Hypertension
ob          byte  %8.0g  Obesity
est         byte  %8.0g  Estrogen
dos         byte  %8.0g  Ordinal dose
dur         byte  %8.0g  Ordinal duration
non       byte  %8.0g  Non-estrogen drug
duration    int  %8.0g  months
age         int  %8.0g  years
cest         byte  %8.0g  Conjugated est dose
agegrp  float  %9.0g  age group of set
```

Sorted by: set

```
. mhodds fail est set
Mantel-Haenszel estimate of the odds ratio
Comparing est==1 vs. est==0, controlling for set
```

For the 1:1 matched study, the Mantel–Haenszel methods are equivalent to conditional likelihood methods. The maximum conditional likelihood estimate of the odds ratio is given by the ratio of the off-diagonal frequencies in the two-way (case–control) table below. The data must be in the 1-observation-per-group format; that is, the matched case and control must appear in 1 observation (the same format as required by the mcc command; see also [R] clogit).
. keep fail est set
. reshape wide est, i(set) j(fail)

Data long -> wide

Number of obs.	126	63
Number of variables	3	3
j variable (2 values)	fail	(dropped)
xij variables:	est	est0 est1

. rename est1 case
. rename est0 control
. label variable case case
. label variable control control
. tabulate case control

<table>
<thead>
<tr>
<th>case</th>
<th>control</th>
<th>1</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>29</td>
<td>27</td>
<td>56</td>
</tr>
<tr>
<td>Total</td>
<td>33</td>
<td>30</td>
<td>63</td>
</tr>
</tbody>
</table>

The odds ratio is \(\frac{29}{3} = 9.67 \), which agrees with the value obtained from `mhodds`. In the more general \(1:m \) matched study, however, the Mantel–Haenszel methods are no longer equivalent to maximum conditional likelihood, although they are usually close.

To illustrate the use of the `by()` option in matched case–control studies, we look at the effect of exposure to estrogen, stratified by `age3`, which codes the sets into three age groups (55–64, 65–74, and 75+) as follows:

. use http://www.stata-press.com/data/r13/bdendo11, clear
. generate age3 = agegrp
. recode age3 1/2=1 3/4=2 5/6=3
 (age3: 124 changes made)
. mhodds fail est set, by(age3)

Mantel-Haenszel estimate of the odds ratio
Comparing est==1 vs. est==0, controlling for set
by age3

<table>
<thead>
<tr>
<th>age3</th>
<th>Odds Ratio</th>
<th>chi2(1)</th>
<th>P>chi2</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.000000</td>
<td>3.57</td>
<td>0.0588</td>
<td>0.72235 49.83724</td>
</tr>
<tr>
<td>2</td>
<td>15.000000</td>
<td>12.25</td>
<td>0.0005</td>
<td>1.98141 113.55557</td>
</tr>
<tr>
<td>3</td>
<td>8.000000</td>
<td>5.44</td>
<td>0.0196</td>
<td>1.00059 63.96252</td>
</tr>
</tbody>
</table>

Mantel-Haenszel estimate controlling for set and age3

<table>
<thead>
<tr>
<th>Odds Ratio</th>
<th>chi2(1)</th>
<th>P>chi2</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.666667</td>
<td>21.12</td>
<td>0.0000</td>
<td>2.944702 31.733072</td>
</tr>
</tbody>
</table>

Test of homogeneity of ORs (approx): `chi2(2) = 0.41`
`Pr>chi2 = 0.8128`
There is no further loss of information when we stratify by age3 because age was one of the matching variables.

The full set of matched controls can be used in the same way. For example, the effect of exposure to estrogen is obtained (using the full dataset) with

`. use http://www.stata-press.com/data/r13/bdendo, clear
. mhodds fail est set
Mantel-Haenszel estimate of the odds ratio
Comparing est==1 vs. est==0, controlling for set
note: only 58 of the 63 strata formed in this analysis contribute information about the effect of the explanatory variable

<table>
<thead>
<tr>
<th>Odds Ratio</th>
<th>chi2(1)</th>
<th>P>chi2</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.461538</td>
<td>31.16</td>
<td>0.0000</td>
<td>3.437773 20.826746</td>
</tr>
</tbody>
</table>

The effect of exposure to estrogen, stratified by age3, is obtained with

`. generate age3 =agegrp
. recode age3 1/2=1 3/4=2 5/6=3
(age3: 310 changes made)
. mhodds fail est set, by(age3)
Mantel-Haenszel estimate of the odds ratio
Comparing est==1 vs. est==0, controlling for set by age3
note: only 58 of the 63 strata formed in this analysis contribute information about the effect of the explanatory variable

<table>
<thead>
<tr>
<th>age3</th>
<th>Odds Ratio</th>
<th>chi2(1)</th>
<th>P>chi2</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.800000</td>
<td>3.38</td>
<td>0.0660</td>
<td>0.82165 17.57438</td>
</tr>
<tr>
<td>2</td>
<td>10.666667</td>
<td>18.69</td>
<td>0.0000</td>
<td>2.78773 40.81376</td>
</tr>
<tr>
<td>3</td>
<td>13.500000</td>
<td>9.77</td>
<td>0.0018</td>
<td>1.59832 114.02620</td>
</tr>
</tbody>
</table>

Mantel-Haenszel estimate controlling for set and age3

<table>
<thead>
<tr>
<th>Odds Ratio</th>
<th>chi2(1)</th>
<th>P>chi2</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.461538</td>
<td>31.16</td>
<td>0.0000</td>
<td>3.437773 20.826746</td>
</tr>
</tbody>
</table>

Test of homogeneity of ORs (approx): \(\chi^2(2) = 1.41\)
\[Pr>\chi^2 = 0.4943 \]

Video examples

Immediate commands in Stata: Computing incidence-rate ratios from summary data (iri)
Immediate commands in Stata: Computing risk ratios from summary data (csi)
Odds ratios for case–control data (cc)
Stratified analysis of case–control data (cc)
Immediate commands in Stata: Computing odds ratios from summary data (cci)
Stored results

ir and **iri** store the following in \(r() \):

<table>
<thead>
<tr>
<th>Scalars</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r(p))</td>
<td>one-sided (p)-value</td>
</tr>
<tr>
<td>(r(ird))</td>
<td>incidence-rate difference</td>
</tr>
<tr>
<td>(r(ub_{ird}))</td>
<td>lower bound of CI for (rdd)</td>
</tr>
<tr>
<td>(r(ub_{ird}))</td>
<td>upper bound of CI for (rdd)</td>
</tr>
<tr>
<td>(r(irr))</td>
<td>incidence-rate ratio</td>
</tr>
<tr>
<td>(r(1b_{irr}))</td>
<td>lower bound of CI for (irr)</td>
</tr>
<tr>
<td>(r(ub_{irr}))</td>
<td>upper bound of CI for (irr)</td>
</tr>
</tbody>
</table>

Scalars

- \(r(p) \): one-sided \(p \)-value
- \(r(ird) \): incidence-rate difference
- \(r(ub_{ird}) \): lower bound of CI for \(rdd \)
- \(r(ub_{ird}) \): upper bound of CI for \(rdd \)
- \(r(irr) \): incidence-rate ratio
- \(r(1b_{irr}) \): lower bound of CI for \(irr \)
- \(r(ub_{irr}) \): upper bound of CI for \(irr \)

Scalars

- \(r(p) \): two-sided \(p \)-value
- \(r(rd) \): risk difference
- \(r(1b_{rd}) \): lower bound of CI for \(rd \)
- \(r(ub_{rd}) \): upper bound of CI for \(rd \)
- \(r(rr) \): risk ratio
- \(r(1b_{rr}) \): lower bound of CI for \(rr \)
- \(r(ub_{rr}) \): upper bound of CI for \(rr \)
- \(r(or) \): odds ratio
- \(r(1b_{or}) \): lower bound of CI for \(or \)
- \(r(ub_{or}) \): upper bound of CI for \(or \)

Scalars

- \(r(p) \): two-sided \(p \)-value
- \(r(p1_exact) \): \(\chi^2 \) or one-sided exact significance
- \(r(p_exact) \): two-sided significance
- \(r(or) \): odds ratio
- \(r(1b_{or}) \): lower bound of CI for \(or \)
- \(r(ub_{or}) \): upper bound of CI for \(or \)
- \(r(afe) \): attributable (prev.) fraction among exposed
- \(r(1b_{afe}) \): lower bound of CI for \(afe \)

Scalars

- \(r(odds) \): odds
- \(r(1b_odds) \): lower bound for odds
- \(r(ub_odds) \): upper bound for odds
- \(r(chi2_hom) \): \(\chi^2 \) test of homogeneity

cs and csi store the following in \(r() \):

<table>
<thead>
<tr>
<th>Scalars</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r(p))</td>
<td>two-sided (p)-value</td>
</tr>
<tr>
<td>(r(rd))</td>
<td>risk difference</td>
</tr>
<tr>
<td>(r(1b_{rd}))</td>
<td>lower bound of CI for (rd)</td>
</tr>
<tr>
<td>(r(ub_{rd}))</td>
<td>upper bound of CI for (rd)</td>
</tr>
<tr>
<td>(r(afp))</td>
<td>attributable fraction for the population</td>
</tr>
<tr>
<td>(r(chi2_mh))</td>
<td>Mantel–Haenszel homogeneity (\chi^2) (ir only)</td>
</tr>
<tr>
<td>(r(ub_{afe}))</td>
<td>upper bound of CI for (afe)</td>
</tr>
</tbody>
</table>

Scalars

- \(r(p) \): two-sided \(p \)-value
- \(r(rd) \): risk difference
- \(r(1b_{rd}) \): lower bound of CI for \(rd \)
- \(r(ub_{rd}) \): upper bound of CI for \(rd \)
- \(r(afp) \): attributable fraction for the population
- \(r(chi2_mh) \): Mantel–Haenszel homogeneity \(\chi^2 \) (ir only)
- \(r(ub_{afe}) \): upper bound of CI for \(afe \)

Scalars

- \(r(p1_exact) \): 2-sided Fisher’s exact \(p \) (exact only)
- \(r(p_exact) \): one-sided Fisher’s exact \(p \) (exact only)
- \(r(df) \): degrees of freedom

Scalars

- \(r(odds) \): odds
- \(r(1b_odds) \): lower bound for odds
- \(r(ub_odds) \): upper bound for odds
- \(r(chi2_hom) \): \(\chi^2 \) test of homogeneity

cc and cci store the following in \(r() \):

<table>
<thead>
<tr>
<th>Scalars</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r(p))</td>
<td>two-sided (p)-value</td>
</tr>
<tr>
<td>(r(1b_{afe}))</td>
<td>lower bound of CI for (afe)</td>
</tr>
<tr>
<td>(r(chi2_bd))</td>
<td>Breslow–Day (\chi^2)</td>
</tr>
<tr>
<td>(r(df_bd))</td>
<td>degrees of freedom for Breslow–Day (\chi^2)</td>
</tr>
<tr>
<td>(r(chi2_t))</td>
<td>Tarone (\chi^2)</td>
</tr>
<tr>
<td>(r(df_t))</td>
<td>degrees of freedom for Tarone (\chi^2)</td>
</tr>
<tr>
<td>(r(chi2_t))</td>
<td>degrees of freedom for Tarone (\chi^2)</td>
</tr>
</tbody>
</table>

Scalars

- \(r(p) \): two-sided \(p \)-value
- \(r(p1_exact) \): \(\chi^2 \) or one-sided exact significance
- \(r(p_exact) \): two-sided significance
- \(r(or) \): odds ratio
- \(r(1b_{or}) \): lower bound of CI for \(or \)
- \(r(ub_{or}) \): upper bound of CI for \(or \)
- \(r(afe) \): attributable (prev.) fraction among exposed
- \(r(1b_{afe}) \): lower bound of CI for \(afe \)

Scalars

- \(r(odds) \): odds
- \(r(1b_odds) \): lower bound for odds
- \(r(ub_odds) \): upper bound for odds
- \(r(chi2_hom) \): \(\chi^2 \) test of homogeneity

tabodds stores the following in \(r() \):

<table>
<thead>
<tr>
<th>Scalars</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r(odds))</td>
<td>odds</td>
</tr>
<tr>
<td>(r(1b_odds))</td>
<td>lower bound for odds</td>
</tr>
<tr>
<td>(r(ub_odds))</td>
<td>upper bound for odds</td>
</tr>
<tr>
<td>(r(chi2_hom))</td>
<td>(\chi^2) test of homogeneity</td>
</tr>
</tbody>
</table>

Scalars

- \(r(odds) \): odds
- \(r(1b_odds) \): lower bound for odds
- \(r(ub_odds) \): upper bound for odds
- \(r(chi2_hom) \): \(\chi^2 \) test of homogeneity

Scalars

- \(r(p_hom) \): \(p \)-value for test of homogeneity
- \(r(df_hom) \): degrees of freedom for \(\chi^2 \) test of homogeneity
- \(r(chi2_tr) \): \(\chi^2 \) for score test for trend
- \(r(p_trend) \): \(p \)-value for score test for trend
mhoods stores the following in r():

 Scalars

 - \(r(p) \): two-sided \(p \)-value
 - \(r(or) \): odds ratio
 - \(r(lb_or) \): lower bound of CI for or
 - \(r(ub_or) \): upper bound of CI for or
 - \(r(chi2_hom) \): \(\chi^2 \) test of homogeneity
 - \(r(df_hom) \): degrees of freedom for \(\chi^2 \) test of homogeneity
 - \(r(chi2) \): \(\chi^2 \)

mcci and mcci store the following in r():

 Scalars

 - \(r(p_exact) \): two-sided significance
 - \(r(or) \): odds ratio
 - \(r(lb_or) \): lower bound of CI for or
 - \(r(ub_or) \): upper bound of CI for or
 - \(r(D_f) \): difference in proportion with factor
 - \(r(lb_D_f) \): lower bound of CI for \(D_f \)
 - \(r(ub_D_f) \): upper bound of CI for \(D_f \)
 - \(r(RD_f) \): relative difference in proportion with factor
 - \(r(lb_RD_f) \): lower bound of CI for \(RD_f \)
 - \(r(ub_RD_f) \): upper bound of CI for \(RD_f \)
 - \(r(chi2) \): \(\chi^2 \)

Methods and formulas

The notation for incidence-rate data is

<table>
<thead>
<tr>
<th>Exposed</th>
<th>Unexposed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Person-time</td>
<td>(N_1)</td>
<td>(N_0)</td>
</tr>
</tbody>
</table>

The notation for \(2 \times 2 \) tables is

<table>
<thead>
<tr>
<th>Exposed</th>
<th>Unexposed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Controls</td>
<td>(c)</td>
<td>(d)</td>
</tr>
<tr>
<td>Total</td>
<td>(N_1)</td>
<td>(N_0)</td>
</tr>
</tbody>
</table>

The notation for \(2 \times k \) tables is

<table>
<thead>
<tr>
<th>Exposure level</th>
<th>1</th>
<th>2</th>
<th>\ldots</th>
<th>(k)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>(a_1)</td>
<td>(a_2)</td>
<td>\ldots</td>
<td>(a_k)</td>
<td>(M_1)</td>
</tr>
<tr>
<td>Controls</td>
<td>(c_1)</td>
<td>(c_2)</td>
<td>\ldots</td>
<td>(c_k)</td>
<td>(M_0)</td>
</tr>
<tr>
<td>Total</td>
<td>(N_1)</td>
<td>(N_2)</td>
<td>\ldots</td>
<td>(N_k)</td>
<td>(T)</td>
</tr>
</tbody>
</table>

If the tables are stratified, all quantities are indexed by \(i \), the stratum number.

We will refer to Fleiss, Levin, and Paik (2003); Kleinbaum, Kupper, and Morgenstern (1982); and Rothman (1986) so often that we will adopt the notation F-23 to mean Fleiss, Levin, and Paik (2003) page 23; KKM-52 to mean Kleinbaum, Kupper, and Morgenstern (1982) page 52; and R-164 to mean Rothman (1986) page 164.
We usually avoid making the continuity corrections to χ^2 statistics, following the advice of KKM: \(\ldots\) the use of a continuity correction has been the subject of considerable debate in the statistical literature \ldots On the basis of our evaluation of this debate and other evidence, we do not recommend the use of the continuity correction." Breslow and Day (1980, 133), on the other hand, argue for inclusion of the correction, but not strongly. Their summary is that for small datasets, one should use exact statistics. In practice, we believe that the adjustment makes little difference for reasonably sized datasets.

Methods and formulas are presented under the following headings:

- Unstratified incidence-rate data (ir and iri)
- Unstratified cumulative incidence data (cs and csi)
- Unstratified case–control data (cc and cci)
- Unstratified matched case–control data (mcc and mcni)
- Stratified incidence-rate data (ir with the by() option)
- Stratified cumulative incidence data (cs with the by() option)
- Stratified case–control data (cc with by() option, mhodds, tabodds)

Unstratified incidence-rate data (ir and iri)

The incidence-rate difference is defined as \(I_d = a/N_1 - b/N_0\) (R-164). The standard error of the difference is \(s_{I_d} \approx \sqrt{a/N_1^2 + b/N_0^2}\) (R-170), from which confidence intervals are calculated. For test-based confidence intervals (obtained with the \(tb\) option), define

\[
\chi = \frac{a - N_1 M_1 / T}{\sqrt{M_1 N_1 N_0 / T^2}}
\]

(R-155). Test-based confidence intervals are \(I_d (1 \pm z/\chi)\) (R-171), where \(z\) is obtained from the normal distribution.

The incidence-rate ratio is defined as \(I_r = (a/N_1)/(b/N_0)\) (R-164). Let \(p_l\) and \(p_u\) be the exact confidence interval of the binomial probability for observing \(a\) successes in \(M_1\) trials (obtained from cii; see [R] cii). The exact confidence interval for the incidence ratio is then \((p_l N_0)/\{(1 - p_l) N_1\}\) to \((p_u N_0)/\{(1 - p_u) N_1\}\) (R-166). Test-based confidence intervals are \(I_r^{1 \pm z/\chi}\) (R-172).

The attributable fraction among the exposed is defined as \(AFE = (I_r - 1)/I_r\) for \(I_r \geq 1\) (KKM-164; R-38); the confidence interval is obtained by similarly transforming the interval values of \(I_r\). The attributable fraction for the population is \(AF = AFE \cdot a/M_1\) (KKM-161); no confidence interval is reported. For \(I_r < 1\), the prevented fraction among the exposed is defined as \(PFE = 1 - I_r\) (KKM-166; R-39); the confidence interval is obtained by similarly transforming the interval values of \(I_r\). The prevented fraction for the population is \(PF = PFE \cdot N_1 / T\) (KKM-165); no confidence interval is reported.

The “midp” one-sided exact significance (R-155) is calculated as the binomial probability (with \(n = M_1\) and \(p = N_1 / T\)) \(Pr(k = a)/2 + Pr(k > a)\) if \(I_r \geq 1\) and \(Pr(k = a)/2 + Pr(k < a)\) otherwise. The two-sided significance is twice the one-sided significance (R-155). If preferred, you can obtain nondmidp exact probabilities (and, to some ways of thinking, a more reasonable definition of two-sided significance) using \texttt{bitest}; see [R] \texttt{bitest}.
Unstratified cumulative incidence data (cs and csi)

The risk difference is defined as \(R_d = a/N_1 - b/N_0 \) (R-164). Its standard error is

\[
s_{R_d} \approx \left\{ \frac{ac}{N_1^3} + \frac{bd}{N_0^3} \right\}^{1/2}
\]

(R-172), from which confidence intervals are calculated. For test-based confidence intervals (obtained with the \(\text{tb} \) option), define

\[
\chi = \frac{a - N_1 M_1 / T}{\sqrt{(M_1 M_0 N_1 N_0) / \{T^2 (T - 1)\}}}
\]

(R-163). Test-based confidence intervals are \(R_d (1 \pm z/\chi) \) (R-172).

The risk ratio is defined as \(R_r = (a/N_1) / (b/N_0) \) (R-165). The standard error of \(\ln R_r \) is

\[
s_{\ln R_r} \approx \left(\frac{c}{a N_1} + \frac{d}{b N_0} \right)^{1/2}
\]

(R-173), from which confidence intervals are calculated. Test-based confidence intervals are \(R_r^{1 \pm z/\chi} \) (R-173).

For \(R_r \geq 1 \), the attributable fraction among the exposed is calculated as \(AFE = (R_r - 1) / R_r \) (KKM-164; R-38); the confidence interval is obtained by similarly transforming the interval values for \(R_r \). The attributable fraction for the population is calculated as \(AF = AFE \cdot a/M_1 \) (KKM-161); no confidence interval is reported, but F-128 provides

\[
\left\{ \frac{c + (a + d) AF}{b T} \right\}^{1/2}
\]
as the approximate standard error of \(\ln(1 - AF) \).

For \(R_r < 1 \), the prevented fraction among the exposed is calculated as \(PFE = 1 - R_r \) (KKM-166; R-39); the confidence interval is obtained by similarly transforming the interval values for \(R_r \). The prevented fraction for the population is calculated as \(PF = PFE \cdot N_1 / T \); no confidence interval is reported.

The odds ratio, available with the \(\text{or} \) option, is defined as \(\psi = (ad)/(bc) \) (R-165). Several confidence intervals are available. The default interval for cs and csi is the Cornfield (1956) approximate interval. If we let \(z_\alpha \) be the index from a normal distribution for an \(\alpha \) significance level, the Cornfield interval \((\psi_l, \psi_u) \) is calculated from

\[
\psi_l = a_l (M_0 - N_1 + a_l) / \left\{ (N_1 - a_l) (M_1 - a_l) \right\}
\]
\[
\psi_u = a_u (M_0 - N_1 + a_u) / \left\{ (N_1 - a_u) (M_1 - a_u) \right\}
\]

where \(a_u \) and \(a_l \) are determined iteratively from

\[
a_{i+1} = a \pm z_\alpha \left(\frac{1}{a_i} + \frac{1}{N_1 - a_i} + \frac{1}{M_1 - a_i} + \frac{1}{M_0 - N_1 + a_i} \right)^{-1/2}
\]
a_{i+1} converges to \(a_u \) using the plus sign and \(a_l \) using the minus sign. \(a_0 \) is taken as \(a \). With small numbers, the iterative technique may fail. It is then restarted by decrementing \((a_l) \) or incrementing \((a_u) \) \(a_0 \). If that fails, \(a_0 \) is again decremented or incremented and iterations restarted, and so on, until a terminal condition is met (\(a_0 < 0 \) or \(a_0 > M_1 \)), at which point the value is not calculated.

Two other odds-ratio confidence intervals are available with \(cs \) and \(csi \): the Woolf and test-based intervals. The Woolf method (Woolf 1955; R-173; Schlesselman 1982, 176), available with the \texttt{woolf} option, estimates the standard error of \(\ln \psi \) by

\[
s \ln \psi = \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} \right)^{1/2}
\]

from which confidence intervals are calculated. The Woolf interval cannot be calculated when there exists a zero cell. Sometimes the Woolf interval is called the “logit interval” (Breslow and Day 1980, 134).

Test-based intervals are available with the \texttt{tb} option; the formula used is \(\psi^{1 \pm z/\chi} \) (R-174).

The \(\chi^2 \) statistic, reported by default, can be calculated as

\[
\chi^2 = \frac{(ad - bc)^2 T}{M_0 M_1 N_1 N_0}
\]

(Schlesselman 1982, 179).

Fisher’s exact test, available with the \texttt{exact} option, is calculated as described in [R] tabulate \texttt{twoway}.

\section*{Unstratified case–control data (cc and cci)}

\texttt{cc} and \texttt{cci} report by default the same odds ratio, \(\psi \), that is available with the \texttt{or} option in \texttt{cs} and \texttt{csi}. But \texttt{cc} and \texttt{cci} calculate the confidence interval differently: they default to the exact odds-ratio interval, not the Cornfield interval, but you can request the Cornfield interval with the \texttt{cornfield} option. The \(1 - \alpha \) exact interval \((R, \bar{R})\) is calculated from

\[
\alpha/2 = \frac{\sum_{k=a}^{\min(N_1, M_1)} \binom{N_1}{k} \binom{N_0}{M_1-k} \frac{R^k}{M_1 M_0 N_1 N_0}}{\sum_{k=\max(0, M_1 - N_0)}^{\min(N_1, M_1)} \binom{N_1}{k} \binom{N_0}{M_1-k} \frac{R^k}{M_1 M_0 N_1 N_0}}
\]

and

\[
1 - \alpha/2 = \frac{\sum_{k=a+1}^{\min(N_1, M_1)} \binom{N_1}{k} \binom{N_0}{M_1-k} \frac{\bar{R}^k}{M_1 M_0 N_1 N_0}}{\sum_{k=\max(0, M_1 - N_0)}^{\min(N_1, M_1)} \binom{N_1}{k} \binom{N_0}{M_1-k} \frac{\bar{R}^k}{M_1 M_0 N_1 N_0}}
\]

(R-169). The equations invert two one-sided Fisher exact tests.

\texttt{cc} and \texttt{cci} also report the same tests of significance as \texttt{cs} and \texttt{csi}: the \(\chi^2 \) statistic is the default, and Fisher’s exact test is obtained with the \texttt{exact} option. The odds ratio, \(\psi \), is used as an estimate of the risk ratio in calculating attributable or prevented fractions. For \(\psi \geq 1 \), the attributable fraction among the exposed is calculated as

\[
AFE = (\psi - 1)/\psi \quad \text{(KKM-164)};
\]

the confidence interval is obtained by similarly transforming the interval values for \(\psi \). The attributable fraction for the population is calculated as

\[
AF = AFE \cdot a/M_1 \quad \text{(KKM-161)}.
\]

No confidence interval is reported; however, F-152 provides

\[
\left(\frac{a}{M_1 b} + \frac{c}{M_0 d} \right)^{1/2}
\]

as the standard error of \(\ln(1 - AF) \).
For $\psi < 1$, the prevented fraction among the exposed is calculated as $PFE = 1 - \psi$ (KKM-166); the confidence interval is obtained by similarly transforming the interval values for ψ. The prevented fraction for the population is calculated as $PF = \{(a/M_1)PFE\}/\{(a/M_1)PFE + \psi\}$ (KKM-165); no confidence interval is reported.

Unstratified matched case–control data (mcc and mcci)

Referring to the table at the beginning of *Methods and formulas*, the columns of the 2×2 table indicate controls; the rows are cases. Each entry in the table reflects a pair of a matched case and control.

McNemar’s (1947) χ^2 is defined as

$$\chi^2 = \frac{(b - c)^2}{b + c}$$

(KKM-389).

The proportion of controls with the factor is $p_1 = N_1/T$, and the proportion of cases with the factor is $p_2 = M_1/T$.

The difference in the proportions is $P_d = p_2 - p_1$. An estimate of its standard error when the two underlying proportions are *not* hypothesized to be equal is

$$s_{P_d} \approx \frac{((a + d)(b + c) + 4bc)^{1/2}}{T^{3/2}}$$

(R-378), from which confidence intervals are calculated. The confidence interval uses a continuity correction (R-378, eq. 13.15).

The ratio of the proportions is $P_r = p_2/p_1$ (R-276, R-278). The standard error of $\ln P_r$ is

$$s_{\ln P_r} \approx \left(\frac{b + c}{M_1N_1}\right)^{1/2}$$

(R-276), from which confidence intervals are calculated.

The relative difference in the proportions is $P_e = (b - c)/(b + d)$ (F-379). Its standard error is

$$s_{P_e} \approx (b + d)^{-2} \left\{(b + c + d)(bc + bd + cd) - bcd\right\}^{1/2}$$

(F-379), from which confidence intervals are calculated.

The odds ratio is $\psi = b/c$ (F-376), and the exact Fisher confidence interval is obtained by transforming into odds ratios the exact binomial confidence interval for the binomial parameter from observing b successes in $b + c$ trials (R-264). Binomial confidence limits are obtained from ci (see [R] ci) and are transformed by $p/(1 - p)$. Test-based confidence intervals are $\psi^{1\pm z/\chi}$ (R-267), where $\chi = (b - c)/\sqrt{b + c}$ is the square root of McNemar’s χ^2.

The exact McNemar significance probability is a two-tailed exact test of $H_0: \psi = 1$. The p-value, calculated from the binomial distribution, is
Stratified incidence-rate data (ir with the by() option)

Statistics presented for each stratum are calculated independently according to the formulas in Unstratified incidence-rate data (ir and iri) above. Within strata, the Mantel–Haenszel style weight is

$$W_i = \frac{b_i N_{1i}}{T_i},$$

and the Mantel–Haenszel combined incidence-rate ratio (Rothman and Boice 1982) is

$$I_{mh} = \frac{\sum_i a_i N_{0i}/T_i}{\sum_i W_i}$$

(R-196). The standard error for the log of the incidence-rate ratio was derived by Greenland and Robins (1985, 63) and appears in R-213:

$$s \ln I_{mh} \approx \left\{ \frac{\sum_i M_{1i} N_{1i} N_{0i}/T_i^2}{(\sum_i a_i N_{0i}/T_i)(\sum_i b_i N_{1i}/T_i)} \right\}^{1/2}$$

The confidence interval is calculated first on the log scale and then is transformed.

For standardized rates, let w_i be the user-specified weight within stratum i. The standardized rate difference (the ird option) and rate ratio are defined as

$$SRD = \frac{\sum_i w_i (R_{1i} - R_{0i})}{\sum_i w_i}$$

$$SRR = \frac{\sum_i w_i R_{1i}}{\sum_i w_i R_{0i}}$$

(R-229). The standard error of SRD is

$$s_{SRD} \approx \left\{ \frac{1}{(\sum_i w_i)^2} \sum_i w_i^2 \left(\frac{a_i}{N_{1i}} + \frac{b_i}{N_{0i}} \right) \right\}^{1/2}$$

(R-231), from which confidence intervals are calculated. The standard error of $\ln(SRR)$ is

$$s \ln(SRR) \approx \left\{ \frac{\sum_i w_i^2 a_i/N_{1i}^2}{(\sum_i w_i R_{1i})^2} + \frac{\sum_i w_i^2 b_i/N_{0i}^2}{(\sum_i w_i R_{0i})^2} \right\}^{1/2}$$

(R-231), from which confidence intervals are calculated.

Internally and externally standardized measures are calculated using $w_i = N_{1i}$ and $w_i = N_{0i}$, respectively, and are obtained with the istandard and estandard options, respectively.
Directly pooled estimates are available with the pool option. The directly pooled estimate is a weighted average of stratum-specific estimates; each weight, \(w_i \), is inversely proportional to the variance of the estimate for stratum \(i \). The variances for rate differences come from the formulas in Unstratified incidence-rate data (ir and iri), while the variances of log rate-ratios are estimated by \((1/a_i + 1/b_i) \) (R-184). Ratios are averaged in the log scale before being exponentiated. The standard error of the directly pooled estimate is calculated as \(1/\sqrt{\sum w_i} \), from which confidence intervals are calculated (R-183–185); the calculation for ratios again uses the log scale.

For rate differences, the \(\chi^2 \) test of homogeneity is calculated as \(\sum (R_{di} - \hat{R}_d)^2 / \text{var}(R_{di}) \), where \(R_{di} \) are the stratum-specific rate differences and \(\hat{R}_d \) is the directly pooled estimate. The number of degrees of freedom is one less than the number of strata (R-222).

For rate ratios, the same calculation is made, except that it is made on a logarithmic scale using \(\ln(R_{ri}) \) (R-222), and \(\ln(\hat{R}_d) \) may be the log of either the directly pooled estimate or the Mantel–Haenszel estimate.

Stratified cumulative incidence data (cs with the by() option)

Statistics presented for each stratum are calculated independently according to the formulas in Unstratified cumulative incidence data (cs and csi) above. The Mantel–Haenszel \(\chi^2 \) test (Mantel and Haenszel 1959) is

\[
\chi^2_{mh} = \frac{\left\{ \sum_i (a_i - N_{1i}M_{1i}/T_i) \right\}^2}{\sum_i (N_{1i}N_{0i}M_{1i}M_{0i})/\left\{ T_i^2 (T_i - 1) \right\}}
\]

(R-206).

For the odds ratio (available with the or option), the Mantel–Haenszel weight is \(W_i = b_i c_i / T_i \), and the combined odds ratio (Mantel and Haenszel 1959) is

\[
\psi_{mh} = \frac{\sum_i a_i d_i / T_i}{\sum_i W_i}
\]

(R-195). The standard error (Robins, Breslow, and Greenland 1986) is

\[
s \ln \psi_{mh} \approx \left\{ \frac{\sum_i P_i R_i}{2 (\sum_i R_i)^2} + \frac{\sum_i P_i S_i + Q_i R_i}{2 \sum_i R_i \sum_i S_i} + \frac{\sum_i Q_i S_i}{2 (\sum_i S_i)^2} \right\}^{1/2}
\]

where

\[
P_i = (a_i + d_i) / T_i
\]

\[
Q_i = (b_i + c_i) / T_i
\]

\[
R_i = a_i d_i / T_i
\]

\[
S_i = b_i c_i / T_i
\]

(R-220). Alternatively, test-based confidence intervals are calculated as \(\psi_{mh}^{1+\pm z/\chi} \) (R-220).

For the risk ratio (the default), the Mantel–Haenszel-style weight is \(W_i = b_i N_{1i} / T_i \), and the combined risk ratio (Rothman and Boice 1982) is

\[
R_{mh} = \frac{\sum_i a_i N_{0i} / T_i}{\sum_i W_i}
\]

(R-196). The standard error (Greenland and Robins 1985) is
Stratified case–control data (cc with by() option, mhodds, tabodds)

\[
s \ln R_{mh} \approx \left\{ \frac{\sum_i (M_{1i}N_{1i}N_{0i} - a_ib_iT_i)/T_i^2}{\left(\sum_i a_iN_{0i}/T_i \right) \left(\sum_i b_iN_{1i}/T_i \right)} \right\}^{1/2}
\]

(R-216), from which confidence intervals are calculated.

For standardized rates, let \(w_i \) be the user-specified weight within stratum \(i \). The standardized rate difference (SRD, the \texttt{rd} option) and rate ratios (SRR, the default) are defined as in Stratified incidence-rate data (ir with the by() option), where the individual risks are defined \(R_{1i} = a_i/N_{1i} \) and \(R_{0i} = b_i/N_{0i} \). The standard error of SRD is

\[
s_{\text{SRD}} \approx \left[\frac{1}{(\sum_i w_i)^2} \sum_i w_i^2 \left\{ a_i(N_{1i} - a_i)/N_{1i}^3 + b_i(N_{0i} - b_i)/N_{0i}^3 \right\} \right]^{1/2}
\]

(R-231), from which confidence intervals are calculated. The standard error of \(\ln(\text{SRR}) \) is

\[
s \ln(\text{SRR}) \approx \left\{ \frac{\sum_i w_i^2a_i(N_{1i} - a_i)/N_{1i}^3}{(\sum_i w_iR_{1i})^2} + \frac{\sum_i w_i^2b_i(N_{0i} - b_i)/N_{0i}^3}{(\sum_i w_iR_{0i})^2} \right\}^{1/2}
\]

(R-231), from which confidence intervals are calculated.

Internally and externally standardized measures are calculated using \(w_i = N_{1i} \) and \(w_i = N_{0i} \), respectively, and are obtained with the \texttt{istandard} and \texttt{estandard} options, respectively.

Directly pooled estimates of the odds ratio are available when you specify both the \texttt{pool1} and \texttt{or} options. The directly pooled estimate is a weighted average of stratum-specific log odds-ratios; each weight, \(w_i \), is inversely proportional to the variance of the log odds-ratio for stratum \(i \). The variances of the log odds-ratios are estimated by Woolf’s method, described under Unstratified cumulative incidence data (cs and csi). The standard error of the directly pooled log odds-ratio is calculated as \(1/\sqrt{\sum w_i} \), from which confidence intervals are calculated and then exponentiated (Kahn and Semos 1989, 113–115).

Direct pooling is also available for risk ratios and risk differences; the variance formulas may be found in Unstratified cumulative incidence data (cs and csi). The directly pooled risk ratio is provided when the \texttt{pool1} option is specified. The directly pooled risk difference is provided only when you specify the \texttt{pool1} and \texttt{rd} options, and one of the \texttt{estandard}, \texttt{istandard}, and \texttt{standard()} options.

For risk differences, the \(\chi^2 \) test of homogeneity is calculated as \(\sum (R_{di} - \hat{R}_d)^2/\text{var}(R_{di}) \), where \(R_{di} \) are the stratum-specific risk differences and \(\hat{R}_d \) is the directly pooled estimate. The number of degrees of freedom is one less than the number of strata (R-222).

For risk and odds ratios, the same calculation is made, except that it is made in the log scale using \(\ln(R_{ri}) \) or \(\ln(\psi_i) \) (R-222), and \(\ln(\hat{R}_d) \) may be the log of either the directly pooled estimate or the Mantel–Haenszel estimate.

Stratified case–control data (cc with by() option, mhodds, tabodds)

Statistics presented for each stratum are calculated independently according to the formulas in Unstratified cumulative incidence data (cs and csi) above. The combined odds ratio, \(\psi_{mh} \), and the test that \(\psi_{mh} = 1 (\chi^2_{mh}) \) are calculated as described in Stratified cumulative incidence data (cs with the by() option) above.
For standardized weights, let \(w_i \) be the user-specified weight within stratum \(i \). The standardized odds ratio (the `standard()` option) is calculated as

\[
\text{SOR} = \frac{\sum_i w_i a_i / c_i}{\sum_i w_i b_i / d_i}
\]

(Greenland 1986, 473). The standard error of \(\ln(\text{SOR}) \) is

\[
s_{\ln(\text{SOR})} = \left\{ \frac{\sum_i (w_i a_i / c_i)^2 \left(\frac{1}{a_i} + \frac{1}{b_i} + \frac{1}{c_i} + \frac{1}{d_i} \right)}{(\sum_i w_i a_i / c_i)^2} \right\}^{1/2}
\]

from which confidence intervals are calculated. The internally and externally standardized odds ratios are calculated using \(w_i = c_i \) and \(w_i = d_i \), respectively.

The directly pooled estimate of the odds ratio (the `pool` option) is calculated as described in Stratified cumulative incidence data (cs with the `by()` option) above.

The directly pooled and Mantel–Haenszel \(\chi^2 \) tests of homogeneity are calculated as

\[
\sum_i \left\{ \ln(R_{ri}) - \ln(\hat{R}_r) \right\}^2 / \text{var}\{\ln(R_{ri})\},
\]

where \(R_{ri} \) are the stratum-specific odds ratios and \(\hat{R}_r \) is the pooled estimate (Mantel–Haenszel or directly pooled). The number of degrees of freedom is one less than the number of strata (R-222).

The Breslow–Day \(\chi^2 \) test of homogeneity is available with the `bd` option. Let \(\hat{\psi} \) be the Mantel–Haenszel estimate of the common odds ratio, and let \(A_i(\hat{\psi}) \) be the fitted count for cell \(a; A_i(\hat{\psi}) \) is found by solving the quadratic equation

\[
A(M_0 - N_1 + A) = (\hat{\psi})(M_1 - A)(N_1 - A)
\]

and choosing the root that makes all cells in stratum \(i \) positive. Let \(\text{Var}(a_i; \hat{\psi}) \) be the estimated variance of \(a_i \) conditioned on the margins and on an odds ratio of \(\hat{\psi} \):

\[
\text{Var}(a_i; \hat{\psi}) = \left\{ \frac{1}{A_i(\hat{\psi})} + \frac{1}{M_{1i} - A_i(\hat{\psi})} + \frac{1}{N_{1i} - A_i(\hat{\psi})} + \frac{1}{M_{0i} - N_{1i} + A_i(\hat{\psi})} \right\}^{-1}
\]

The Breslow–Day \(\chi^2 \) statistic is then

\[
\sum_i \left\{ \frac{a_i - A_i(\hat{\psi})}{\text{Var}(a_i; \hat{\psi})} \right\}^2
\]

The Tarone \(\chi^2 \) test of homogeneity (the `tarone` option) is calculated as

\[
\sum_i \left\{ \frac{a_i - A_i(\hat{\psi})}{\text{Var}(a_i; \hat{\psi})} \right\}^2 \frac{\left\{ \sum_i a_i - \sum_i A_i(\hat{\psi}) \right\}^2}{\sum_i \text{Var}(a_i; \hat{\psi})}
\]

Tarone (1985) provides this correction to the Breslow–Day statistic to ensure that its distribution is asymptotically chi-squared. Without the correction, the Breslow–Day statistic does not necessarily follow a chi-squared distribution because it is based on the Mantel–Haenszel estimate, \(\hat{\psi} \), which is an inefficient estimator of the common odds ratio.
When the exposure variable has multiple levels, `mhodds` calculates an approximate estimate of the log odds-ratio for a one-unit increase in exposure as the ratio of the score statistic, U, to its variance, V (Clayton and Hills 1993, 103), which are defined below. This is a one-step Newton-Raphson approximation to the maximum likelihood estimate. Within-stratum estimates are combined with Mantel–Haenszel weights.

By default, both `tabodds` and `mhodds` produce test statistics and confidence intervals based on score statistics (Clayton and Hills 1993). `tabodds` reports confidence intervals for the odds of the ith exposure level, unless the `adjust()` or `or` option is specified. The confidence interval for odds$_i$, $i = 1, \ldots, k$, is given by

$$\text{odds}_i \cdot \exp \left(\pm z \sqrt{1/a_i + 1/c_i} \right)$$

The score χ^2 test of homogeneity of odds is calculated as

$$\chi^2_{k-1} = \frac{T(T-1)}{M_1M_0} \sum_{i=1}^k \frac{(a_i - E_i)^2}{N_i}$$

where $E_i = (M_1N_i)/T$.

Let l_i denote the value of the exposure at the ith level. The score χ^2 test for trend of odds is calculated as

$$\chi^2_1 = \frac{U^2}{V}$$

where

$$U = \frac{M_1M_0}{T} \left(\sum_{i=1}^k \frac{a_i l_i}{M_1} - \sum_{i=1}^k \frac{c_i l_i}{M_0} \right)$$

and

$$V = \frac{M_1M_0}{T} \left\{ \sum_{i=1}^k \frac{N_i l_i^2}{M_1} - \left(\sum_{i=1}^k \frac{N_i l_i}{M_1} \right)^2 / (T-1) \right\}$$

Acknowledgments

We thank Hal Morgenstern of the Department of Epidemiology at the University of Michigan, Ardythe Morrow of the Cincinnati Children’s Hospital, and the late Stewart West of Baylor College of Medicine for their assistance in designing these commands.

We thank the late Jonathan Freeman at the Department of Epidemiology at Harvard School of Public Health for encouraging us to extend these commands to include tests for homogeneity, for helpful comments on the default behavior of the commands, and for his comments on an early draft of this section.

We thank David Clayton of the Cambridge Institute for Medical Research and Michael Hills (retired) of the London School of Hygiene and Tropical Medicine, who wrote the original versions of `mhodds` and `tabodds`.

Finally, we thank William Dupont and Dale Plummer, both at the Department of Biostatistics, Vanderbilt University, for their contribution to the implementation of exact confidence intervals for the odds ratios for cc and cci.
John Snow (1813–1858) was born in York, England. From age 14, he worked as an apprentice and assistant to surgeons in northeast England and Yorkshire. In 1836, Snow moved to London; he was admitted to the Royal College of Surgeons in 1838 and the Royal College of Physicians in 1850. He made outstanding contributions to the adoption of anesthesia and is considered one of the originators of modern epidemiology. Snow died following a stroke in 1858.

Snow calculated dosages for ether and chloroform. He personally administered chloroform to Queen Victoria for the births of her last two children, which helped obstetric anesthesia gain wider acceptance.

Snow was skeptical of the miasma theory that cholera was caused by foul air. His essay On the Mode of Communication of Cholera was first published in 1849 and then greatly enlarged in 1855 with the results of his very detailed investigation of the role of water supply in the epidemic of 1854 in the Soho district of London. Snow identified the source of the outbreak as the public water pump on Broad Street (now Broadwick Street), leading the local council to remove the pump handle. It was later discovered that the well had been dug very close to an old cesspit. He also mapped the clustering of cholera cases around the pump and related mortality to water sources, clearly showing higher death rates in areas supplied by the Southwark and Vauxhall Waterworks Company, who were taking water from sewage-polluted sections of the River Thames. Snow’s study is widely regarded as a pioneer in public health, epidemiology, and medical geography.

Janet Elizabeth Lane-Claypon (1877–1967) was a pioneer in the use of cohort and case–control studies. She was born in Lincolnshire county, England, and began her studies at the London School of Medicine for Women in 1898. From 1907 to 1912, she was at the Lister Institute of Preventive Medicine, where she was a colleague of Major Greenwood. By the end of her studies, she had obtained a doctorate in both physiology and medicine.

In 1912, Lane-Claypon published one of the first retrospective cohort studies, examining the weight gain of babies fed cow’s milk versus babies fed breast milk. Using statistical techniques, she determined that babies fed breast milk gained weight faster; she later employed that knowledge to become a public health advocate for breast feeding.

She also conducted one of the first case–control studies, examining risk factors associated with breast cancer. Her study included 500 women without breast cancer and 500 women with breast cancer. To obtain what was at the time a remarkably large sample, she coordinated data collection from nine different hospitals. Carefully controlling for variables including occupation and infant mortality, she determined that factors like age at first pregnancy, age at menopause, and number of children all influence the incidence of breast cancer; these factors are still considered to be among the prime determinants.

In conjunction with the Ministry of Health, in 1926 Lane-Claypon published one of the first studies to contain long-term follow-up results. In that study, she followed patients who had undergone surgery for breast cancer for up to 10 years after the operation. As is still the case today, her study showed that the sooner the cancer was treated, the better the woman’s chance for long-term survival. Notably, her study was also among the first to consider survivorship bias.
References

Also see

[ST] **stcox** — Cox proportional hazards model

[R] **bitest** — Binomial probability test

[R] **ci** — Confidence intervals for means, proportions, and counts

[R] **clogit** — Conditional (fixed-effects) logistic regression

[R] **dstdize** — Direct and indirect standardization

[R] **glogit** — Logit and probit regression for grouped data

[R] **logistic** — Logistic regression, reporting odds ratios

[R] **poisson** — Poisson regression

[R] **symmetry** — Symmetry and marginal homogeneity tests

[R] **tabulate twoway** — Two-way table of frequencies

[ST] **Glossary**
Syntax

\texttt{ltable timevar [deadvar] [if] [in] [weight] [, options]}

\textbf{options} \hspace{1cm} \textbf{Description}

\begin{itemize}
\item \texttt{notable} \hspace{1cm} display graph only; suppress display of table
\item \texttt{graph} \hspace{1cm} present the table graphically, as well as in tabular form
\item \texttt{by(groupvar)} \hspace{1cm} produce separate tables (or graphs) for each value of \texttt{groupvar}
\item \texttt{test} \hspace{1cm} report χ^2 measure of differences between groups (2 tests)
\item \texttt{overlay} \hspace{1cm} overlay plots on the same graph
\item \texttt{survival} \hspace{1cm} display survival table; the default
\item \texttt{failure} \hspace{1cm} display cumulative failure table
\item \texttt{hazard} \hspace{1cm} display hazard table
\item \texttt{level(\#)} \hspace{1cm} set confidence level; default is \texttt{level(95)}
\item \texttt{noadjust} \hspace{1cm} suppress actuarial adjustment for deaths and censored observations
\item \texttt{tvid(varname)} \hspace{1cm} subject ID variable to use with time-varying parameters
\item \texttt{intervals(w|numlist)} \hspace{1cm} time intervals in which data are to be aggregated for tables
\item \texttt{saving(filename[, replace])} \hspace{1cm} save the life-table data to \texttt{filename}; use \texttt{replace} to overwrite existing \texttt{filename}
\end{itemize}

\textbf{Plot}

\begin{itemize}
\item \texttt{plotopts(plot_options)} \hspace{1cm} affect rendition of the plotted line and plotted points
\item \texttt{plot#opts(plot_options)} \hspace{1cm} affect rendition of the \#th plotted line and plotted points; available only with \texttt{overlay}
\item \texttt{ciplot opts(rspike_options)} \hspace{1cm} affect rendition of the confidence intervals
\item \texttt{ci#opts(rspike_options)} \hspace{1cm} affect rendition of the \#th confidence interval; available only with \texttt{overlay}
\end{itemize}

\textbf{Add plots}

\begin{itemize}
\item \texttt{addplot(plot)} \hspace{1cm} add other plots to the generated graph
\end{itemize}

\textbf{Y axis, X axis, Titles, Legend, Overall}

\texttt{twoway_options} \hspace{1cm} any options other than \texttt{by()} documented in \texttt{[G-3 twoway_options}}

\texttt{byopts(byopts)} \hspace{1cm} how subgraphs are combined, labeled, etc.
Description

`ltable` displays and graphs life tables for individual-level or aggregate data and optionally presents the likelihood-ratio and log-rank tests for equivalence of groups. `ltable` also allows you to examine the empirical hazard function through aggregation. See also [ST] `sts` for alternative commands.

`timevar` specifies the time of failure or censoring. If `deadvar` is not specified, all values of `timevar` are interpreted as failure times; otherwise, `timevar` is interpreted as a failure time, where `deadvar ≠ 0`, and as a censoring time otherwise. Observations with `timevar` or `deadvar` equal to missing are ignored.

`deadvar` does not specify the number of failures. An observation with `deadvar` equal to 1 or 50 has the same interpretation—the observation records one failure. Specify frequency weights for aggregated data (for example, `ltable time [freq=number]`).

Options

- **notable** suppresses displaying the table. This option is often used with `graph`.
- **graph** requests that the table be presented graphically, as well as in tabular form; when `notable` is also specified, only the graph is presented. When you specify `graph`, only one table can be calculated and graphed at a time; see `survival`, `failure`, and `hazard` below.
- **by(groupvar)** creates separate tables (or graphs within the same image) for each value of `groupvar`. `groupvar` may be string or numeric.
- **test** presents two χ² measures of the differences between groups, the likelihood-ratio test of homogeneity and the log-rank test for equality of survivor functions. The two groups are identified by the `by()` option, so `by()` must also be specified.
- **overlay** causes the plot from each group identified in the `by()` option to be overlaid on the same graph. The default is to generate a separate graph (within the same image) for each group. This option requires the `by()` option.
- `survival`, `failure`, and `hazard` indicate the table to be displayed. If none is specified, the default is the survival table. Specifying `failure` displays the cumulative failure table. Specifying `survival` `failure` would display both the survival and the cumulative failure table. If `graph` is specified, multiple tables may not be requested.
ci graphs the confidence intervals around survival, failure, or hazard.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is level(95) or as set by set level; see [R] level.

noadjust suppresses the actuarial adjustment for deaths and censored observations. The default is to consider the adjusted number at risk at the start of the interval as the total at the start minus (the number dead or censored)/2. If noadjust is specified, the number at risk is simply the total at the start, corresponding to the standard Kaplan–Meier assumption. noadjust should be specified when using ltable to list results corresponding to those produced by sts list; see [ST] sts list.

`tvid(varname)` is for use with longitudinal data with time-varying parameters. Each subject appears in the data more than once, and equal values of `varname` identify observations referring to the same subject. When tvid() is specified, only the last observation on each subject is used in making the table. The order of the data does not matter, and `last` here means the last observation chronologically.

`intervals(w)` specifies the intervals into which the data are to be aggregated for tabular presentation. A numeric argument is interpreted as the width of the interval. For instance, `interval(2)` aggregates data into the intervals $0 \leq t < 2$, $2 \leq t < 4$, and so on. Not specifying `interval()` is equivalent to specifying `interval(1)`. Because in most data, failure times are recorded as integers, this amounts to no aggregation except that implied by the recording of the time variable, and so it produces Kaplan–Meier product-limit estimates of the survival curve (with an actuarial adjustment; see the noadjust option above). Also see [ST] sts list. Although it is possible to examine survival and failure without aggregation, some form of aggregation is almost always required to examine the hazard.

When more than one argument is specified, intervals are aggregated as specified. For instance, `interval(0,2,8,16)` aggregates data into the intervals $0 \leq t < 2$, $2 \leq t < 8$, and $8 \leq t < 16$, and (if necessary) the open-ended interval $t \geq 16$.

`interval(w)` is equivalent to `interval(0,7,15,30,60,90,180,360,540,720)`, corresponding to 1 week, (roughly) 2 weeks, 1 month, 2 months, 3 months, 6 months, 1 year, 1.5 years, and 2 years when failure times are recorded in days. The w suggests widening intervals.

saving(filename [, replace]) creates a Stata data file (.dta file) containing the life table. This option will not save the graph to disk; see [G-2] graph save to save the resulting graph to disk.

replace specifies that `filename` be overwritten if it exists. This option is not shown in the dialog box.

plotopt(plot_options) affects the rendition of the plotted line and plotted points; see [G-3] connect_options and [G-3] marker_options.

plot#opts(plot_options) affects the rendition of the #th plotted line and plotted points; see [G-3] connect_options and [G-3] marker_options. This option is valid only if overlay is specified.

ciopts(rspike_options) affects the rendition of the confidence intervals for the graphed survival, failure, or hazard; see [G-3] rspike_options.

ci#opts(rspike_options) affects the rendition of the #th confidence interval for the graphed survival, failure, or hazard; see [G-3] rspike_options. This option is valid only if overlay is specified.
Add plots

\texttt{addplot(plot)} provides a way to add other plots to the generated graph; see [G-3] \texttt{addplot_option}.

Y axis, X axis, Titles, Legend, and Overall

\texttt{twoway_options} are any of the options documented in [G-3] \texttt{twoway_options}, excluding \texttt{by()}. These include options for titling the graph (see [G-3] \texttt{title_options}) and for saving the graph to disk (see [G-3] \texttt{saving_option}).

\texttt{byopts(byopts)} affects the appearance of the combined graph when \texttt{by()} is specified, including the overall graph title and the organization of subgraphs. See [G-3] \texttt{by_option}.

Remarks and examples

Life tables describe death rates in a given population over time. Such tables date back to the 17th century; Edmund Halley (1693) is often credited with their development. \texttt{ltable} is for use with “cohort” data, and although one often thinks of such tables as monitoring a population from the “birth” of the first member to the “death” of the last, more generally, such tables can be thought of as a reasonable way to list any kind of survival data. For an introductory discussion of life tables, see Pagano and Gauvreau (2000, 489–495); for an intermediate discussion, see Selvin (2004, 335–377); and for a more complete discussion, see Chiang (1984).

Example 1

In Pike (1966), two groups of rats were exposed to a carcinogen, and the number of days to death from vaginal cancer was recorded (reprinted in Kalbfleisch and Prentice 2002, 2):

\begin{verbatim}
Group 1 143 164 188 188 190 192 206 209 213 216 220 227 230 234 246 265 304 216* 244*
Group 2 142 156 163 198 205 232 232 233 233 233 233 239 240 261 280 280 296 296 323 204* 344*
\end{verbatim}

The ‘*’ on a few of the entries indicates that the observation was censored—as of the recorded day, the rat had still not died because of vaginal cancer but was withdrawn from the experiment for other reasons.

Having entered these data into Stata, we see that the first few observations are

\begin{verbatim}
 . use http://www.stata-press.com/data/r13/rat
 . list in 1/5

+---------+---------+------+
| group | t | died |
|---------+---------+------+
1	143	1
2	164	1
3	188	1
4	188	1
5	190	1
+---------+---------+------+
\end{verbatim}

For example, the first observation records a rat from group 1 that died on the 143rd day. The \texttt{died} variable records whether that rat died or was withdrawn (censored):
Four rats, two from each group, did not die but were withdrawn.

The life table for group 1 is

<table>
<thead>
<tr>
<th>Interval</th>
<th>Beg. Total</th>
<th>Deaths</th>
<th>Lost</th>
<th>Survival</th>
<th>Std. Error</th>
<th>[95% Conf. Int.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>143 144</td>
<td>19 0 1 0 0</td>
<td>0.9474</td>
<td>0.0512</td>
<td>0.6812</td>
<td>0.9924</td>
<td></td>
</tr>
<tr>
<td>164 165</td>
<td>18 1 0 0</td>
<td>0.8947</td>
<td>0.0704</td>
<td>0.6408</td>
<td>0.9726</td>
<td></td>
</tr>
<tr>
<td>188 189</td>
<td>17 2 0 0</td>
<td>0.7895</td>
<td>0.0935</td>
<td>0.5319</td>
<td>0.9153</td>
<td></td>
</tr>
<tr>
<td>190 191</td>
<td>15 1 0 0</td>
<td>0.7368</td>
<td>0.1010</td>
<td>0.4789</td>
<td>0.8810</td>
<td></td>
</tr>
<tr>
<td>192 193</td>
<td>14 1 0 0</td>
<td>0.6842</td>
<td>0.1066</td>
<td>0.4279</td>
<td>0.8439</td>
<td></td>
</tr>
<tr>
<td>206 207</td>
<td>13 1 0 0</td>
<td>0.6316</td>
<td>0.1107</td>
<td>0.3790</td>
<td>0.8044</td>
<td></td>
</tr>
<tr>
<td>209 210</td>
<td>12 1 0 0</td>
<td>0.5789</td>
<td>0.1133</td>
<td>0.3321</td>
<td>0.7626</td>
<td></td>
</tr>
<tr>
<td>213 214</td>
<td>11 1 0 0</td>
<td>0.5263</td>
<td>0.1145</td>
<td>0.2872</td>
<td>0.7188</td>
<td></td>
</tr>
<tr>
<td>216 217</td>
<td>10 1 1 0</td>
<td>0.4709</td>
<td>0.1151</td>
<td>0.2410</td>
<td>0.6713</td>
<td></td>
</tr>
<tr>
<td>220 221</td>
<td>8 1 0 0</td>
<td>0.4120</td>
<td>0.1148</td>
<td>0.1937</td>
<td>0.6194</td>
<td></td>
</tr>
<tr>
<td>227 228</td>
<td>7 1 0 0</td>
<td>0.3532</td>
<td>0.1125</td>
<td>0.1502</td>
<td>0.5648</td>
<td></td>
</tr>
<tr>
<td>230 231</td>
<td>6 1 0 0</td>
<td>0.2943</td>
<td>0.1080</td>
<td>0.1105</td>
<td>0.5070</td>
<td></td>
</tr>
<tr>
<td>234 235</td>
<td>5 1 0 0</td>
<td>0.2355</td>
<td>0.1012</td>
<td>0.0751</td>
<td>0.4459</td>
<td></td>
</tr>
<tr>
<td>244 245</td>
<td>4 0 1 0</td>
<td>0.2355</td>
<td>0.1012</td>
<td>0.0751</td>
<td>0.4459</td>
<td></td>
</tr>
<tr>
<td>246 247</td>
<td>3 1 0 0</td>
<td>0.1570</td>
<td>0.0931</td>
<td>0.0312</td>
<td>0.3721</td>
<td></td>
</tr>
<tr>
<td>265 266</td>
<td>2 1 0 0</td>
<td>0.0785</td>
<td>0.0724</td>
<td>0.0056</td>
<td>0.2864</td>
<td></td>
</tr>
<tr>
<td>304 305</td>
<td>1 1 0 0</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The reported survival rates are the survival rates at the end of the interval. Thus, 94.7% of rats survived 144 days or more.

⚠️ Technical note

If you compare the table just printed with the corresponding table in Kalbfleisch and Prentice (2002, 16), you will notice that the survival estimates differ beginning with the interval 216–217, which is the first interval containing a censored observation. `ltable` treats censored observations as if they were withdrawn halfway through the interval. The table printed in Kalbfleisch and Prentice treated censored observations as if they were withdrawn at the end of the interval, even though Kalbfleisch and Prentice (2002, 19) mention how results could be adjusted for censoring.

Here the same results as those printed in Kalbfleisch and Prentice could be obtained by incrementing the time of withdrawal by 1 for the four censored observations. We say “here” because there were no deaths on the incremented dates. For instance, one of the rats was withdrawn on the 216th day, a day on which there was also a real death. There were no deaths on day 217, however, so moving the withdrawal forward 1 day is equivalent to assuming that the withdrawal occurred at the end of the day 216–217 interval. If the adjustments are made and `ltable` is used to calculate survival in both groups, the results are the same as those printed in Kalbfleisch and Prentice, except that for group 2 in the interval 240–241, they report the survival as 0.345 when they mean 0.354.
In any case, the one-half adjustment for withdrawals is generally accepted, but it is only a crude adjustment that becomes cruder the wider the intervals.

Example 2: ltable with aggregated intervals

When you do not specify the intervals, ltable uses unit intervals. The only aggregation performed on the data was aggregation due to deaths or withdrawals occurring on the same “day”. If we wanted to see the table aggregated into 30-day intervals, we would type

```
.ltable t died if group==1, interval(30)
```

<table>
<thead>
<tr>
<th>Interval</th>
<th>Beg. Std.</th>
<th>Interval Total</th>
<th>Deaths</th>
<th>Lost</th>
<th>Survival</th>
<th>Std. Error</th>
<th>[95% Conf. Int.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 150</td>
<td>19</td>
<td>1</td>
<td>0</td>
<td>0.9474</td>
<td>0.0512</td>
<td>0.6812</td>
<td>0.9924</td>
</tr>
<tr>
<td>150 180</td>
<td>18</td>
<td>1</td>
<td>0</td>
<td>0.8947</td>
<td>0.0704</td>
<td>0.6408</td>
<td>0.9726</td>
</tr>
<tr>
<td>180 210</td>
<td>17</td>
<td>6</td>
<td>0</td>
<td>0.5789</td>
<td>0.1133</td>
<td>0.3321</td>
<td>0.7626</td>
</tr>
<tr>
<td>210 240</td>
<td>11</td>
<td>6</td>
<td>1</td>
<td>0.2481</td>
<td>0.1009</td>
<td>0.0847</td>
<td>0.4552</td>
</tr>
<tr>
<td>240 270</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0.1063</td>
<td>0.0786</td>
<td>0.0139</td>
<td>0.3090</td>
</tr>
<tr>
<td>300 330</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.0000</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

The interval displayed as 120 150 indicates the interval including 120 and up to, but not including, 150. The reported survival rate is the survival rate just after the close of the interval.

When you specify more than one number as the argument to interval(), you specify the cutoff points, not the widths.

```
.ltable t died if group==1, interval(120,180,210,240,330)
```

<table>
<thead>
<tr>
<th>Interval</th>
<th>Beg. Std.</th>
<th>Interval Total</th>
<th>Deaths</th>
<th>Lost</th>
<th>Survival</th>
<th>Std. Error</th>
<th>[95% Conf. Int.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 180</td>
<td>19</td>
<td>2</td>
<td>0</td>
<td>0.8947</td>
<td>0.0704</td>
<td>0.6408</td>
<td>0.9726</td>
</tr>
<tr>
<td>180 210</td>
<td>17</td>
<td>6</td>
<td>0</td>
<td>0.5789</td>
<td>0.1133</td>
<td>0.3321</td>
<td>0.7626</td>
</tr>
<tr>
<td>210 240</td>
<td>11</td>
<td>6</td>
<td>1</td>
<td>0.2481</td>
<td>0.1009</td>
<td>0.0847</td>
<td>0.4552</td>
</tr>
<tr>
<td>240 330</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0.0354</td>
<td>0.0486</td>
<td>0.0006</td>
<td>0.2245</td>
</tr>
</tbody>
</table>

If any of the underlying failure or censoring times are larger than the last cutoff specified, then they are treated as being in the open-ended interval:

```
.ltable t died if group==1, interval(120,180,210,240)
```

<table>
<thead>
<tr>
<th>Interval</th>
<th>Beg. Std.</th>
<th>Interval Total</th>
<th>Deaths</th>
<th>Lost</th>
<th>Survival</th>
<th>Std. Error</th>
<th>[95% Conf. Int.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 180</td>
<td>19</td>
<td>2</td>
<td>0</td>
<td>0.8947</td>
<td>0.0704</td>
<td>0.6408</td>
<td>0.9726</td>
</tr>
<tr>
<td>180 210</td>
<td>17</td>
<td>6</td>
<td>0</td>
<td>0.5789</td>
<td>0.1133</td>
<td>0.3321</td>
<td>0.7626</td>
</tr>
<tr>
<td>210 240</td>
<td>11</td>
<td>6</td>
<td>1</td>
<td>0.2481</td>
<td>0.1009</td>
<td>0.0847</td>
<td>0.4552</td>
</tr>
<tr>
<td>240 .</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0.0354</td>
<td>0.0486</td>
<td>0.0006</td>
<td>0.2245</td>
</tr>
</tbody>
</table>

Whether the last interval is treated as open ended or not makes no difference for survival and failure tables, but it does affect hazard tables. If the interval is open ended, the hazard is not calculated for it.
Example 3: ltable with separate tables for each group

The by(varname) option specifies that separate tables be presented for each value of varname. Remember that our rat dataset contains two groups:

```
.ltable t died, by(group) interval(30)
```

<table>
<thead>
<tr>
<th>Interval</th>
<th>Beg. Total</th>
<th>Deaths</th>
<th>Lost</th>
<th>Survival</th>
<th>Std. Error</th>
<th>[95% Conf. Int.]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>group = 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>150</td>
<td>19</td>
<td>1</td>
<td>0</td>
<td>0.9474</td>
<td>0.0512</td>
</tr>
<tr>
<td>150</td>
<td>180</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0.8947</td>
<td>0.0704</td>
</tr>
<tr>
<td>180</td>
<td>210</td>
<td>17</td>
<td>6</td>
<td>0</td>
<td>0.5789</td>
<td>0.1133</td>
</tr>
<tr>
<td>210</td>
<td>240</td>
<td>11</td>
<td>6</td>
<td>1</td>
<td>0.2481</td>
<td>0.1009</td>
</tr>
<tr>
<td>240</td>
<td>270</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0.1063</td>
<td>0.0786</td>
</tr>
<tr>
<td>300</td>
<td>330</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.0000</td>
<td>.</td>
</tr>
<tr>
<td>group = 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>150</td>
<td>21</td>
<td>1</td>
<td>0</td>
<td>0.9524</td>
<td>0.0465</td>
</tr>
<tr>
<td>150</td>
<td>180</td>
<td>20</td>
<td>2</td>
<td>0</td>
<td>0.8571</td>
<td>0.0764</td>
</tr>
<tr>
<td>180</td>
<td>210</td>
<td>18</td>
<td>2</td>
<td>1</td>
<td>0.7592</td>
<td>0.0939</td>
</tr>
<tr>
<td>210</td>
<td>240</td>
<td>15</td>
<td>7</td>
<td>0</td>
<td>0.4049</td>
<td>0.1099</td>
</tr>
<tr>
<td>240</td>
<td>270</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>0.3037</td>
<td>0.1031</td>
</tr>
<tr>
<td>270</td>
<td>300</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>0.1012</td>
<td>0.0678</td>
</tr>
<tr>
<td>300</td>
<td>330</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0.0506</td>
<td>0.0493</td>
</tr>
<tr>
<td>330</td>
<td>360</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.0000</td>
<td>.</td>
</tr>
</tbody>
</table>

Example 4: ltable for failure tables

A failure table is simply a different way of looking at a survival table; failure is 1 − survival:

```
.ltable t died if group==1, interval(30) failure
```

<table>
<thead>
<tr>
<th>Interval</th>
<th>Beg. Total</th>
<th>Deaths</th>
<th>Lost</th>
<th>Cum. Failure</th>
<th>Std. Error</th>
<th>[95% Conf. Int.]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>150</td>
<td>19</td>
<td>1</td>
<td>0.0526</td>
<td>0.0512</td>
<td>0.0076 0.3188</td>
</tr>
<tr>
<td>150</td>
<td>180</td>
<td>18</td>
<td>1</td>
<td>0.1053</td>
<td>0.0704</td>
<td>0.0274 0.3592</td>
</tr>
<tr>
<td>180</td>
<td>210</td>
<td>17</td>
<td>6</td>
<td>0.4211</td>
<td>0.1133</td>
<td>0.2374 0.6679</td>
</tr>
<tr>
<td>210</td>
<td>240</td>
<td>11</td>
<td>6</td>
<td>0.7519</td>
<td>0.1009</td>
<td>0.5448 0.9153</td>
</tr>
<tr>
<td>240</td>
<td>270</td>
<td>4</td>
<td>2</td>
<td>0.8937</td>
<td>0.0786</td>
<td>0.6910 0.9861</td>
</tr>
<tr>
<td>300</td>
<td>330</td>
<td>1</td>
<td>1</td>
<td>1.0000</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Example 5: Survival rate at start of interval versus end of interval

Selvin (2004, 357) presents follow-up data from Cutler and Ederer (1958) on six cohorts of kidney cancer patients. The goal is to estimate the 5-year survival probability.
The following is the Stata dataset corresponding to the table:

```
use http://www.stata-press.com/data/r13/selvin
list
```

```
<table>
<thead>
<tr>
<th>year</th>
<th>t</th>
<th>died</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1946</td>
<td>.5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1946</td>
<td>.5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1946</td>
<td>5.5</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1947</td>
<td>.5</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>1947</td>
<td>2.5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
```

As summary data may often come in the form shown above, it is worth understanding exactly how the data were translated for use with `ltable`. `t` records the time of death or censoring (lost to follow-up or withdrawal). `died` contains 1 if the observation records a death and 0 if it instead records lost or withdrawn patients. `pop` records the number of patients in the category. The first line of the original table stated that, in the 1946 cohort, there were nine patients at the start of the interval 0–1, and during the interval, four died and one was lost to follow-up. Thus we entered in observation 1 that at \(t = 0.5 \), four patients died and in observation 2 that at \(t = 0.5 \), one patient was censored. We ignored the information on the total population because `ltable` will figure that out for itself.

The second line of the table indicated that in the interval 1–2, four patients were still alive at the beginning of the interval, and during the interval, zero died or were lost to follow-up. Because no patients died or were censored, we entered nothing into our data. Similarly, we entered nothing for lines 3, 4, and 5 of the table. The last line for 1946 stated that, in the interval 5–6, four patients were alive at the beginning of the interval and that those four patients were withdrawn. In observation 3, we entered that there were four censorings at \(t = 5.5 \).

It does not matter that we chose to record the times of deaths or censoring as midpoints of intervals; we could just as well have recorded the times as 0.8 and 5.8. By default, `ltable` will form intervals 0–1, 1–2, and so on, and place observations into the intervals to which they belong. We suggest using 0.5 and 5.5 because those numbers correspond to the underlying assumptions made by `ltable` in making its calculations. Using midpoints reminds you of these assumptions.
To obtain the survival rates, we type

```
. ltable t died [freq=pop]
```

<table>
<thead>
<tr>
<th>Interval</th>
<th>Beg. Total</th>
<th>Deaths</th>
<th>Lost</th>
<th>Survival</th>
<th>Std. Error</th>
<th>[95% Conf. Int.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>126</td>
<td>47</td>
<td>19</td>
<td>0.5966</td>
<td>0.0455</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>60</td>
<td>5</td>
<td>17</td>
<td>0.5386</td>
<td>0.0479</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>38</td>
<td>2</td>
<td>15</td>
<td>0.5033</td>
<td>0.0508</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>21</td>
<td>2</td>
<td>9</td>
<td>0.4423</td>
<td>0.0602</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>6</td>
<td>0.4423</td>
<td>0.0602</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0.4423</td>
<td>0.0602</td>
</tr>
</tbody>
</table>

We estimate the 5-year survival rate as 0.4423 and the 95% confidence interval as 0.3225 to 0.5554.

Selvin (2004, 361), in presenting these results, lists the survival in the interval 0–1 as 1, in 1–2 as 0.597, in 2–3 as 0.539, and so on. That is, relative to us, he shifted the rates down one row and inserted a 1 in the first row. In his table, the survival rate is the survival rate at the start of the interval. In our table, the survival rate is the survival rate at the end of the interval (or, equivalently, at the start of the next interval). This is, of course, simply a difference in the way the numbers are presented and not in the numbers themselves.

Example 6: ltable for hazard tables

The discrete hazard function is the rate of failure—the number of failures occurring within a time interval divided by the width of the interval (assuming that there are no censored observations). Although the survival and failure tables are meaningful at the “individual” level—with intervals so narrow that each contains only one failure—that is not true for the discrete hazard. If all intervals contained one death and if all intervals were of equal width, the hazard function would be $1/\Delta t$ and so appear to be a constant!

The empirically determined discrete hazard function can be revealed only by aggregation. Gross and Clark (1975, 37) print data on malignant melanoma at the University of Texas M. D. Anderson Tumor Clinic between 1944 and 1960. The interval is the time from initial diagnosis:

<table>
<thead>
<tr>
<th>Interval (years)</th>
<th>Number lost to follow-up</th>
<th>Number withdrawn alive</th>
<th>Number dying</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–1</td>
<td>19</td>
<td>77</td>
<td>312</td>
</tr>
<tr>
<td>1–2</td>
<td>3</td>
<td>71</td>
<td>96</td>
</tr>
<tr>
<td>2–3</td>
<td>4</td>
<td>58</td>
<td>45</td>
</tr>
<tr>
<td>3–4</td>
<td>3</td>
<td>27</td>
<td>29</td>
</tr>
<tr>
<td>4–5</td>
<td>5</td>
<td>35</td>
<td>7</td>
</tr>
<tr>
<td>5–6</td>
<td>1</td>
<td>36</td>
<td>9</td>
</tr>
<tr>
<td>6–7</td>
<td>0</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>7–8</td>
<td>2</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>8–9</td>
<td>0</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>9+</td>
<td>0</td>
<td>0</td>
<td>32</td>
</tr>
</tbody>
</table>

For our statistical purposes, there is no difference between the number lost to follow-up (patients who disappeared) and the number withdrawn alive (patients dropped by the researchers)—both are censored. We have entered the data into Stata; here are a few of the data:
. use http://www.stata-press.com/data/r13/tumor
. list in 1/6, separator(0)

<table>
<thead>
<tr>
<th>t</th>
<th>d</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>.5</td>
<td>1</td>
<td>312</td>
</tr>
<tr>
<td>.5</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>.5</td>
<td>0</td>
<td>77</td>
</tr>
<tr>
<td>1.5</td>
<td>1</td>
<td>96</td>
</tr>
<tr>
<td>1.5</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1.5</td>
<td>0</td>
<td>71</td>
</tr>
</tbody>
</table>

We entered each group's time of death or censoring as the midpoint of the intervals and entered the numbers of the table, recording \(d \) as 1 for deaths and 0 for censoring. The hazard table is

. ltable t d [freq=pop], hazard interval(0(1)9)

<table>
<thead>
<tr>
<th>Interval</th>
<th>Beg. Total</th>
<th>Cum. Total</th>
<th>Std. Failure</th>
<th>Std. Error</th>
<th>Hazard</th>
<th>Std. Error</th>
<th>[95% Conf. Int.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>913</td>
<td>0.3607</td>
<td>0.0163</td>
<td>0.4401</td>
<td>0.0243</td>
<td>0.3924</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>505</td>
<td>0.4918</td>
<td>0.0176</td>
<td>0.2286</td>
<td>0.0232</td>
<td>0.1831</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>335</td>
<td>0.5671</td>
<td>0.0182</td>
<td>0.1599</td>
<td>0.0238</td>
<td>0.1133</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>228</td>
<td>0.6260</td>
<td>0.0188</td>
<td>0.1461</td>
<td>0.0271</td>
<td>0.0931</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>169</td>
<td>0.6436</td>
<td>0.0190</td>
<td>0.0481</td>
<td>0.0182</td>
<td>0.0125</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>122</td>
<td>0.6746</td>
<td>0.0200</td>
<td>0.0909</td>
<td>0.0303</td>
<td>0.0316</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>76</td>
<td>0.6890</td>
<td>0.0208</td>
<td>0.0455</td>
<td>0.0282</td>
<td>0.0000</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>56</td>
<td>0.6952</td>
<td>0.0213</td>
<td>0.0202</td>
<td>0.0202</td>
<td>0.0000</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>43</td>
<td>0.7187</td>
<td>0.0235</td>
<td>0.0800</td>
<td>0.0462</td>
<td>0.0000</td>
</tr>
<tr>
<td>9</td>
<td>.</td>
<td>32</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We specified the \texttt{interval()}\ option as we did—and not as \texttt{interval(1)}\ or omitting the option altogether—to force the last interval to be open ended. Had we not, and if we had recorded \(t \) as 9.5 for observations in that interval (as we did), \texttt{ltable} would have calculated a hazard rate for the “interval”. Here the result of that calculation would have been 2, but no matter the result, it would have been meaningless because we do not know the width of the interval.

When dealing with the survivor or failure function, you are not limited to merely examining a column of numbers. With the \texttt{graph} option, you can see the result graphically:
The vertical lines in the graph represent the 95% confidence intervals for the survivor function. Among the options we specified, although it is not required, is `notable`, which suppressed printing the table, saving us some paper. `xlab()` was passed through to the `graph` command (see [G-3] `twoway_options`) and was unnecessary but made the graph look better.

Technical note

Because many intervals can exist during which no failures occur (in which case the hazard estimate is zero), the estimated hazard is best graphically represented using a kernel smooth. Such an estimate is available in `sts graph`; see [ST] `sts graph`.

Methods and formulas

Let τ_i be the individual failure or censoring times. The data are aggregated into intervals given by t_j, $j = 1, \ldots, J$, and $t_{J+1} = \infty$ with each interval containing counts for $t_j \leq \tau < t_{j+1}$. Let d_j and m_j be the number of failures and censored observations during the interval and N_j the number alive at the start of the interval. Define $n_j = N_j - m_j/2$ as the adjusted number at risk at the start of the interval. If the `nadjust` option is specified, $n_j = N_j$.

The product-limit estimate of the survivor function is

$$S_j = \prod_{k=1}^{j} \frac{n_k - d_k}{n_k}$$

(Kalbfleisch and Prentice 2002, 10, 15). Greenwood’s formula for the asymptotic standard error of S_j is

$$s_j = S_j \sqrt{\sum_{k=1}^{j} \frac{d_k}{n_k(n_k - d_k)}}$$
(Greenwood 1926; Kalbfleisch and Prentice 2002, 17). \(s_j \) is reported as the standard deviation of survival but is not used in generating the confidence intervals because it can produce intervals outside 0 and 1. The “natural” units for the survivor function are \(\log(-\log S_j) \), and the asymptotic standard error of that quantity is

\[
\hat{s}_j = \sqrt{\frac{\sum d_k/\{n_k(n_k - d_k)\}}{\left[\sum \log \{(n_k - d_k)/n_k\}\right]^2}}
\]

(Kalbfleisch and Prentice 2002, 18). The corresponding confidence intervals are \(S_j^{\exp(\pm z_{1-\alpha/2} \hat{s}_j)} \).

The cumulative failure time is defined as \(G_j = 1 - S_j \), and thus the variance is the same as for \(S_j \) and the confidence intervals are \(1 - S_j^{\exp(\pm z_{1-\alpha/2} \hat{s}_j)} \).

Both \(S_j \) and \(G_j \) are graphed against \(t_{j+1} \).

Define the within-interval failure rate as \(f_j = d_j/n_j \). The maximum likelihood estimate of the (within-interval) hazard is then

\[
\lambda_j = \frac{f_j}{(1 - f_j/2)(t_{j+1} - t_j)}
\]

The standard error of \(\lambda_j \) is

\[
s_{\lambda_j} = \lambda_j \sqrt{\frac{1 - \{(t_{j+1} - t_j)\lambda_j/2\}^2}{d_j}}
\]

from which a confidence interval is calculated.

If the noadjust option is specified, the estimate of the hazard is

\[
\lambda_j = \frac{f_j}{t_{j+1} - t_j}
\]

and its standard error is

\[
s_{\lambda_j} = \frac{\lambda_j}{\sqrt{d_j}}
\]

The confidence interval is

\[
\left[\frac{\lambda_j}{2d_j} \chi^2_{2d_j,\alpha/2}, \frac{\lambda_j}{2d_j} \chi^2_{2d_j,1-\alpha/2} \right]
\]

where \(\chi^2_{2d_j,q} \) is the \(q \)th quantile of the \(\chi^2 \) distribution with \(2d_j \) degrees of freedom (Cox and Oakes 1984, 53–54, 38–40).
For the likelihood-ratio test for homogeneity, let d_g be the total number of deaths in the gth group. Define $T_g = \sum_{i \in g} \tau_i$, where i indexes the individual failure or censoring times. The χ^2 value with $G - 1$ degrees of freedom (where G is the total number of groups) is

$$\chi^2 = 2 \left\{ \left(\sum d_g \right) \log \left(\frac{\sum T_g}{\sum d_g} \right) - \sum d_g \log \left(\frac{T_g}{d_g} \right) \right\}$$

(Lawless 2003, 155).

The log-rank test for homogeneity is the test presented by `sts test`; see `[ST] sts`.

Acknowledgments

`ltable` is based on the `lftbl` command by Henry Krakauer and John Stewart (1991). We also thank Michel Henry-Amar of the Centre Regional François Baclesse, Caen, France, for his comments.

References

Halley, E. 1693. An estimate of the degrees of the mortality of mankind, drawn from curious tables of the births and funerals at the city of Breslaw; with an attempt to ascertain the price of annuities upon lives. *Philosophical Transactions* 17: 596–610.

Also see

[ST] `stcox` — Cox proportional hazards model
Syntax

`snapspan idvar timevar varlist [, generate(newt0var) replace]`

Menu

Statistics > Survival analysis > Setup and utilities > Convert snapshot data to time-span data

Description

`snapspan` converts snapshot data to time-span data. See `Snapshot and time-span datasets` below for a description of snapshot and time-span data. Time-span data are required for use with survival analysis commands, such as `stcox`, `streg`, and `stset`.

`idvar` records the subject ID and may be string or numeric.

`timevar` records the time of the snapshot; it must be numeric and may be recorded on any scale: date, hour, minute, second, etc.

`varlist` are the “event” variables, meaning that they occur at the instant of `timevar`. `varlist` can also include retrospective variables that are to apply to the time span ending at the time of the current snapshot. The other variables are assumed to be measured at the time of the snapshot and thus apply from the time of the snapshot forward. See `Specifying varlist` below.

Options

`generate(newt0var)` adds `newt0var` to the dataset containing the entry time for each converted time-span record.

`replace` specifies that it is okay to change the data in memory, even though the dataset has not been saved on disk in its current form.

Remarks and examples

Remarks are presented under the following headings:

`Snapshot and time-span datasets`

`Specifying varlist`

Snapshot and time-span datasets

`snapspan` converts a snapshot dataset to a time-span dataset. A snapshot dataset records a subject `id`, a `time`, and then other variables measured at the `time`:
A time-span dataset records a span of time \((t_{\text{time0}}, t_{\text{time1}}]\):

\[
\begin{align*}
\text{time0} & \quad \text{time1} \\
\leftarrow & \quad \rightarrow
\end{align*}
\]

Some variables assumed to occur at \(t_{\text{time1}}\)

Other variables assumed constant over span

To convert snapshot data to time-span data, you need to distinguish between event and nonevent variables. Event variables happen at an instant.

Say that you have a snapshot dataset containing variable \(e\) recording an event (\(e = 1\) might record surgery, death, becoming unemployed, etc.) and the rest of the variables—call them \(x_1, x_2,\) etc.—recording characteristics (such as sex, birth date, blood pressure, or weekly wage). The same data, in snapshot and time-span form, would be
In snapshot form:
\[
\begin{array}{cccc}
\text{id} & \text{time} & \text{x1} & \text{x2} & \text{e} \\
1 & 5 & a1 & b1 & e1 \\
1 & 7 & a2 & b2 & e2 \\
1 & 9 & a3 & b3 & e3 \\
1 & 11 & a4 & b4 & e4 \\
\end{array}
\]

In time-span form:
\[
\begin{array}{ccccc}
\text{id} & \text{time0} & \text{time} & \text{x1} & \text{x2} & \text{e} \\
1 & . & 5 & . & . & e1 \\
1 & 5 & 7 & a1 & b1 & e2 \\
1 & 7 & 9 & a2 & b2 & e3 \\
1 & 9 & 11 & a3 & b3 & e4 \\
\end{array}
\]

\text{snapspan} converts data from the form on the left to the form on the right:

\[. \text{snapspan id time e, generate(time0)} \text{ replace}\]

The form on the right is suitable for use by \text{stcox} and \text{stset} and the other survival analysis commands.

Specifying varlist

The \text{varlist}—the third variable on—specifies the “event” variables.

In fact, the \text{varlist} specifies the variables that apply to the time span ending at the time of the current snapshot. The other variables are assumed to be measured at the time of the snapshot and thus apply from the time of the snapshot forward.

Thus \text{varlist} should include retrospective variables.

For instance, say that the snapshot recorded \text{bp}, blood pressure; \text{smokes}, whether the patient smoked in the last 2 weeks; and \text{event}, a variable recording examination, surgery, etc. Then \text{varlist} should include \text{smokes} and \text{event}. The remaining variables, \text{bp} and the rest, would be assumed to apply from the time of the snapshot forward.

Suppose that the snapshot recorded \text{ecs}, employment change status (hired, fired, promoted, etc.); \text{wage}, the current hourly wage; and \text{ms}, current marital status. Then \text{varlist} should include \text{ecs} and \text{ms} (assuming snapshot records are not generated for reason of \text{ms} change). The remaining variables, \text{wage} and the rest, would be assumed to apply from the time of the snapshot forward.

Also see

[ST] \text{stset} — Declare data to be survival-time data
Description

The term st refers to survival-time data and the commands—most of which begin with the letters st—for analyzing these data. If you have data on individual subjects with observations recording that this subject came under observation at time t_0 and that later, at t_1, a failure or censoring was observed, you have what we call survival-time data.

If you have subject-specific data, with observations recording not a span of time, but measurements taken on the subject at that point in time, you have what we call a snapshot dataset; see `st snapspan`.

If you have data on populations, with observations recording the number of units under test at time t (subjects alive) and the number of subjects that failed or were lost because of censoring, you have what we call count-time data; see `st ct`.

The st commands are

- `stset` Declare data to be survival-time data
- `stdescribe` Describe survival-time data
- `stsum` Summarize survival-time data
- `stvary` Report variables that vary over time
- `stfill` Fill in by carrying forward values of covariates
- `stgen` Generate variables reflecting entire histories
- `stsplit` Split time-span records
- `stjoin` Join time-span records
- `stbase` Form baseline dataset
- `sts` Generate, graph, list, and test the survivor and cumulative hazard functions
- `stir` Report incidence-rate comparison
- `stci` Confidence intervals for means and percentiles of survival time
- `strate` Tabulate failure rate
- `stptime` Calculate person-time
- `stmh` Calculate rate ratios with the Mantel–Haenszel method
- `stmc` Calculate rate ratios with the Mantel–Cox method
- `stcox` Fit Cox proportional hazards model
- `estat concordance` Compute the concordance probability
- `estat phtest` Test Cox proportional-hazards assumption
- `stphplot` Graphically assess the Cox proportional-hazards assumption
- `stcoxkm` Graphically assess the Cox proportional-hazards assumption
The *st* commands are used for analyzing time-to-absorbing-event (single-failure) data and for analyzing time-to-repeated-event (multiple-failure) data.

You begin an analysis by *stset*ting your data, which tells Stata the key survival-time variables; see [ST] *stset*. Once you have *stset* your data, you can use the other *st* commands. If you save your data after *stsetting* it, you will not have to *stset* it again in the future; Stata will remember.

The subsequent *st* entries are printed in this manual in alphabetical order. You can skip around, but if you want to be an expert on all of Stata’s survival analysis capabilities, we suggest the reading order listed above.

Reference

Also see

- [ST] *stset* — Declare data to be survival-time data
- [ST] *ct* — Count-time data
- [ST] *snapspan* — Convert snapshot data to time-span data
- [ST] *survival analysis* — Introduction to survival analysis & epidemiological tables commands
- [ST] *Glossary*
Title

| st_is — Survival analysis subroutines for programmers |

Syntax

Verify that data in memory are survival-time data

\[
\texttt{st_is 2 \{full | analysis\}}
\]

Display or do not display summary of survival-time variables

\[
\texttt{st_show [noshow]}
\]

Risk-group summaries

\[
\texttt{st_ct "[byvars]" -> newtvar newpopvar newfailvar [newcensvar [newentvar]]}
\]

You must have \texttt{stset} your data before using \texttt{st_is}, \texttt{st_show}, and \texttt{st_ct}; see \texttt{[ST] stset}.

Description

These commands are provided for programmers wishing to write new \texttt{st} commands.

\texttt{st_is} verifies that the data in memory are survival-time (st) data. If not, it issues the error message “data not st”, r(119).

\texttt{st} is currently “release 2”, meaning that this is the second design of the system. Programs written for the previous release continue to work. (The previous release of \texttt{st} corresponds to Stata 5.)

Modern programs code \texttt{st_is 2 full} or \texttt{st_is 2 analysis}. \texttt{st_is 2} verifies that the dataset in memory is in release 2 format; if it is in the earlier format, it is converted to release 2 format. (Older programs simply code \texttt{st_is}. This verifies that no new features are \texttt{stset} about the data that would cause the old program to break.)

The \texttt{full} and \texttt{analysis} parts indicate whether the dataset may include past, future, or past and future data. Code \texttt{st_is 2 full} if the command is suitable for running on the analysis sample and the past and future data (many data management commands fall into this category). Code \texttt{st_is 2 analysis} if the command is suitable for use only with the analysis sample (most statistical commands fall into this category). See \texttt{[ST] stset} for the definitions of past and future.

\texttt{st_show} displays the summary of the survival-time variables or does nothing, depending on what you specify when \texttt{stsetting} the data. \texttt{noshow} requests that \texttt{st_show} display nothing.

\texttt{st_ct} is a low-level utility that provides risk-group summaries from survival-time data.
Remarks and examples

Remarks are presented under the following headings:

- Definitions of characteristics and st variables
- Outline of an st command
- Using the st ct utility
- Comparison of st ct with sttoct
- Verifying data
- Converting data

Definitions of characteristics and st variables

From a programmer’s perspective, st is a set of conventions that specify where certain pieces of information are stored and how that information should be interpreted, together with a few subroutines that make it easier to follow the conventions.

At the lowest level, st is nothing more than a set of Stata characteristics that programmers may access:

```plaintext
char _dta[_dta]          st (marks that the data are st)
char _dta[st ver]        2 (version number)
char _dta[st id]         varname or nothing; id() variable
char _dta[st bt0]        varname or nothing; t0() variable
char _dta[st bt]         varname; t variable from stset t, ...
char _dta[st bd]         varname or nothing; failure() variable
char _dta[st ev]         list of numbers or nothing; numlist from failure(varname==numlist)
char _dta[st enter]      contents of enter() or nothing; numlist expanded
char _dta[st exit]       contents of exit() or nothing; numlist expanded
char _dta[st orig]       contents of origin() or nothing; numlist expanded
char _dta[st bs]         # or 1; scale() value
char _dta[st o]          _origin or #
char _dta[st s]          _scale or #
char _dta[st ifexp]      exp or nothing; from stset ... if exp ...
char _dta[st if]         exp or nothing; contents of if()
char _dta[st ever]       exp or nothing; contents of ever()
char _dta[st never]      exp or nothing; contents of never()
char _dta[st after]      exp or nothing; contents of after()
char _dta[st before]     exp or nothing; contents of before()
char _dta[st wt]         weight type or nothing; user-specified weight
char _dta[st wv]         varname or nothing; user-specified weighting variable
char _dta[st w]          [weighttype=weightvar] or nothing
char _dta[st show]       noshow or nothing
char _dta[st t]          _t (for compatibility with release 1)
char _dta[st t0]         _t0 (for compatibility with release 1)
char _dta[st d]          _d (for compatibility with release 1)
char _dta[st n0]         # or nothing; number of st notes
char _dta[st n1]         text of first note or nothing
char _dta[st n2]         text of second note or nothing
char _dta[st set]        text or nothing. If filled in, streset (see [ST] stset) will refuse
to execute and present this text as the reason
```
All st datasets also have the following four variables:

- _t0
 time of entry (in t units) into risk pool
- _t
 time of exit (in t units) from risk pool
- _d
 contains 1 if failure, 0 if censoring
- _st
 contains 1 if observation is to be used and 0 otherwise

Thus, in a program, you might code

```plaintext
display "the failure/censoring base time variable is \_t"
display "and its mean in the uncensored subsample is" summarize \_t if \_d
```

No matter how simple or complicated the data, these four variables exist and are filled in. For instance, in simple data, _t0 might contain 0 for every observation, and _d might always contain 1.

Some st datasets also contain the variables

- _origin
 evaluated value of origin()
- _scale
 evaluated value of scale()

The _dta[_s_o] characteristic contains either the name _origin or a number, often 0. It contains a number when the origin does not vary across observations. _dta[_s_s] works the same way with the scale() value. Thus the origin and scale are _dta[_s_o] and _dta[_s_s]. In fact, these characteristics are seldom used because variables _t and _t0 are already adjusted.

Some st datasets have an id() variable that clusters together records on the same subject. The name of the variable varies, and the name can be obtained from the _dta[_i_d] characteristic. If there is no id() variable, the characteristic contains nothing.

Outline of an st command

If you are writing a new st command, place st_is near the top of your code to ensure that your command does not execute on inappropriate data. Also place st_show following the parsing of your command’s syntax to display the key st variables. The minimal outline for an st command is

```plaintext
program st name
    version 13
    st_is 2 ...
    ... syntax command ...
    ... determined there are no syntax errors ...
    st_show
    ... guts of program ...
end
```

st_is 2 appears even before the input is parsed. This is to avoid irritating users when they type a command, get a syntax error, work hard to eliminate the error, and then learn that “data not st”.

A fuller outline for an st command, particularly one that performs analysis on the data, is

```plaintext
program st name
    version 13
    st_is 2 ...
    syntax ... [, ... noShow ... ]
    st_show `show'
    marksample touse
    quietly replace `touse' = 0 if _st==0
    ... guts of program ...
end
```
All calculations and actions are to be restricted, at the least, to observations for which \(_{st} \neq 0\). Observations with \(_{st} = 0\) are to be ignored.

Using the st_ct utility

\texttt{st_ct} converts the data in memory to observations containing summaries of risk groups. Consider the code

\begin{verbatim}
st_is 2 analysis preserve st_ct "" -> t pop die
\end{verbatim}

Typing this would change the data in memory to contain something akin to count-time data. The transformed data would have observations containing

\begin{verbatim}
 t time
pop population at risk at time t
die number who fail at time t
\end{verbatim}

There would be one record per time \(t\), and the data would be sorted by \(t\). The original data are discarded, which is why you should code \texttt{preserve}; see \texttt{[P] preserve}.

The above three lines of code could be used as the basis for calculating the Kaplan–Meier product-limit survivor-function estimate. The rest of the code is

\begin{verbatim}
keep if die
gen double hazard = die/pop
gen double km = 1-hazard if _n==1 replace km = (1-hazard)*km[_n-1] if _n>1
\end{verbatim}

\texttt{st_ct} can be used to obtain risk groups separately for subgroups of the population. The code

\begin{verbatim}
st_is 2 analysis preserve st_ct "race sex" -> t pop die
\end{verbatim}

would change the data in memory to contain

\begin{verbatim}
 race
sex
 t time
pop population at risk at time t
die number who fail at time t
\end{verbatim}

There would be one observation for each race–sex–t combination, and the data would be sorted by race sex t.

With this dataset, you could calculate the Kaplan–Meier product-limit survivor-function estimate for each race–sex group by coding

\begin{verbatim}
keep if die
gen double hazard = die/pop by race sex: gen double km = 1-hazard if _n==1 by race sex: replace km = (1-hazard)*km[_n-1] if _n>1
\end{verbatim}

\texttt{st_ct} is a convenient subroutine. The above code fragment works regardless of the complexity of the underlying survival-time data. It does not matter whether there is one record per subject, no censoring, and one failure per subject, or multiple records per subject, gaps, and recurring failures for the same subject. \texttt{st_ct} forms risk groups that summarize the events recorded by the data.

\texttt{st_ct} can provide the number of censored records and the number who enter the risk group. The code

\begin{verbatim}
st_ct "" -> t pop die cens ent
\end{verbatim}
creates records containing

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>time</td>
</tr>
<tr>
<td>pop</td>
<td>population at risk at time t</td>
</tr>
<tr>
<td>die</td>
<td>number who fail at time t</td>
</tr>
<tr>
<td>cens</td>
<td>number who are censored at t (after the failures)</td>
</tr>
<tr>
<td>ent</td>
<td>number who enter at t (after the censorings)</td>
</tr>
</tbody>
</table>

As before,

```
st_ct "race sex" -> t pop die cens ent```

would create a similar dataset with records for each `race–sex` group.

**Comparison of st_ct with sttoct**

`sttoct`—see [ST] sttoct—is related to `st_ct`, and in fact, `sttoct` is implemented in terms of `st_ct`. The differences between them are that

- `sttoct` creates ct data, meaning that the dataset is marked as being ct. `st_ct` merely creates a useful dataset; it does not ctset the data.
- `st_ct` creates a total population at-risk variable—which is useful in programming—but `sttoct` creates no such variable.
- `sttoct` eliminates thrashings—censorings and reentries of the same subject as covariates change—if there are no gaps, strata shifting, etc. `st_ct` does not do this. Thus, at a particular time, `sttoct` might show that there are two lost to censoring and none entered, whereas `st_ct` might show 12 censorings and 10 entries. This makes no difference in calculating the number at risk and the number who fail, which are the major ingredients in survival calculations.
- `st_ct` is faster.

**Verifying data**

As long as you code `st_is` at the top of your program, you need not verify the consistency of the data. That is, you need not verify that subjects do not fail before they enter, etc.

The dataset is verified when you `stset` it. If you make a substantive change to the data, you must rerun `stset` (which can be done by typing `stset` or `streset` without arguments) to reverify that all is well.

**Converting data**

If you write a program that converts the data from one form of st data to another, or from st data to something else, be sure to issue the appropriate `stset` command. For instance, a command we have written, `stbase`, converts the data from st to a simple cross-section in one instance. In our program, we coded `stset, clear` so that all other st commands would know that these are no longer st data and that making st calculations on them would be inappropriate.

Even if we had forgotten, other st programs would have found many of the key st variables missing and would have ended with a “[such-and-such] not found” error.
Also see

[ST] `stset` — Declare data to be survival-time data

[ST] `sttoct` — Convert survival-time data to count-time data

[ST] survival analysis — Introduction to survival analysis & epidemiological tables commands
**Title**

`stbase` — Form baseline dataset

---

### Syntax

```
stbase [if] [in] [, options]
```

**options**

<table>
<thead>
<tr>
<th>Description</th>
<th>Main</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>at(#)</code></td>
<td>convert single/multiple-record st data to cross-sectional dataset at time #</td>
</tr>
<tr>
<td><code>gap(newvar)</code></td>
<td>name of variable containing gap time; default is <code>gap</code> or <code>gaptime</code></td>
</tr>
<tr>
<td><code>replace</code></td>
<td>overwrite current data in memory</td>
</tr>
<tr>
<td><code>noshow</code></td>
<td>do not show st setting information</td>
</tr>
</tbody>
</table>

**Remarks and examples**

You must `stset` your data before using `stbase`; see `[ST] stset.`

`fweights`, `iweights`, and `pweights` may be specified using `stset`; see `[ST] stset.`

`nopreserve` does not appear in the dialog box.

---

### Menu

Statistics > Survival analysis > Setup and utilities > Form baseline dataset

### Description

`stbase` without the `at()` option converts multiple-record st data to st data with every variable set to its value at baseline, defined as the earliest time at which each subject was observed. `stbase` without `at()` does nothing to single-record st data.

`stbase`, `at()` converts single- or multiple-record st data to a cross-sectional dataset (not st data), recording the number of failures at the specified time. All variables are given their values at baseline—the earliest time at which each subject was observed. In this form, single-failure data could be analyzed by logistic regression and multiple-failure data by Poisson regression, for instance.

`stbase` can be used with single- or multiple-record or single- or multiple-failure st data.

### Options

**Main**

`at(#)` changes what `stbase` does. Without the `at()` option, `stbase` produces another related st dataset. With the `at()` option, `stbase` produces a related cross-sectional dataset.
gap(newvar) is allowed only with at(); it specifies the name of a new variable to be added to the data containing the amount of time the subject was not at risk after entering and before # as specified in at(). If gap() is not specified, the new variable will be named gap or gaptime, depending on which name does not already exist in the data.

replace specifies that it is okay to change the data in memory, even though the dataset has not been saved to disk in its current form.

noshow prevents stbase from showing the key st variables. This option is rarely used because most people type stset, show or stset, noshow to set once and for all whether they want to see these variables mentioned at the top of the output of every st command; see [ST] stset.

The following option is available with stbase but is not shown in the dialog box:

nopreserve is for use by programmers using stbase as a subroutine. It specifies that stbase not preserve the original dataset so that it can be restored should an error be detected or should the user press Break. Programmers would specify this option if, in their program, they had already preserved the original data.

Remarks and examples

Remarks are presented under the following headings:

- stbase without the at() option
- stbase with the at() option
- Single-failure st data where all subjects enter at time 0
- Single-failure st data where some subjects enter after time 0
- Single-failure st data with gaps and perhaps delayed entry
- Multiple-failure st data

stbase without the at() option

Once you type stbase, you may not streset your data, even though the data are st. streset will refuse to run because the data have changed, and if the original rules were reapplied, they might produce different, incorrect results. The st commands use four key variables:

- _t0 the time at which the record came under observation
- _t the time at which the record left observation
- _d 1 if the record left under failure, 0 otherwise
- _st whether the observation is to be used (contains 1 or 0)

These variables are adjusted by stbase. The _t0 and _t variables, in particular, are derived from your variables according to options you specified at the time you stset the data, which might include an origin() rule, an entry() rule, and the like. Once intervening observations are eliminated, those rules will not necessarily produce the same results that they did previously.

To illustrate how stbase works, consider multiple-record, time-varying st data, on which you have performed some analysis. You now wish to compare your results with a simpler, non-time-varying analysis. For instance, suppose that variables x1 and x2 measure blood pressure and weight, respectively, and that readings were taken at various times. Perhaps you fit the model
. use http://www.stata-press.com/data/r13/mfail
. stset
-> stset t, id(id) failure(d) exit(time .) noshow
    id: id
    failure event:  d != 0 & d < .
obs. time interval:  (t[_n-1], t]
exit on or before:  time .

1734  total observations
0  exclusions

1734  observations remaining, representing
926  subjects
808  failures in multiple-failure-per-subject data
435855  total analysis time at risk and under observation
    at risk from t = 0
    earliest observed entry t = 0
    last observed exit t = 960

. stcox x1 x2
Iteration 0:  log likelihood =  -5034.9569
Iteration 1:  log likelihood =  -4978.4198
Iteration 2:  log likelihood =  -4978.1915
Iteration 3:  log likelihood =  -4978.1914
Refining estimates:
Iteration 0:  log likelihood =  -4978.1914
Cox regression -- Breslow method for ties
No. of subjects =  926  Number of obs =  1734
No. of failures =  808
Time at risk =  435855
LR chi2(2) =  113.53
Log likelihood =  -4978.1914  Prob > chi2 =  0.0000

                      _t  |   Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-----------------+-----------------------------------------------
        x1 |   2.273456   .216537     8.62   0.000     1.886311    2.740059
        x2 |   .329011   .0685638    -5.33   0.000     .2186883    .4949888

with these data. You now wish to fit that same model but this time use the values of x1 and x2 at baseline. You do this by typing

. stbase, replace
notes:
  1. no gaps
  2. there were multiple failures or reentries after failures
  3. baseline data has multiple records per id(id)
  4. all records have covariate values at baseline
. stcox x1 x2
Iteration 0:  log likelihood = -7886.9779
Iteration 1:  log likelihood = -7863.9974
Iteration 2:  log likelihood = -7863.9295
Iteration 3:  log likelihood = -7863.9295
Refining estimates:
Iteration 0:  log likelihood = -7863.9295

Cox regression -- Breslow method for ties
No. of subjects = 926  Number of obs = 1734
No. of failures = 1337
Time at risk = 435855
LR chi2(2) = 46.10
Log likelihood = -7863.9295  Prob > chi2 = 0.0000

|   _t |   Haz. Ratio | Std. Err. |     z  |   P>|z| | [95% Conf. Interval] |
|-----|-------------|-----------|-------|--------|----------------------|
|  x1 | 1.413195    | .1107945  | 4.41  | 0.000  | 1.211903 1.647921   |
|  x2 | .4566673    | .0765272  | -4.68 | 0.000  | .3288196 .6342233  |

Another way you could perform the analysis is to type

. generate x1_0 = x1
. generate x2_0 = x2
. stfill x1_0 x2_0, baseline
. stcox x1 x2

See [ST] stfill. The method you use makes no difference, but if there were many explanatory variables, stbase would be easier.

stbase changes the data to record the same events but changes the values of all other variables to their values at the earliest time the subject was observed.

stbase also simplifies the st data where possible. Say that one of your subjects has three records in the original data and ends in a failure:

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After running stbase, this subject would have one record in the data:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Here are some other examples of how stbase would process records with gaps and multiple failure events:

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following example shows numerically what is shown in the diagram above.

```stata
use http://www.stata-press.com/data/r13/stbasexmpl, clear
list id time0 time wgt death, sepby(id)
```

<table>
<thead>
<tr>
<th>id</th>
<th>time0</th>
<th>time</th>
<th>wgt</th>
<th>death</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>114</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>110</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>5</td>
<td>11</td>
<td>118</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>11</td>
<td>111</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>108</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>105</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>113</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>101</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>106</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>6</td>
<td>11</td>
<td>104</td>
</tr>
</tbody>
</table>

```stata
stset time, id(id) fail(death) time0(time0) exit(time .)
```

id: id
failure event: death != 0 & death < .
obs. time interval: (time0, time]
exit on or before: time .

12 total observations
0 exclusions
12 observations remaining, representing
4 subjects
6 failures in multiple-failure-per-subject data
36 total analysis time at risk and under observation
at risk from t = 0
earliest observed entry t = 0
last observed exit t = 11

```stata
list, sepby(id)
```

<table>
<thead>
<tr>
<th>id</th>
<th>time0</th>
<th>time</th>
<th>wgt</th>
<th>death</th>
<th>_st</th>
<th>_d</th>
<th>_t</th>
<th>_t0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>114</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>110</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>5</td>
<td>11</td>
<td>118</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>120</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>11</td>
<td>111</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>108</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>105</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>113</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>98</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>101</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>106</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>6</td>
<td>11</td>
<td>104</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
</tbody>
</table>
. `stbase, replace`

    `failure _d: death`
    `analysis time _t: time`
    `exit on or before: time .`
    `id: id`

notes:
1. there were gaps
2. there were multiple failures or reentries after failures
3. baseline data has multiple records per id(id)
4. all records have covariate values at baseline

. `list, sepby(id)`

<table>
<thead>
<tr>
<th>id</th>
<th>time0</th>
<th>time</th>
<th>wgt</th>
<th>death</th>
<th>_st</th>
<th>_d</th>
<th>_t</th>
<th>_t0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>114</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>11</td>
<td>114</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>120</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>11</td>
<td>120</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>108</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>108</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>98</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>98</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>5</td>
<td>11</td>
<td>98</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
</tbody>
</table>

### stbase with the at() option

`stbase, at()` produces a cross-sectional dataset recording the status of each subject at the specified time. This new dataset is not st. Four "new" variables are created:

- the first entry time for the subject,
- the time on gap,
- the time at risk, and
- the number of failures during the time at risk.

The names given to those variables depend on how your data are `stset`. Pretend that your `stset` command was

```
. `stset var1, failure(var2) time0(var3) ...`
```

Then

<table>
<thead>
<tr>
<th>the first entry time</th>
<th>will be named</th>
<th><code>var3</code> or <code>time0</code> or <code>_t0</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>the time on gap</td>
<td>will be named</td>
<td><code>gap()</code> or <code>gap</code> or <code>gapttime</code></td>
</tr>
<tr>
<td>the time at risk</td>
<td>will be named</td>
<td><code>var1</code></td>
</tr>
<tr>
<td>the number of (or whether) failures</td>
<td>will be named</td>
<td><code>var2</code> or <code>failure</code> or <code>_d</code></td>
</tr>
</tbody>
</table>

The names may vary because, for instance, if you did not specify a `var2` variable when you `stset` your data, `stbase, at()` looks around for a name.

You need not memorize this; the names are obvious from the output produced by `stbase, at()`.

Consider the actions of `stbase, at()` with some particular st datasets. Pretend that the command given is
. use http://www.stata-press.com/data/r13/stbasexmpl2, clear
. list id time0 time wgt death, sepby(id)

<table>
<thead>
<tr>
<th>id</th>
<th>time0</th>
<th>time</th>
<th>wgt</th>
<th>death</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>114</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>8</td>
<td>110</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>11</td>
<td>118</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>111</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>8</td>
<td>108</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>10</td>
<td>98</td>
<td>1</td>
</tr>
</tbody>
</table>

. stset time, id(id) fail(death) time0(time0)
  id: id
  failure event: death != 0 & death < .
  obs. time interval: (time0, time]
  exit on or before: failure

7 total observations
0 exclusions

7 observations remaining, representing
2 subjects
2 failures in single-failure-per-subject data
21 total analysis time at risk and under observation
  at risk from t = 0
  earliest observed entry t = 0
  last observed exit t = 11

. list, sepby(id)

<table>
<thead>
<tr>
<th>id</th>
<th>time0</th>
<th>time</th>
<th>wgt</th>
<th>death</th>
<th>_st</th>
<th>_d</th>
<th>_t</th>
<th>_t0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>114</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>8</td>
<td>110</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>11</td>
<td>118</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>120</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>111</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>8</td>
<td>108</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>10</td>
<td>98</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>
. stbase, at(5) replace
    failure _d: death
analysis time _t: time
    id: id

data now cross-section at time 5

<table>
<thead>
<tr>
<th>Variable</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>subject identifier</td>
</tr>
<tr>
<td>time0</td>
<td>first entry time</td>
</tr>
<tr>
<td>gap</td>
<td>time on gap</td>
</tr>
<tr>
<td>time</td>
<td>time at risk</td>
</tr>
<tr>
<td>death</td>
<td>number of failures during interval time</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>time0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gap</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>time</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>death</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

. list

<table>
<thead>
<tr>
<th>id</th>
<th>wgt</th>
<th>death</th>
<th>time</th>
<th>time0</th>
<th>gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

thus producing a cross-section at analysis time 5.

Note that the value of time specified with the at() option must correspond to time in the analysis scale, that is, \( t \). See [ST] stset for a definition of analysis time.

**Single-failure st data where all subjects enter at time 0**

The result of stbase, at(5) would be one record per subject. Any subject who was censored before time 5 would not appear in the data; the rest would. Those that failed after time 5 will be recorded as having been censored at time 5 (failvar = 0); those that failed at time 5 or earlier will have failvar = 1.

`timevar` will contain

- for the failures:  
  - time of failure \( 5 \) if failed on or before time 5 or
  - \( 5 \) if the subject has not failed yet
- for the censored:  
  - \( 5 \) if the subject has not failed yet

With such data, you could perform

- logistic regression of `failvar` on any of the characteristics or
- incidence-rate analysis, summing the failures (perhaps within strata) and the time at risk, `timevar`.

With these data, you could examine 5-year survival probabilities.
Single-failure st data where some subjects enter after time 0

The data produced by `stbase`, at(5) would be similar to the above, except

- persons who enter on or after time 5 would not be included in the data (because they have not entered yet) and
- the time at risk, `timevar`, would properly account for the time at which each patient entered.

`timevar` (the time at risk) will contain

<table>
<thead>
<tr>
<th>for the failures:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>time of failure</td>
<td>if failed on or before time 5 (or less because</td>
</tr>
<tr>
<td>or less</td>
<td>the subject may not have entered at time 0); or</td>
</tr>
<tr>
<td>5 or less</td>
<td>if the subject has not failed yet (or less</td>
</tr>
<tr>
<td></td>
<td>because the subject may not have entered at time 0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>for the censored:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5 or less</td>
<td>if the subject has not failed yet (or less</td>
</tr>
<tr>
<td></td>
<td>because the subject may not have entered at time 0)</td>
</tr>
</tbody>
</table>

Depending on the analysis you are performing, you may have to discard those that enter late. This is easy to do because `t0` contains the first time of entry.

With these data, you could perform the following:

- Logistic regression of `failvar` on any of the characteristics, but only if you restricted the sample to `if t0 == 0` because those who entered after time 0 have a lesser risk of failing over the fixed interval.
- Incidence-rate analysis, summing the failures (perhaps within stratum) and the time at risk, `timevar`. Here you would have to do nothing differently from what you did in the previous example. The time-at-risk variable already includes the time of entry for each patient.

Single-failure st data with gaps and perhaps delayed entry

These data will be similar to the delayed-entry, no-gap data, but `gap` will contain 0 only for those observations that have no gap.

If analyzing these data, you could perform

- logistic regression, but the sample must be restricted to `if t0 == 0 & gap == 0`, or
- incidence-rate analysis, and nothing would need to be done differently; the time at risk, `timevar`, accounts for late entry and gaps.

Multiple-failure st data

The multiple-failure case parallels the single-failure case, except that `fail` will not solely contain 0 and 1; it will contain 0, 1, 2, ..., depending on the number of failures observed. Regardless of late entry, gaps, etc., you could perform

- Poisson regression of `fail`, the number of events, but remember to specify `exposure(timevar)`, and
- incidence-rate analysis.
Also see

[ST] stfill — Fill in by carrying forward values of covariates
[ST] stset — Declare data to be survival-time data
Syntax

```
stci [if] [in] [, options]
```

### options

<table>
<thead>
<tr>
<th>Main</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>by(varlist)</code></td>
<td>perform separate calculations for each group of <code>varlist</code></td>
</tr>
<tr>
<td><code>median</code></td>
<td>calculate median survival times; the default</td>
</tr>
<tr>
<td><code>rmean</code></td>
<td>calculate mean survival time restricted to longest follow-up time</td>
</tr>
<tr>
<td><code>emean</code></td>
<td>calculate the mean survival time by exponentially extending the survival</td>
</tr>
<tr>
<td>curve to zero</td>
<td></td>
</tr>
<tr>
<td><code>p(#)</code></td>
<td>compute the # percentile of survival times</td>
</tr>
<tr>
<td><code>ccorr</code></td>
<td>calculate the standard error for <code>rmean</code> using a continuity correction</td>
</tr>
<tr>
<td><code>noshow</code></td>
<td>do not show st setting information</td>
</tr>
<tr>
<td><code>dd(#)</code></td>
<td>set maximum number of decimal digits to report</td>
</tr>
<tr>
<td><code>level(#)</code></td>
<td>set confidence level; default is <code>level(95)</code></td>
</tr>
<tr>
<td><code>graph</code></td>
<td>plot exponentially extended survivor function</td>
</tr>
<tr>
<td><code>tmax(#)</code></td>
<td>set maximum analysis time of # to be plotted</td>
</tr>
</tbody>
</table>

### Plot

- `cline_options` affect rendition of the plotted lines

### Add plots

- `addplot(plot)` add other plots to the generated graph

### Y axis, X axis, Titles, Legend, Overall

- `twoway_options` any options other than `by()` documented in [G-3] `twoway_options`

You must `stset` your data before using `stci`; see [ST] `stset`. `by` is allowed; see [D] `by`.

Menu

- Statistics > Survival analysis > Summary statistics, tests, and tables > CIs for means and percentiles of survival time

Description

`stci` computes means and percentiles of survival time, standard errors, and confidence intervals. For multiple-event data, survival time is the time until a failure.

`stci` can be used with single- or multiple-record or single- or multiple-failure st data.
by (varlist) specifies that separate calculations be made for each group identified by equal values of the variables in varlist, resulting in separate summaries and an overall total. varlist may contain any number of variables, each of which may be string or numeric.

median specifies median survival times. This is the default.

rmean and emean specify mean survival times. If the longest follow-up time is censored, emean (extended mean) computes the mean survival by exponentially extending the survival curve to zero, and rmean (restricted mean) computes the mean survival time restricted to the longest follow-up time. If the longest follow-up time is a failure, the restricted mean survival time and the extended mean survival time are equal.

p(#) specifies the percentile of survival time to be computed. For example, p(25) will compute the 25th percentile of survival times, and p(75) will compute the 75th percentile of survival times. Specifying p(50) is the same as specifying the median option.

corr specifies that the standard error for the restricted mean survival time be computed using a continuity correction. corr is valid only with the rmean option.

no show prevents stci from showing the key st variables. This option is seldom used because most people type stset, show or stset, no show to set whether they want to see these variables mentioned at the top of the output of every st command; see [ST] stset.

dd(#) specifies the maximum number of decimal digits to be reported for standard errors and confidence intervals. This option affects only how values are reported and not how they are calculated.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

graph specifies that the exponentially extended survivor function be plotted. This option is valid only when the emean option is also specified and is not valid in conjunction with the by() option.

tmax(#) is for use with the graph option. It specifies the maximum analysis time to be plotted.

cline_options affect the rendition of the plotted lines; see [G-3] cline_options.

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot_option.

twoway_options are any of the options documented in [G-3] twoway_options, excluding by(). These include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see [G-3] saving_option).

Remarks and examples

Remarks are presented under the following headings:

Single-failure data
Multiple-failure data
Here is an example of \texttt{stci} with single-record survival data:

\begin{verbatim}
use http://www.stata-press.com/data/r13/page2
stset, noshow
stci
\end{verbatim}

\begin{verbatim}
no. of subjects 50% Std. Err. [95% Conf. Interval]
\hline total & 40 & 232 & 2.562933 & 213 & 239 \\
\end{verbatim}

\begin{verbatim}
stci, by(group)
\end{verbatim}

\begin{verbatim}
no. of subjects 50% Std. Err. [95% Conf. Interval]
\hline group & 1 & 19 & 216 & 7.661029 & 190 & 234 \\
& 2 & 21 & 233 & 3.081611 & 232 & 280 \\
\hline total & 40 & 232 & 2.562933 & 213 & 239 \\
\end{verbatim}

In the example above, we obtained the median survival time, by default. To obtain the 25th or any other percentile of survival time, specify the \texttt{p(#)} option.

\begin{verbatim}
stci, p(25)
\end{verbatim}

\begin{verbatim}
no. of subjects 25% Std. Err. [95% Conf. Interval]
\hline total & 40 & 198 & 10.76878 & 164 & 220 \\
\end{verbatim}

\begin{verbatim}
stci, p(25) by(group)
\end{verbatim}

\begin{verbatim}
no. of subjects 25% Std. Err. [95% Conf. Interval]
\hline group & 1 & 19 & 190 & 13.43601 & 143 & 213 \\
& 2 & 21 & 232 & 19.42378 & 142 & 233 \\
\hline total & 40 & 198 & 10.76878 & 164 & 220 \\
\end{verbatim}

The $p$-percentile of survival time is the analysis time at which $p\%$ of subjects have failed and $1 - p\%$ have not. In the table above, 25\% of subjects in group 1 failed by time 190, whereas 25\% of subjects in group 2 failed by time 232, indicating a better survival experience for this group.
We can verify the quantities reported by `stci` by plotting and examining the Kaplan–Meier survival curves.

```
. stci, rmean by(group)
```

The mean survival time reported by `rmean` is calculated as the area under the Kaplan–Meier survivor function. If the observation with the largest analysis time is censored, the survivor function does not go to zero. Consequently, the area under the curve underestimates the mean survival time.

In the graph above, the survival probability for `group = 1` goes to 0 at analysis time 344, but the survivor function for `group = 2` never goes to 0. For these data, the mean survival time for `group = 1` will be properly estimated, but it will be underestimated for `group = 2`. When we specify the `rmean` option, Stata informs us if any of the mean survival times is underestimated.

```
. stci, rmean by(group)
```

<table>
<thead>
<tr>
<th>group</th>
<th>no. of restricted subjects</th>
<th>mean</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19</td>
<td>218.7566</td>
<td>9.122424</td>
<td>200.877  236.636</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>241.8571(*)</td>
<td>11.34728</td>
<td>219.617  264.097</td>
</tr>
<tr>
<td>total</td>
<td>40</td>
<td>231.3522(*)</td>
<td>7.700819</td>
<td>216.259  246.446</td>
</tr>
</tbody>
</table>

(*) largest observed analysis time is censored, mean is underestimated

Stata flagged the mean for `group = 2` and the overall mean as being underestimated.

If the largest observed analysis time is censored, `stci`’s `emean` option extends the survivor function from the last observed time to zero by using an exponential function and computes the area under the entire curve.

```
. stci, emean
```

<table>
<thead>
<tr>
<th>no. of extended subjects</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>total 40</td>
<td>234.2557</td>
</tr>
</tbody>
</table>

The resulting area must be evaluated with care because it is an ad hoc approximation that can at times be misleading. We recommend that you plot and examine the extended survivor function. This is facilitated by the use of `stci`’s `graph` option.
stci also works with multiple-record survival data. Here is a summary of the multiple-record Stanford heart transplant data introduced in [ST] stset:

```
. use http://www.stata-press.com/data/r13/stan3
(Heart transplant data)
. stset, noshow
. stci
```

<table>
<thead>
<tr>
<th></th>
<th>no. of subjects</th>
<th>50%</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>103</td>
<td>100</td>
<td>38.64425</td>
<td>69</td>
</tr>
</tbody>
</table>

stci with the by() option may produce results with multiple-record data that you might think are in error:

```
. stci, by(posttran)
```

<table>
<thead>
<tr>
<th>posttran</th>
<th>no. of subjects</th>
<th>50%</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>103</td>
<td>149</td>
<td>43.81077</td>
<td>69</td>
</tr>
<tr>
<td>1</td>
<td>69</td>
<td>96</td>
<td>58.71712</td>
<td>45</td>
</tr>
<tr>
<td>total</td>
<td>103</td>
<td>100</td>
<td>38.64425</td>
<td>69</td>
</tr>
</tbody>
</table>

For the number of subjects, 103 + 69 ≠ 103. The posttran variable is not constant for the subjects in this dataset:

```
. stvary posttran
```

subjects for whom the variable is never always sometimes
<table>
<thead>
<tr>
<th>variable</th>
<th>constant</th>
<th>varying</th>
<th>missing</th>
<th>missing</th>
<th>missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>posttran</td>
<td>34</td>
<td>69</td>
<td>103</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Confidence intervals for means and percentiles of survival time

In this dataset, subjects have one or two records. All subjects were eligible for heart transplantation. They have one record if they die or are lost because of censoring before transplantation, and they have two records if the operation was performed. Then the first record records their survival up to transplantation, and the second records their subsequent survival. *posttran* is 0 in the first record and 1 in the second.

Therefore, all 103 subjects have records with *posttran* = 0, and when *stci* reported results for this group, it summarized the pretransplantation survival. The median survival time was 149 days.

The *posttran* = 1 line of *stci*’s output summarizes the posttransplantation survival: 69 patients underwent transplantation, and the median survival time was 96 days. For these data, this is not 96 more days, but 96 days in total. That is, the clock was not reset on transplantation. Thus, without attributing cause, we can describe the differences between the groups as an increased hazard of death at early times followed by a decreased hazard later.

### Multiple-failure data

If you simply type *stci* with multiple-failure data, the reported survival time is the survival time to the first failure, assuming that the hazard function is not indexed by number of failures.

Here we have some multiple-failure data:

```
. use http://www.stata-press.com/data/r13/mfail2
. stset t, id(id) failure(d) time0(t0) exit(time .) noshow
 id: id
 failure event: d != 0 & d < .
 obs. time interval: (t0, t]
 exit on or before: time .
. stci
```

To understand this output, let’s also obtain output for each failure separately:

```
. stgen nf = nfailures()
. stci, by(nf)
```

The *stgen* command added, for each subject, a variable containing the number of previous failures. *nf* is 0 for a subject, up to and including the first failure. Then *nf* is 1 up to and including the second failure, and then it is 2, and so on; see [ST] *stgen*.

The first line, corresponding to *nf* = 0, states that among those who had experienced no failures yet, the median time to first failure is 399.

Similarly, the second line, corresponding to *nf* = 1, is for those who have already experienced one failure. The median time of second failures is 503.
When we simply typed `stci`, we obtained the same information shown as the total line of the more detailed output. The total survival time distribution is an estimate of the distribution of the time to first failure, assuming that the hazard function, \( h(t) \), is the same across failures—that the second failure is no different from the first failure. This is an odd definition of same because the clock, \( t \), is not reset in \( h(t) \) upon failure. The hazard of a failure—any failure—at time \( t \) is \( h(t) \).

Another definition of same would have it that the hazard of a failure is given by \( h(\tau) \), where \( \tau \) is the time since the last failure—that the process resets itself. These definitions are different unless \( h() \) is a constant function of \( t \).

Let's examine this multiple-failure data, assuming that the process repeats itself. The key variables in this `st` data are `id`, `t0`, `t`, and `d`:

```
. st
-> stset t, id(id) failure(d) time0(t0) exit(time .) noshow
 id: id
 failure event: d != 0 & d < .
 obs. time interval: (t0, t]
 exit on or before: time .
```

Our goal, for each subject, is to reset `t0` and `t` to 0 after every failure event. We must trick Stata, or at least trick `stset` because it will not let us set data where the same subject has multiple records summarizing the overlapping periods. The trick is create a new `id` variable that is different for every `id–nf` combination (remember, `nf` is the variable we previously created that records the number of prior failures). Then each of the “new” subjects can have their clock start at time 0:

```
. egen newid = group(id nf)
. sort newid t
. by newid: replace t = t - t0[1]
 (808 real changes made)
. by newid: gen newt0 = t0 - t0[1]
. stset t, failure(d) id(newid) time0(newt0)
 id: newid
 failure event: d != 0 & d < .
 obs. time interval: (newt0, t]
 exit on or before: failure
```

```
1734 total observations
0 exclusions
```

```
1734 observations remaining, representing
1734 subjects
808 failures in single-failure-per-subject data
435444 total analysis time at risk and under observation
 at risk from t = 0
 earliest observed entry t = 0
 last observed exit t = 797
```

`stset` no longer thinks that we have multiple-failure data. Whereas with `id`, subjects had multiple failures, `newid` gives a unique identity to each `id–nf` combination. Each “new” subject has at most one failure.
. stci, by(nf)
  failure _d: d
  analysis time _t: t
  id: newid

<table>
<thead>
<tr>
<th>nf</th>
<th>no. of subjects</th>
<th>50%</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>926</td>
<td>399</td>
<td>13.91796</td>
<td>381 430</td>
</tr>
<tr>
<td>1</td>
<td>529</td>
<td>384</td>
<td>18.22987</td>
<td>359 431</td>
</tr>
<tr>
<td>2</td>
<td>221</td>
<td>444</td>
<td>29.80391</td>
<td>325 515</td>
</tr>
<tr>
<td>3</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>total</td>
<td>1734</td>
<td>404</td>
<td>386 430</td>
</tr>
</tbody>
</table>

Compare this table with the one we previously obtained. The number of subjects is the same, but the survival times differ because now we measure the times from one failure to the next, whereas previously we measured the time from a fixed point. The time between events in these data appears to be independent of event number.

Similarly, we can obtain the mean survival time for these data restricted to the longest follow-up time:

. stci, rmean by(nf)
  failure _d: d
  analysis time _t: t
  id: newid

<table>
<thead>
<tr>
<th>nf</th>
<th>no. of restricted subjects</th>
<th>mean</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>926</td>
<td>399.1802</td>
<td>8.872794</td>
<td>381.79 416.571</td>
</tr>
<tr>
<td>1</td>
<td>529</td>
<td>397.0077(*)</td>
<td>13.36058</td>
<td>370.821 423.194</td>
</tr>
<tr>
<td>2</td>
<td>221</td>
<td>397.8051(*)</td>
<td>25.78559</td>
<td>347.266 448.344</td>
</tr>
<tr>
<td>3</td>
<td>58</td>
<td>471(*)</td>
<td>0</td>
<td>471 471</td>
</tr>
<tr>
<td></td>
<td>total</td>
<td>1734</td>
<td>404.7006</td>
<td>390.938 418.463</td>
</tr>
</tbody>
</table>

(* largest observed analysis time is censored, mean is underestimated)

Stored results

stci stores the following in r():

Scalars
- r(N_sub) : number of subjects
- r(se) : standard error
- r(p#) : #{th percentile
- r(lb) : lower bound of CI
- r(rmean) : restricted mean
- r(ub) : upper bound of CI
- r(emean) : extended mean

Methods and formulas

The percentiles of survival times are obtained from $S(t)$, the Kaplan–Meier product-limit estimate of the survivor function. The 25th percentile, for instance, is obtained as the minimum value of $t$ such that $S(t) \leq 0.75$. The restricted mean is obtained as the area under the Kaplan–Meier product-limit survivor curve. The extended mean is obtained by extending the Kaplan–Meier product-limit survivor curve to zero by using an exponentially fitted curve and then computing the area under the entire curve. If the longest follow-up time ends in failure, the Kaplan–Meier product-limit survivor curve goes to zero, and the restricted mean and extended mean are identical.
The large-sample standard error for the \( p \)th percentile of the distribution is given by Collett (2003, 35) and Klein and Moeschberger (2003, 122) as

\[
\sqrt{\text{Var}\{\hat{S}(t_p)\}} \bigg/ \hat{f}(t_p)
\]

where \( \text{Var}\{\hat{S}(t_p)\} \) is the Greenwood pointwise variance estimate for \( \hat{S}(t_p) \) and \( \hat{f}(t_p) \) is the estimated density function at the \( p \)th percentile.

Confidence intervals, however, are not calculated based on this standard error. For a given confidence level, the upper confidence limit for the \( p \)th percentile is defined as the first time at which the upper confidence limit for \( S(t) \) (based on a \( \ln\{-\ln S(t)\} \) transformation) is less than or equal to \( 1 - p/100 \), and, similarly, the lower confidence limit is defined as the first time at which the lower confidence limit of \( S(t) \) is less than or equal to \( 1 - p/100 \).

The restricted mean is obtained as the area under the Kaplan–Meier product-limit survivor curve. The extended mean is obtained by extending the Kaplan–Meier product-limit survivor curve to zero by using an exponentially fitted curve and then computing the area under the entire curve. If the longest follow-up time ends in failure, the Kaplan–Meier product-limit survivor curve goes to zero, and the restricted mean and the extended mean are identical.

The standard error for the estimated restricted mean is computed as given by Klein and Moeschberger (2003, 118) and Collett (2003, 340):

\[
\hat{\text{SE}} = \sum_{i=1}^{D} \hat{A}_i \sqrt{\frac{d_i}{R_i(R_i - d_i)}}
\]

where the sum is over all distinct failure times, \( \hat{A}_i \) is the estimated area under the curve from time \( i \) to the maximum follow-up time, \( R_i \) is the number of subjects at risk at time \( i \), and \( d_i \) is the number of failures at time \( i \).

The 100(1 – \( \alpha \))% confidence interval for the estimated restricted mean is computed as

\[
\hat{A}_i \pm Z_{1-\alpha/2}\hat{\text{SE}}
\]

References


Also see

[ST] stdescribe — Describe survival-time data
[ST] stir — Report incidence-rate comparison
[ST] stptime — Calculate person-time, incidence rates, and SMR
[ST] sts — Generate, graph, list, and test the survivor and cumulative hazard functions
[ST] stset — Declare data to be survival-time data
[ST] stvary — Report variables that vary over time
## Syntax

```
stcox [varlist] [if] [in] [, options]
```

### options

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>estimate</code></td>
<td>fit model without covariates</td>
</tr>
<tr>
<td><code>strata(varnames)</code></td>
<td>strata ID variables</td>
</tr>
<tr>
<td><code>shared(varname)</code></td>
<td>shared-frailty ID variable</td>
</tr>
<tr>
<td><code>offset(varname)</code></td>
<td>include <code>varname</code> in model with coefficient constrained to 1</td>
</tr>
<tr>
<td><code>breslow</code></td>
<td>use Breslow method to handle tied failures; the default</td>
</tr>
<tr>
<td><code>efron</code></td>
<td>use Efron method to handle tied failures</td>
</tr>
<tr>
<td><code>exactm</code></td>
<td>use exact marginal-likelihood method to handle tied failures</td>
</tr>
<tr>
<td><code>exactp</code></td>
<td>use exact partial-likelihood method to handle tied failures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time varying</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tvc(varlist)</code></td>
<td>time-varying covariates</td>
</tr>
<tr>
<td><code>texp(exp)</code></td>
<td>multiplier for time-varying covariates; default is <code>texp(_t)</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SE/Robust</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vce(vcetype)</code></td>
<td><code>vcetype</code> may be <code>oim</code>, <code>robust</code>, <code>cluster clustvar</code>, <code>bootstrap</code>, or <code>jackknife</code></td>
</tr>
<tr>
<td><code>noadjust</code></td>
<td>do not use standard degree-of-freedom adjustment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reporting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>level(#)</code></td>
<td>set confidence level; default is <code>level(95)</code></td>
</tr>
<tr>
<td><code>nohr</code></td>
<td>report coefficients, not hazard ratios</td>
</tr>
<tr>
<td><code>noshow</code></td>
<td>do not show st setting information</td>
</tr>
<tr>
<td><code>display_options</code></td>
<td>control column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximization</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>maximize_options</code></td>
<td>control the maximization process; seldom used</td>
</tr>
<tr>
<td><code>coeflegend</code></td>
<td>display legend instead of statistics</td>
</tr>
</tbody>
</table>
You must \texttt{stset} your data before using \texttt{stcox}; see [ST] \texttt{stset}.

\texttt{varlist} may contain factor variables; see [U] 11.4.3 Factor variables.

\texttt{bootstrap}, \texttt{by}, \texttt{fp}, \texttt{jackknife}, \texttt{mfp}, \texttt{mi estimate}, \texttt{nestreg}, \texttt{statsby}, \texttt{stepwise}, and \texttt{svy} are allowed; see [U] 11.1.10 Prefix commands.

\texttt{vce(bootstrap)} and \texttt{vce(jackknife)} are not allowed with the \texttt{mi estimate} prefix; see [MI] \texttt{mi estimate}.

\texttt{estimate}, \texttt{shared()}, \texttt{efron}, \texttt{exactm}, \texttt{exactp}, \texttt{tvc()}, \texttt{texp()}, \texttt{vce()}, and \texttt{noadjust} are not allowed with the \texttt{svy} prefix; see [SVY] \texttt{svy}.

\texttt{fweight}s, \texttt{iweight}s, and \texttt{pweight}s may be specified using \texttt{stset}; see [ST] \texttt{stset}. Weights are not supported with \texttt{efron} and \texttt{exactp}. Also weights may not be specified if you are using the \texttt{bootstrap} prefix with the \texttt{stcox} command.

\texttt{coeflegend} does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

\textbf{Menu}

Statistics > Survival analysis > Regression models > Cox proportional hazards model

\textbf{Description}

\texttt{stcox} fits, via maximum likelihood, proportional hazards models on \texttt{st} data. \texttt{stcox} can be used with single- or multiple-record or single- or multiple-failure \texttt{st} data.

\textbf{Options}

\begin{itemize}
  \item \texttt{estimate} forces fitting of the null model. All Stata estimation commands redisplay results when the command name is typed without arguments. So does \texttt{stcox}. What if you wish to fit a Cox model on $x_j \beta$, where $x_j \beta$ is defined as $0$? Logic says that you would type \texttt{stcox}. There are no explanatory variables, so there is nothing to type after the command. Unfortunately, this looks the same as \texttt{stcox} typed without arguments, which is a request to redisplay results.

  To fit the null model, type \texttt{stcox, estimate}.

  \texttt{strata(varnames)} specifies up to five strata variables. Observations with equal values of the strata variables are assumed to be in the same stratum. Stratified estimates (equal coefficients across strata but with a baseline hazard unique to each stratum) are then obtained.

  \texttt{shared(varname)} specifies that a Cox model with shared frailty be fit. Observations with equal value of \texttt{varname} are assumed to have shared (the same) frailty. Across groups, the frailties are assumed to be gamma-distributed latent random effects that affect the hazard multiplicatively, or, equivalently, the logarithm of the frailty enters the linear predictor as a random offset. Think of a shared-frailty model as a Cox model for panel data. \texttt{varname} is a variable in the data that identifies the groups. \texttt{shared()} is not allowed in the presence of delayed entries or gaps.

  Shared-frailty models are discussed more in \textit{Cox regression with shared frailty}.

  \texttt{offset(varname)}; see [R] estimation options.

  \texttt{breslow}, \texttt{efron}, \texttt{exactm}, and \texttt{exactp} specify the method for handling tied failures in the calculation of the log partial likelihood (and residuals). \texttt{breslow} is the default. Each method is described in \textit{Treatment of tied failure times}. \texttt{efron} and the exact methods require substantially more computer time than the default \texttt{breslow} option. \texttt{exactm} and \texttt{exactp} may not be specified with \texttt{tvc()}, \texttt{vce(robust)}, or \texttt{vce(cluster clustvar)}.
\end{itemize}
**tvc(varlist)** specifies those variables that vary continuously with respect to time, that is, time-varying covariates. This is a convenience option used to speed up calculations and to avoid having to **stsplit** (see [ST] stsplit) the data over many failure times.

**texp(exp)** is used in conjunction with **tvc(varlist)** to specify the function of analysis time that should be multiplied by the time-varying covariates. For example, specifying **texp(ln(_t))** would cause the time-varying covariates to be multiplied by the logarithm of analysis time. If **tvc(varlist)** is used without **texp(exp)**, Stata understands that you mean **texp(t)** and thus multiplies the time-varying covariates by the analysis time.

Both **tvc(varlist)** and **texp(exp)** are explained more in the section on Cox regression with continuous time-varying covariates below.

**vce(vcetype)** specifies the type of standard error reported, which includes types that are derived from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

**noadjust** is for use with **vce(robust)** or **vce(cluster clustvar)**. **noadjust** prevents the estimated variance matrix from being multiplied by \( N/(N-1) \) or \( g/(g-1) \), where \( g \) is the number of clusters. The default adjustment is somewhat arbitrary because it is not always clear how to count observations or clusters. In such cases, however, the adjustment is likely to be biased toward 1, so we would still recommend making it.

**level(#)***; see [R] estimation options.

**nohr** specifies that coefficients be displayed rather than exponentiated coefficients or hazard ratios. This option affects only how results are displayed and not how they are estimated. **nohr** may be specified at estimation time or when redisplaying previously estimated results (which you do by typing stcox without a variable list).

**noshow** prevents stcox from showing the key st variables. This option is seldom used because most people type stset, show or stset, noshow to set whether they want to see these variables mentioned at the top of the output of every st command; see [ST] stset.

**display_options:** noomitted, vsquish, noemptycells, baselevels, alllbaselevels,nofvlabel, fvwrap(#), fvwrapon(style), cformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch; see [R] estimation options.

**maximize_options:** iterate(#), [no]log, trace, tolerance(#), ltolerance(#), nrtolerance(#), and nonrtolerance; see [R] maximize. These options are seldom used.

The following option is available with stcox but is not shown in the dialog box:

**coeflegend**; see [R] estimation options.
Remarks and examples

Remarks are presented under the following headings:

- Cox regression with uncensored data
- Cox regression with censored data
- Treatment of tied failure times
- Cox regression with discrete time-varying covariates
- Cox regression with continuous time-varying covariates
- Robust estimate of variance
- Cox regression with multiple-failure data
- Stratified estimation
- Cox regression as Poisson regression
- Cox regression with shared frailty

What follows is a summary of what can be done with *stcox*. For a complete tutorial, see Cleves et al. (2010), which devotes three chapters to this topic.

In the Cox proportional hazards model (Cox 1972), the hazard is assumed to be

\[ h(t) = h_0(t) \exp(\beta_1 x_1 + \cdots + \beta_k x_k) \]

The Cox model provides estimates of \( \beta_1, \ldots, \beta_k \) but provides no direct estimate of \( h_0(t) \)—the baseline hazard. Formally, the function \( h_0(t) \) is not directly estimated, but it is possible to recover an estimate of the cumulative hazard \( H_0(t) \) and, from that, an estimate of the baseline survivor function \( S_0(t) \).

*stcox* fits the Cox proportional hazards model; that is, it provides estimates of \( \beta \) and its variance–covariance matrix. Estimates of \( H_0(t) \), \( S_0(t) \), and other predictions and diagnostics are obtained with *predict* after *stcox*; see [ST] *stcox postestimation*. For information on fitting a Cox model to survey data, see Cleves et al. (2010, sec. 9.5), and for information on handling missing data, see Cleves et al. (2010, sec. 9.6).

*stcox* with the `strata()` option will produce stratified Cox regression estimates. In the stratified estimator, the hazard at time \( t \) for a subject in group \( i \) is assumed to be

\[ h_i(t) = h_{0i}(t) \exp(\beta_1 x_1 + \cdots + \beta_k x_k) \]

That is, the coefficients are assumed to be the same, regardless of group, but the baseline hazard can be group specific.

Regardless of whether you specify `strata()`, the default variance estimate is to calculate the conventional, inverse matrix of negative second derivatives. The theoretical justification for this estimator is based on likelihood theory. The `vce(robust)` option instead switches to the robust measure developed by Lin and Wei (1989). This variance estimator is a variant of the estimator discussed in [U] 20.21 Obtaining robust variance estimates.

*stcox* with the `shared()` option fits a Cox model with shared frailty. A frailty is a group-specific latent random effect that multiplies into the hazard function. The distribution of the frailties is gamma with mean 1 and variance to be estimated from the data. Shared-frailty models are used to model within-group correlation. Observations within a group are correlated because they share the same frailty.

We give examples below with uncensored, censored, time-varying, and recurring failure data, but it does not matter in terms of what you type. Once you have *stset* your data, to fit a model you type *stcox* followed by the names of the explanatory variables. You do this whether your dataset has single or multiple records, includes censored observations or delayed entry, or even has single or multiple failures. You use *stset* to describe the properties of the data, and then that information is available to *stcox*—and all the other st commands—so that you do not have to specify it again.
Cox regression with uncensored data

Example 1

We wish to analyze an experiment testing the ability of emergency generators with a new-style bearing to withstand overloads. For this experiment, the overload protection circuit was disabled, and the generators were run overloaded until they burned up. Here are our data:

```
. use http://www.stata-press.com/data/r13/kva
 (Generator experiment)
 . list
 failtime load bearings
 1. 100 15 0
 2. 140 15 1
 3. 97 20 0
 4. 122 20 1
 5. 84 25 0
 6. 100 25 1
 7. 54 30 0
 8. 52 30 1
 9. 40 35 0
10. 55 35 1
11. 22 40 0
12. 30 40 1
```

Twelve generators, half with the new-style bearings and half with the old, were allocated to this destructive test. The first observation reflects an old-style generator (bearings = 0) under a 15-kVA overload. It stopped functioning after 100 hours. The second generator had new-style bearings (bearings = 1) and, under the same overload condition, lasted 140 hours. Paired experiments were also performed under overloads of 20, 25, 30, 35, and 40 kVA.

We wish to fit a Cox proportional hazards model in which the failure rate depends on the amount of overload and the style of the bearings. That is, we assume that bearings and load do not affect the shape of the overall hazard function, but they do affect the relative risk of failure. To fit this model, we type

```
. stset failtime
 (output omitted)
. stcox load bearings
 failure _d: 1 (meaning all fail)
 analysis time _t: failtime
 Iteration 0: log likelihood = -20.274897
 Iteration 1: log likelihood = -10.515114
 Iteration 2: log likelihood = -8.8700259
 Iteration 3: log likelihood = -8.5915211
 Iteration 4: log likelihood = -8.5778991
 Iteration 5: log likelihood = -8.577853
Refining estimates:
 Iteration 0: log likelihood = -8.577853
```

We find that after controlling for overload, the new-style bearings result in a lower hazard and therefore a longer survivor time.

Once an \texttt{stcox} model has been fit, typing \texttt{stcox} without arguments redisplays the previous results. Options that affect the display, such as \texttt{nohr}—which requests that coefficients rather than hazard ratios be displayed—can be specified upon estimation or when results are redisplayed:

\begin{verbatim}
. stcox, nohr
Cox regression -- Breslow method for ties
No. of subjects =  12 Number of obs =  12
No. of failures =  12
Time at risk =  896
LR chi2(2) =  23.39
Log likelihood = -8.577853 Prob > chi2 =  0.0000
\end{verbatim}

\begin{verbatim}
  _t     Haz. Ratio Std. Err.  z   P>|z|   [95% Conf. Interval]
  load 1.52647 .2188172  2.95 0.003 1.152576 2.021653
  bearings .0636433 .0746609 -2.35 0.019 .0063855 .6343223
\end{verbatim}

\section*{Technical note}

\texttt{stcox}'s iteration log looks like a standard Stata iteration log up to where it says “Refining estimates”. The Cox proportional-hazards likelihood function is indeed a difficult function, both conceptually and numerically. Until Stata says “Refining estimates”, it maximizes the Cox likelihood in the standard way by using double-precision arithmetic. Then just to be sure that the answers are accurate, Stata switches to quad-precision routines (double double precision) and completes the maximization procedure from its current location on the likelihood.

\section*{Cox regression with censored data}

\subsection*{Example 2}

We have data on 48 participants in a cancer drug trial. Of these 48, 28 receive treatment (\texttt{drug} = 1) and 20 receive a placebo (\texttt{drug} = 0). The participants range in age from 47 to 67 years. We wish to analyze time until death, measured in months. Our data include 1 observation for each patient. The variable \texttt{studytime} records either the month of their death or the last month that they were known to be alive. Some of the patients still live, so together with \texttt{studytime} is \texttt{died}, indicating their health status. Persons known to have died—“noncensored” in the jargon—have died = 1, whereas the patients who are still alive—“right-censored” in the jargon—have died = 0.
Here is an overview of our data:

```
. use http://www.stata-press.com/data/r13/drugtr
 (Patient Survival in Drug Trial)
 . st
 -> stset studytime, failure(died)
 failure event: died != 0 & died < .
 obs. time interval: (0, studytime]
 exit on or before: failure

. summarize
 Variable | Obs Mean Std. Dev. Min Max

 studytime | 48 15.5 10.25629 1 39
 died | 48 .6458333 .4833211 0 1
 drug | 48 .5833333 .4982238 0 1
 age | 48 55.875 5.659205 47 67
 _st | 48 1 0 1 1
 _d | 48 .6458333 .4833211 0 1
 _t | 48 15.5 10.25629 1 39
 _t0 | 48 0 0 0 0
```

We typed `stset studytime, failure(died)` previously; that is how `st` knew about this dataset. To fit the Cox model, we type

```
. stcox drug age
 failure _d: died
 analysis time _t: studytime
```

Iteration 0:  log likelihood =  -99.911448
Iteration 1:  log likelihood = -83.551879
Iteration 2:  log likelihood = -83.324009
Iteration 3:  log likelihood = -83.323546
Refining estimates:
Iteration 0:  log likelihood = -83.323546

Cox regression -- Breslow method for ties

|    _t  | Haz. Ratio | Std. Err. |    z |  P>|z| | [95% Conf. Interval] |
|------|-----------|-----------|-----|------|---------------------|
|   drug |  .1048772 |  .0477017 | -4.96| 0.000|   .0430057 - .2557622|
|   age  |  1.120325 |  .0417711 |  3.05| 0.002|   1.041375 - 1.20526|

We find that the drug results in a lower hazard—and therefore a longer survivor time—controlling for age. Older patients are more likely to die. The model as a whole is statistically significant.

The hazard ratios reported correspond to a one-unit change in the corresponding variable. It is more typical to report relative risk for 5-year changes in age. To obtain such a hazard ratio, we create a new age variable such that a one-unit change indicates a 5-year change:
. replace age = age/5
age was int now float
(48 real changes made)
. stcox drug age, nolog
  failure _d: died
  analysis time _t: studytime
Cox regression -- Breslow method for ties

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Haz. Ratio</td>
<td>Std. Err.</td>
<td>z</td>
<td>P&gt;</td>
<td>z</td>
<td></td>
</tr>
<tr>
<td>_t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>drug</td>
<td>.1048772</td>
<td>.0477017</td>
<td>-4.96</td>
<td>.000</td>
<td>.0430057</td>
<td>.2557622</td>
</tr>
<tr>
<td>age</td>
<td>1.764898</td>
<td>.3290196</td>
<td>3.05</td>
<td>.002</td>
<td>1.224715</td>
<td>2.543338</td>
</tr>
</tbody>
</table>

Treatment of tied failure times

The proportional hazards model assumes that the hazard function is continuous and, thus, that there are no tied survival times. Because of the way that time is recorded, however, tied events do occur in survival data. In such cases, the partial likelihood must be modified. See Methods and formulas for more details on the methods described below.

Stata provides four methods for handling tied failures in calculating the Cox partial likelihood through the breslow, efron, exactm, and exactp options. If there are no ties in the data, the results are identical, regardless of the method selected.

Cox regression is a series of comparisons of those subjects who fail to those subjects at risk of failing; we refer to the latter set informally as a risk pool. When there are tied failure times, we must decide how to calculate the risk pools for these tied observations. Assume that there are 2 observations that fail in succession. In the calculation involving the second observation, the first observation is not in the risk pool because failure has already occurred. If the two observations have the same failure time, we must decide how to calculate the risk pool for the second observation and in which order to calculate the two observations.

There are two views of time. In the first, time is continuous, so ties should not occur. If they have occurred, the likelihood reflects the marginal probability that the tied-failure events occurred before the nonfailure events in the risk pool (the order that they occurred is not important). This is called the exact marginal likelihood (option exactm).

In the second view, time is discrete, so ties are expected. The likelihood is changed to reflect this discreteness and calculates the conditional probability that the observed failures are those that fail in the risk pool given the observed number of failures. This is called the exact partial likelihood (option exactp).

Let’s assume that there are five subjects—$e_1$, $e_2$, $e_3$, $e_4$, and $e_5$—in the risk pool and that subjects $e_1$ and $e_2$ fail. Had we been able to observe the events at a better resolution, we might have seen that $e_1$ failed from risk pool $e_1 + e_2 + e_3 + e_4 + e_5$ and then $e_2$ failed from risk pool $e_2 + e_3 + e_4 + e_5$. Alternatively, $e_2$ might have failed first from risk pool $e_1 + e_2 + e_3 + e_4 + e_5$, and then $e_1$ failed from risk pool $e_1 + e_3 + e_4 + e_5$. 


The Breslow method (option `breslow`) for handling tied values simply says that because we do not know the order, we will use the largest risk pool for each tied failure event. This method assumes that both $e_1$ and $e_2$ failed from risk pool $e_1 + e_2 + e_3 + e_4 + e_5$. This approximation is fast and is the default method for handling ties. If there are many ties in the dataset, this approximation will not be accurate because the risk pools include too many observations. The Breslow method is an approximation of the exact marginal likelihood.

The Efron method (option `efron`) for handling tied values assumes that the first risk pool is $e_1 + e_2 + e_3 + e_4 + e_5$ and the second risk pool is either $e_2 + e_3 + e_4 + e_5$ or $e_1 + e_3 + e_4 + e_5$. From this, Efron noted that the $e_1$ and $e_2$ terms were in the second risk pool with probability $1/2$ and so used for the second risk pool $.5(e_1 + e_2) + e_3 + e_4 + e_5$. Efron’s approximation is a more accurate approximation of the exact marginal likelihood than Breslow’s but takes longer to calculate.

The exact marginal method (option `exactm`) is a misnomer in that the calculation performed is also an approximation of the exact marginal likelihood. It is an approximation because it evaluates the likelihood (and derivatives) by using 15-point Gauss–Laguerre quadrature. For small-to-moderate samples, this is slower than the Efron approximation, but the difference in execution time diminishes when samples become larger. You may want to consider the quadrature when deciding to use this method. If the number of tied deaths is large (on average), the quadrature approximation of the function is not well behaved. A little empirical checking suggests that if the number of tied deaths is larger (on average) than 30, the quadrature does not approximate the function well.

When we view time as discrete, the exact partial method (option `exactp`) is the final method available. This approach is equivalent to computing conditional logistic regression where the groups are defined by the risk sets and the outcome is given by the death variable. This is the slowest method to use and can take a significant amount of time if the number of tied failures and the risk sets are large.

### Cox regression with discrete time-varying covariates

#### Example 3

In [ST] `stset`, we introduce the Stanford heart transplant data in which there are one or two records per patient depending on whether they received a new heart.

This dataset (Crowley and Hu 1977) consists of 103 patients admitted to the Stanford Heart Transplantation Program. Patients were admitted to the program after review by a committee and then waited for an available donor heart. While waiting, some patients died or were transferred out of the program, but 67% received a transplant. The dataset includes the year the patient was accepted into the program along with the patient’s age, whether the patient had other heart surgery previously, and whether the patient received a transplant.

In the data, `posttran` becomes 1 when a patient receives a new heart, so it is a time-varying covariate. That does not, however, affect what we type to fit the model:

```
. use http://www.stata-press.com/data/r13/stan3, clear
 (Heart transplant data)
. stset t1, failure(died) id(id)
 (output omitted)
```
. stcox age posttran surg year
    failure _d: died
    analysis time _t: t1
    id: id

Iteration 0:  log likelihood =  -298.31514
Iteration 1:  log likelihood = -289.73440
Iteration 2:  log likelihood = -289.53498
Iteration 3:  log likelihood = -289.53378
Iteration 4:  log likelihood = -289.53378

Refining estimates:
Iteration 0:  log likelihood = -289.53378

Cox regression -- Breslow method for ties
No. of subjects =   103  Number of obs =     172
No. of failures =     75  Time at risk = 31938.1

LR chi2(4) =  17.56  Prob > chi2 = 0.0015

 Haz. Ratio Std. Err.     z   P>|z|    [95% Conf. Interval]
--- -------- ------- ------ ------ ----------------------
age      1.030224  0.0143201  2.14  0.032   1.002536   1.058677
posttran .9787243  0.3032597  -0.07  0.945   0.5332291  1.796416
surgery  .3738278  0.163204   -2.25  0.024   0.1588759  0.879606
year     .8873107  0.059808   -1.77  0.076   0.7775022  1.012628

We find that older patients have higher hazards, that patients tend to do better over time, and that patients with prior surgery do better. Whether a patient ultimately receives a transplant does not seem to make much difference.

Cox regression with continuous time-varying covariates

The basic proportional hazards regression assumes the relationship

\[ h(t) = h_0(t) \exp(\beta_1 x_1 + \cdots + \beta_k x_k) \]

where \( h_0(t) \) is the baseline hazard function. For most purposes, this model is sufficient, but sometimes we may wish to introduce variables of the form \( z_i(t) = z_i g(t) \), which vary continuously with time so that

\[ h(t) = h_0(t) \exp \{\beta_1 x_1 + \cdots + \beta_k x_k + g(t)(\gamma_1 z_1 + \cdots + \gamma_m z_m)\} \]  \hspace{1cm} (1)

where \( z_1, \ldots, z_m \) are the time-varying covariates and where estimation has the net effect of estimating, say, a regression coefficient, \( \gamma_i \), for a covariate, \( g(t)z_i \), which is a function of the current time.

The time-varying covariates \( z_1, \ldots, z_m \) are specified by using the \texttt{tvc(varlist)} option, and \( g(t) \) is specified by using the \texttt{texp(exp)} option, where \( t \) in \( g(t) \) is analysis time. For example, if we want \( g(t) = \log(t) \), we would use \texttt{texp(log(_t))} because \_t stores the analysis time once the data are \texttt{stset}.

Because the calculations in Cox regression concern themselves only with the times at which failures occur, the above results could also be achieved by \texttt{stsplit}ting the data at the observed failure times and manually generating the time-varying covariates. When this is feasible, \texttt{tvc()} merely represents a more convenient way to accomplish this. However, for large datasets with many distinct failure times, using \texttt{stsplit} may produce datasets that are too large to fit in memory, and even if this were not so, the estimation would take far longer to complete. For these reasons, the \texttt{tvc()} and \texttt{texp()} options described above were introduced.
Example 4

Consider a dataset consisting of 45 observations on recovery time from walking pneumonia. Recovery time (in days) is recorded in the variable `time`, and there are measurements on the covariates `age`, `drug1`, and `drug2`, where `drug1` and `drug2` interact a choice of treatment with initial dosage level. The study was terminated after 30 days, so those who had not recovered by that time were censored (`cured = 0`).

```
. use http://www.stata-press.com/data/r13/drugtr2
. list age drug1 drug2 time cured in 1/12, separator(0)

<table>
<thead>
<tr>
<th>age</th>
<th>drug1</th>
<th>drug2</th>
<th>time</th>
<th>cured</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>0</td>
<td>50</td>
<td>20.6</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>50</td>
<td>6.8</td>
<td>1</td>
</tr>
<tr>
<td>43</td>
<td>0</td>
<td>125</td>
<td>8.6</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>100</td>
<td>0</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>0</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>100</td>
<td>13.6</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>150</td>
<td>0</td>
<td>5.4</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>100</td>
<td>15.4</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>125</td>
<td>0</td>
<td>8.6</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>150</td>
<td>0</td>
<td>8.5</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>0</td>
<td>100</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Patient 1 took 50 mg of drug number 2 and was cured after 20.6 days, whereas patient 5 took 100 mg of drug number 1 and had yet to recover when the study ended and so was censored at 30 days.

We run a standard Cox regression after `stset`ting the data:

```
. stset time, failure(cured)
 failure event: cured != 0 & cured < .
 obs. time interval: (0, time]
 exit on or before: failure

45 total observations
 0 exclusions

45 observations remaining, representing
36 failures in single-record/single-failure data
677.9 total analysis time at risk and under observation

at risk from t = 0
earliest observed entry t = 0
last observed exit t = 30
The output includes p-values for the tests of the null hypotheses that each regression coefficient is 0 or, equivalently, that each hazard ratio is 1. That all hazard ratios are apparently close to 1 is a matter of scale; however, we can see that drug number 1 significantly increases the risk of being cured and so is an effective drug, whereas drug number 2 is ineffective (given the presence of age and drug number 1 in the model).

Suppose now that we wish to fit a model in which we account for the effect that as time goes by, the actual level of the drug remaining in the body diminishes, say, at an exponential rate. If it is known that the half-life of both drugs is close to 2 days, we can say that the actual concentration level of the drug in the patient’s blood is proportional to the initial dosage times, \(\exp(-0.35t) \), where \(t \) is analysis time. We now fit a model that reflects this change.

The first equation, \(rh \), reports the results (hazard ratios) for the covariates that do not vary over time; the second equation, \(t \), reports the results for the time-varying covariates.
As the level of drug in the blood system decreases, the drug’s effectiveness diminishes. Accounting for this serves to unmask the effects of both drugs in that we now see increased effects on both. In fact, the effect on recovery time of drug number 2 now becomes significant.

Technical note

The interpretation of hazard ratios requires careful consideration here. For the first model, the hazard ratio for, say, drug1, is interpreted as the proportional change in hazard when the dosage level of drug1 is increased by one unit. For the second model, the hazard ratio for drug1 is the proportional change in hazard when the blood concentration level—that is, drug1*exp(−0.35t)—increases by 1.

Because the number of observations in our data is relatively small, for illustrative purposes we can stsplit the data at each recovery time, manually generate the blood concentration levels, and refit the second model.

```
. generate id=_n
. stset, id(id)
(output omitted)
. stsplit, at(failures)
(812 observations (episodes) created)
. generate drug1emt = drug1*exp(-0.35*_t)
. generate drug2emt = drug2*exp(-0.35*_t)
. stcox age drug1emt drug2emt
    failure _d: cured
    analysis time _t: time
    id: id
Iteration 0: log likelihood = -116.54385
Iteration 1: log likelihood = -99.321912
Iteration 2: log likelihood = -98.07369
Iteration 3: log likelihood = -98.05277
Iteration 4: log likelihood = -98.052763
Refining estimates:
Iteration 0: log likelihood = -98.052763
Cox regression -- Breslow method for ties
No. of subjects = 45 Number of obs = 857
No. of failures = 36
Time at risk = 677.9000034
LR chi2(3) = 36.98
Log likelihood = -98.052763 Prob > chi2 = 0.0000

         _t  Haz. Ratio Std. Err.     z  P>|z|    [95% Conf. Interval]
  age     .8614636   .028558 -4.50  0.000     .8072706    .9192948
drug1emt 1.304744   .113597  3.06  0.002     1.100059    1.547514
drug2emt 1.200613   .111322  1.97  0.049     1.001103    1.439882
```

We get the same answer. However, this required more work both for Stata and for you.

Above we used tvc() and texp() to demonstrate fitting models with time-varying covariates, but these options can also be used to fit models with time-varying coefficients. For simplicity, consider a version of (1) that contains only one fixed covariate, x_1, and sets $z_1 = x_1$:

$$ h(t) = h_0(t) \exp \{ \beta_1 x_1 + g(t) \gamma_1 x_1 \} $$
Rearranging terms results in

\[h(t) = h_0(t) \exp \left\{ \{\beta_1 + \gamma_1 g(t)\} x_1 \right\} \]

Given this new arrangement, we consider that \(\beta_1 + \gamma_1 g(t) \) is a (possibly) time-varying coefficient on the covariate \(x_1 \), for some specified function of time \(g(t) \). The coefficient has a time-invariant component, \(\beta_1 \), with \(\gamma_1 \) determining the magnitude of the time-dependent deviations from \(\beta_1 \). As such, a test of \(\gamma_1 = 0 \) is a test of time invariance for the coefficient on \(x_1 \).

Confirming that a coefficient is time invariant is one way of testing the proportional-hazards assumption. Proportional hazards implies that the relative hazard (that is, \(\beta \)) is fixed over time, and this assumption would be violated if a time interaction proved significant.

Example 5

Returning to our cancer drug trial, we now include a time interaction on age as a way of testing the proportional-hazards assumption for that covariate:

```
. use http://www.stata-press.com/data/r13/drugtr, clear
    (Patient Survival in Drug Trial)
. stcox drug age, tvc(age)
    (output omitted)
Cox regression -- Breslow method for ties
No. of subjects = 48    Number of obs = 48
No. of failures = 31
Time at risk = 744
LR chi2(3) = 33.63
Log likelihood = -83.095036   Prob > chi2 = 0.0000

      _t |   Haz. Ratio   Std. Err.     z    P>abs(z)     [95% Conf. Interval]
---------------------------+-------------------------------------+-------------------------------------+-------------------------------------+-------------------------------------+
main |                       |                                |                               |                                          |                                    |
      drug |    .1059862    .0478178 |    -4.97 |     0.000 |       .0437737       .2566171            |
      age |    1.156977    .07018   |    2.40  |     0.016 |       1.027288       1.303037            |
---------------------------+-------------------------------------+-------------------------------------+-------------------------------------+-------------------------------------+
  tvc |                       |                                |                               |                                          |                                    |
      age |    .9970966    .0042415 |    -0.68 |     0.494 |       .988818       1.005445            |
---------------------------+-------------------------------------+-------------------------------------+-------------------------------------+-------------------------------------+
Note: variables in tvc equation interacted with _t
```

We used the default function of time, \(g(t) = t \), although we could have specified otherwise with the `texp()` option. The estimation results are presented in terms of hazard ratios, and so 0.9971 is an estimate of \(\exp(\gamma_{age}) \). Tests of hypotheses, however, are in terms of the original metric, and so 0.494 is the significance for the test of \(H_0: \gamma_{age} = 0 \) versus the two-sided alternative. With respect to this specific form of misspecification, there is not much evidence to dispute the proportionality of hazards when it comes to age.
Robust estimate of variance

By default, `stcox` produces the conventional estimate for the variance–covariance matrix of the coefficients (and hence the reported standard errors). If, however, you specify the `vce(robust)` option, `stcox` switches to the robust variance estimator (Lin and Wei 1989).

The key to the robust calculation is using the efficient score residual for each subject in the data for the variance calculation. Even in simple single-record, single-failure survival data, the same subjects appear repeatedly in the risk pools, and the robust calculation needs to account for that.

Example 6

Refitting the Stanford heart transplant data model with robust standard errors, we obtain

```stata
use http://www.stata-press.com/data/r13/stan3
(Heart transplant data)
.stset t1, failure(died) id(id)
    id: id
    failure event: died != 0 & died < .
.obs. time interval: (t1[_n-1], t1]
.exit on or before: failure
172 total observations
0 exclusions
172 observations remaining, representing
103 subjects
75 failures in single-failure-per-subject data
31938.1 total analysis time at risk and under observation
at risk from t = 0
earliest observed entry t = 0
last observed exit t = 1799
.stcox age posttran surg year, vce(robust)
    failure _d: died
    analysis time _t: t1
    id: id
Iteration 0: log pseudolikelihood = -298.31514
Iteration 1: log pseudolikelihood = -289.7344
Iteration 2: log pseudolikelihood = -289.53498
Iteration 3: log pseudolikelihood = -289.53378
Iteration 4: log pseudolikelihood = -289.53378
Refining estimates:
Iteration 0: log pseudolikelihood = -289.53378
Cox regression -- Breslow method for ties
No. of subjects = 103     Number of obs = 172
No. of failures = 75
Time at risk = 31938.1
Log pseudolikelihood = -289.53378
Wald chi2(4) = 19.68     Prob > chi2 = 0.0006
(Std. Err. adjusted for 103 clusters in id)

|    t  | Haz. Ratio | Std. Err. |    z  | P>|z|  |      [95% Conf. Interval]     |
|-------|-----------|-----------|-------|-------|-------------------------------|
| age   | 1.030224  | .0148771  | 2.06  | 0.039 | 1.001474 to 1.059799         |
| posttran | .9787243  | .2961736  | -0.07 | 0.943 | .5408498 to 1.771104         |
| surgery | .3738278  | .1304912  | -2.82 | 0.005 | .1886013 to .7409665         |
| year   | .8873107  | .0613176  | -1.73 | 0.084 | .7749139 to 1.01601          |
```
Note the word Robust above Std. Err. in the table and the phrase “Std. Err. adjusted for 103 clusters in id” above the table.

The hazard ratio estimates are the same as before, but the standard errors are slightly different.

Technical note

In the previous example, stcox knew to specify vce(cluster id) for us when we specified vce(robust).

To see the importance of vce(cluster id), consider simple single-record, single-failure survival data, a piece of which is

<table>
<thead>
<tr>
<th>t0</th>
<th>t</th>
<th>died</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>9</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

and then consider the absolutely equivalent multiple-record survival data:

<table>
<thead>
<tr>
<th>id</th>
<th>t0</th>
<th>t</th>
<th>died</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>9</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Both datasets record the same underlying data, and so both should produce the same numerical results. This should be true regardless of whether vce(robust) is specified.

In the second dataset, were we to ignore id, it would appear that there are 6 observations on 6 subjects. The key ingredients in the robust calculation are the efficient score residuals, and viewing the data as 6 observations on 6 subjects produces different score residuals. Let’s call the 6 score residuals s_1, s_2, ..., s_6 and the 3 score residuals that would be generated by the first dataset S_1, S_2, and S_3. $S_1 = s_1 + s_2$, $S_2 = s_3 + s_4$, and $S_3 = s_5 + s_6$.

That residuals sum is the key to understanding the vce(cluster clustvar) option. When you specify vce(cluster id), Stata makes the robust calculation based not on the overly detailed s_1, s_2, ..., s_6 but on $S_1 + S_2$, $S_3 + S_4$, and $S_5 + S_6$. That is, Stata sums residuals within clusters before entering them into subsequent calculations (where they are squared), so results estimated from the second dataset are equal to those estimated from the first. In more complicated datasets with time-varying regressors, delayed entry, and gaps, this action of summing within cluster, in effect, treats the cluster (which is typically a subject) as a unified whole.

Because we had stset an id() variable, stcox knew to specify vce(cluster id) for us when we specified vce(robust). You may, however, override the default clustering by specifying vce(cluster clustvar) with a different variable from the one you used in stset, id(). This is useful in analyzing multiple-failure data, where you need to stset a pseudo-ID establishing the time from the last failure as the onset of risk.
Cox regression with multiple-failure data

Example 7

In [ST] stsum, we introduce a multiple-failure dataset:

```
use http://www.stata-press.com/data/r13/mfail
stsum
```

<table>
<thead>
<tr>
<th>Category</th>
<th>total</th>
<th>mean</th>
<th>min</th>
<th>median</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. of subjects</td>
<td>926</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no. of records</td>
<td>1734</td>
<td>1.8725</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>(first) entry time</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(final) exit time</td>
<td>470.6857</td>
<td>1</td>
<td>477</td>
<td>960</td>
<td></td>
</tr>
<tr>
<td>subjects with gap</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time on gap if gap</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time at risk</td>
<td>435855</td>
<td>470.6857</td>
<td>1</td>
<td>477</td>
<td>960</td>
</tr>
<tr>
<td>failures</td>
<td>808</td>
<td>.8725702</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

This dataset contains two variables—x1 and x2—which we believe affect the hazard of failure.

If we simply want to analyze these multiple-failure data as if the baseline hazard remains unchanged as events occur (that is, the hazard may change with time, but time is measured from 0 and is independent of when the last failure occurred), we can type

```
stcox x1 x2, vce(robust)
```

We chose to fit this model with robust standard errors—we specified `vce(robust)`—but you can estimate conventional standard errors if you wish.

In [ST] stsum, we discuss analyzing this dataset as the time since last failure. We wished to assume that the hazard function remained unchanged with failure, except that one restarted the same hazard function. To that end, we made the following changes to our data:

```
stcox x1 x2, vce(robust)
```

We chose to fit this model with robust standard errors—we specified `vce(robust)`—but you can estimate conventional standard errors if you wish.

```
stcox x1 x2, vce(robust)
```

In [ST] stsum, we discuss analyzing this dataset as the time since last failure. We wished to assume that the hazard function remained unchanged with failure, except that one restarted the same hazard function. To that end, we made the following changes to our data:
. sort newid t
. by newid: replace t = t - t0[1]
 (808 real changes made)
. by newid: gen newt0 = t0 - t0[1]
. stset t, id(newid) failure(d) time0(newt0) noshow
 id: newid
 failure event: d != 0 & d < .
 obs. time interval: (newt0, t]
 exit on or before: failure

1734 total observations
0 exclusions

1734 observations remaining, representing
1734 subjects
808 failures in single-failure-per-subject data
435444 total analysis time at risk and under observation

That is, we took each subject and made many newid subjects out of each, with each subject entering at time 0 (now meaning the time of the last failure). id still identifies a real subject, but Stata thinks the identifier variable is newid because we stset, id(newid). If we were to fit a model with vce(robust), we would get

. stcox x1 x2, vce(robust) nolog
Cox regression -- Breslow method for ties
No. of subjects = 1734 Number of obs = 1734
No. of failures = 808
Time at risk = 435444
Wald chi2(2) = 88.51
Log pseudolikelihood = -5062.5815 Prob > chi2 = 0.0000
 (Std. Err. adjusted for 1734 clusters in newid)

 Robust
 _t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
 x1 2.002547 .1936906 7.18 0.000 1.656733 2.420542
 x2 .2946263 .0569167 -6.33 0.000 .2017595 .4302382

Note carefully the message concerning the clustering: standard errors have been adjusted for clustering on newid. We, however, want the standard errors adjusted for clustering on id, so we must specify the vce(cluster clustvar) option:
. stcox x1 x2, vce(cluster id) nolog

Cox regression -- Breslow method for ties

No. of subjects = 1734 Number of obs = 1734
No. of failures = 808
Time at risk = 435444
Wald chi2(2) = 93.66
Log pseudolikelihood = -5062.5815 Prob > chi2 = 0.0000

(Std. Err. adjusted for 926 clusters in id)

| _t | Haz. Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------|------------|-----------|------|------|----------------------|
| x1 | 2.002547 | .1920151 | 7.24 | 0.000| 1.659452 2.416576 |
| x2 | .2946263 | .0544625 | -6.61| 0.000| .2050806 .4232709 |

That is, if you are using vce(robust), you must remember to specify vce(cluster clustvar) for yourself when
1. you are analyzing multiple-failure data and
2. you have reset time to time since last failure, so what Stata considers the subjects are really subsubjects.

Stratified estimation

When you type

. stcox xvars, strata(svars)

you are allowing the baseline hazard functions to differ for the groups identified by svars. This is equivalent to fitting separate Cox proportional hazards models under the constraint that the coefficients are equal but the baseline hazard functions are not.

Example 8

Say that in the Stanford heart experiment data, there was a change in treatment for all patients, before and after transplant, in 1970 and then again in 1973. Further assume that the proportional-hazards assumption is not reasonable for these changes in treatment—perhaps the changes result in short-run benefit but little expected long-run benefit. Our interest in the data is not in the effect of these treatment changes but in the effect of transplantation, for which we still find the proportional-hazards assumption reasonable. We might fit our model to account for these fictional changes by typing

. use http://www.stata-press.com/data/r13/stan3, clear
(Heart transplant data)
. generate pgroup = year
. recode pgroup min/69=1 70/72=2 73/max=3
(pgroup: 172 changes made)
. stcox age posttran surg year, strata(pgroup) nolog
 failure _d: died
 analysis time _t: t1
 id: id
Stratified Cox regr. -- Breslow method for ties
No. of subjects = 103 Number of obs = 172
No. of failures = 75
Time at risk = 31983.1
LR chi2(4) = 20.67
Log likelihood = -213.35033 Prob > chi2 = 0.0004

| _t | Haz. Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------|------------|-----------|-------|----------|---------------------------|
| age | 1.027406 | 0.0150188 | 1.85 | 0.064 | 0.9983874 - 1.057268 |
|posttran | 1.075476 | 0.3354669 | 0.23 | 0.816 | 0.583567 - 1.982034 |
surgery | 0.2222415 | 0.1218386 | -2.74 | 0.006 | 0.0758882 - 0.6508429 |
| year | 0.5523966 | 0.1132688 | -2.89 | 0.004 | 0.3695832 - 0.825638 |

Stratified by pgroup

Of course, we could obtain the robust estimate of variance by also including the vce(robust) option.

Cox regression as Poisson regression

Example 9

In example 2, we fit the following Cox model to data from a cancer drug trial with 48 participants:

. use http://www.stata-press.com/data/r13/drugtr, clear
(Patient Survival in Drug Trial)
. summarize
Variable | Obs Mean Std. Dev. Min Max
---------|----------|----------|----------|-----|-----|
studytime | 48 15.5 10.25629 1 39
 died | 48 .6458333 .4833211 0 1
 drug | 48 .5833333 .4982238 0 1
 age | 48 55.875 5.659205 47 67
 _st | 48 1 1 0 1
 _d | 48 .6458333 .4833211 0 1
 _t | 48 15.5 10.25629 1 39
 _t0 | 48 0 0 0 0

. stcox drug age
(output omitted)
Cox regression -- Breslow method for ties
No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744
LR chi2(2) = 33.18
Log likelihood = -83.323546 Prob > chi2 = 0.0000

| _t | Haz. Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------|------------|-----------|-------|----------|---------------------------|
| drug | 0.1048772 | 0.0477017 | -4.96 | 0.000 | 0.0430057 - 0.2557622 |
| age | 1.120325 | 0.0417711 | 3.05 | 0.002 | 1.041375 - 1.20526 |
In what follows, we discuss baseline hazard functions. Thus for clarity, we first fit the same model with an alternate age variable so that “baseline” reflects someone in the control group who is 50 years old and not a newborn; see *Making baseline reasonable* in [ST] stcox postestimation for more details.

```
. generate age50 = age - 50
. stcox drug age50
(output omitted)
```

Cox regression -- Breslow method for ties

| | Haz. Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------------|------------|-----------|------|------|----------------------|
| drug | 0.1048772 | 0.0477017 | -4.96| 0.000| 0.0430057 0.2557622 |
| age50 | 1.120325 | 0.0417711 | 3.05 | 0.002| 1.041375 1.20526 |

Because *stcox* does not estimate a baseline hazard function, our model and hazard ratios remain unchanged.

Among others, Royston and Lambert (2011, sec. 4.5) show that you can obtain identical hazard ratios by fitting a Poisson model on the above data after splitting on all observed failure times.

Because these data have already been *stset*, variable _t0 contains the beginning of the time span (which, for these simple data, is time zero for everyone), variable _t contains the end of the time span, and variable _d indicates failure (_d == 1) or censoring (_d == 0).

As we did in example 4, we can split these single-record observations at each observed failure time, thus creating a dataset with multiple records per subject. To do so, we must first create an ID variable that identifies each observation as a unique patient:

```
. generate id = _n
. streset, id(id)
- stset studytime, id(id) failure(died)
  id: id
  failure event: died != 0 & died < .
  obs. time interval: (studytime[_n-1], studytime]
  exit on or before: failure
```

48 total observations
0 exclusions
48 observations remaining, representing
48 subjects
31 failures in single-failure-per-subject data
744 total analysis time at risk and under observation
at risk from t = 0
earliest observed entry t = 0
last observed exit t = 39

. stsplit, at(failures) riskset(interval)
(21 failure times)
(534 observations (episodes) created)
The output shows that we have 21 unique failure times and that we created 534 new observations for a total of 48 + 534 = 582 observations. Also created is the interval variable, which contains a value of 1 for those records that span from time zero to the first failure time, 2 for those records that span from the first failure time to the second failure time, all the way up to a value of 21 for those records that span from the 20th failure time to the 21st failure time. To see this requires a little bit of sorting and data manipulation:

```
. gsort _t -_d
. by _t: generate tolist = (_n==1) & _d
. list _t0 _t interval if tolist
```

<table>
<thead>
<tr>
<th>_t0</th>
<th>_t</th>
<th>interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>95</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>140</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>184</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>226</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>266</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>303</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>340</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>371</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>400</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>426</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>450</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>473</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>494</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>517</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>532</td>
<td>22</td>
<td>17</td>
</tr>
<tr>
<td>545</td>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td>556</td>
<td>24</td>
<td>19</td>
</tr>
<tr>
<td>566</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>576</td>
<td>28</td>
<td>21</td>
</tr>
</tbody>
</table>

Thus for example, interval 16 ranges from time 17 to time 22.

For this newly created multiple-record dataset, our Cox model fit will be identical because we have not added any information to the data. If you do not believe us, feel free to now try the following command:

```
. stcox drug age50
```

At this point, it would seem that making the dataset bigger is a needless waste of space, but what it grants us is the ability to directly estimate the baseline hazard function in addition to the hazard ratios we previously obtained. We accomplish this by using Poisson regression.

Poisson regression models event counts, and so we use our event counter for these data, the failure indicator _d, as the response variable. That _d is only valued as zero or one should not bother you—it is still a count variable. We need to treat time spanned as the amount of exposure a subject had toward failing; the longer the interval, the greater the exposure. As such, we create a variable that records the length of each time span and include it as an exposure() variable in our Poisson model. We also include indicator variables for each of the 21 time intervals, with no base level assumed; we use the ibn. factor-variable specification and the noconstant option:
. generate time_exposed = _t - _t0
. poisson _d ibn.interval drug age50, exposure(time_exposed) noconstant irr

Iteration 0: log likelihood = -1239.0595
Iteration 1: log likelihood = -114.23986
Iteration 2: log likelihood = -100.13556
Iteration 3: log likelihood = -99.938857
Iteration 4: log likelihood = -99.937354
Iteration 5: log likelihood = -99.937354

Poisson regression

| | IRR | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----|------------|-----------|------|-------|---------------------|
| | _d | | | | |
| | interval | | | | |
| 1 | .0360771 | .0284092 | -4.22| 0.000 | .0077081 |
| 2 | .0215286 | .0225926 | -3.66| 0.000 | .0027526 |
| 3 | .0228993 | .0240269 | -3.60| 0.000 | .0029289 |
| 4 | .0471539 | .0366942 | -3.92| 0.000 | .0102596 |
| 5 | .0596354 | .045201 | -3.72| 0.000 | .0134999 |
| 6 | .0749754 | .0561057 | -3.46| 0.001 | .017296 |
| 7 | .0396981 | .0406826 | -3.15| 0.001 | .0053267 |
| 8 | .120377 | .074625 | -3.42| 0.001 | .0357845 |
| 9 | .0276002 | .0283969 | -3.49| 0.000 | .003674 |
| 10 | .1120012 | .083727 | -2.93| 0.003 | .0258763 |
| 11 | .1358135 | .1024475 | -2.65| 0.008 | .0309642 |
| 12 | .1007666 | .1040271 | -2.22| 0.026 | .0133221 |
| 13 | .0525547 | .0540884 | -2.86| 0.004 | .0099915 |
| 14 | .1206462 | .1250492 | -2.04| 0.041 | .0158215 |
| 15 | .1321868 | .1357583 | -1.97| 0.049 | .0176599 |
| 16 | .0670895 | .0503478 | -3.60| 0.000 | .0154122 |
| 17 | .5736017 | .4415411 | -0.72| 0.470 | .1268766 |
| 18 | .4636009 | .5113227 | -0.70| 0.486 | .0533731 |
| 19 | .5272168 | .5810138 | -0.58| 0.561 | .0608039 |
| 20 | .2074545 | .2292209 | -1.42| 0.155 | .023791 |
| 21 | .2101074 | .2344194 | -1.40| 0.162 | .0235909 |
| | drug | .1048772 | .0477017 | -4.96| 0.000 | .0430057 |
| | age50 | 1.120325 | .0417711 | 3.05| 0.002 | 1.041375 |

The incidence-rate ratios from poisson (obtained with the irr option) are identical to the hazard ratios we previously obtained. Additionally, the incidence-rate ratio for each of the 21 intervals is an estimate of the baseline hazard function for that time interval.

poisson gives us an estimated baseline hazard function (the hazard for someone aged 50 in the control group) as a piecewise-constant function. If we had continued to use stcox, estimating the baseline hazard function would have required that we apply a kernel smoother to the estimated baseline contributions; see example 3 of [ST] stcox postestimation for details. In other words, estimating a baseline hazard after stcox is not easy, and it requires choosing a kernel function and bandwidth. As such, the title of this section is technically a misnomer; the models are not exactly the same, only the “hazard ratios” are. Using poisson instead of stcox carries the added assumption that the baseline hazard is constant between observed failures. Making this assumption buys you the ability to directly estimate the baseline hazard.

There also exists a duality between the Poisson model and the exponential model as fit by streg; see [ST] streg. A defining property of the Poisson distribution is that waiting times between events are distributed as exponential. Thus we can fit the same piecewise-constant hazard model with
which we invite you to try.

Of course, if you are willing to assume the hazard is piecewise constant, then perhaps you do not need it to change over all 21 observed failure times, and thus perhaps you would want to collapse some intervals. Better still, why not just use `streg` without the indicator variables for `interval`, assume the baseline hazard is some smooth function, and reduce your 21 parameters to one or two estimated shape parameters? The advantages to this fully parametric approach are that you get a parsimonious model and smooth hazard functions that you can estimate at any time point. The disadvantage is that you now carry the stringent assumption that your hazard follows the chosen functional form. If you choose the wrong function, then your hazard ratios are, in essence, worthless.

The two extremes here are the model that makes no assumption about the baseline hazard (the Cox model) and the model that makes the strongest assumptions about the baseline hazard (the fully parametric model). Our piecewise-constant baseline hazard model represents a compromise between Cox regression and fully parametric regression. If you are interested in other ways you can compromise between Cox and parametric models, we recommend you read Royston and Lambert (2011), which is entirely devoted to that topic. There you will find information on (among other things) Royston–Parmar models (Royston and Parmar 2002; Lambert and Royston 2009), proportional-odds models, scaled-probit models, the use of cubic splines and fractional polynomials, time-dependent effects, and models for relative survival.

Cox regression with shared frailty

A shared-frailty model is the survival-data analog to regression models with random effects. A frailty is a latent random effect that enters multiplicatively on the hazard function. In a Cox model, the data are organized as \(i = 1, \ldots, n \) groups with \(j = 1, \ldots, n_i \) observations in group \(i \). For the \(j \)th observation in the \(i \)th group, the hazard is

\[
h_{ij}(t) = h_0(t) \alpha_i \exp(x_{ij} \beta)
\]

where \(\alpha_i \) is the group-level frailty. The frailties are unobservable positive quantities and are assumed to have mean 1 and variance \(\theta \), to be estimated from the data. You can fit a Cox shared-frailty model by specifying `shared(varname)`, where `varname` defines the groups over which frailties are shared. `stcox, shared()` treats the frailties as being gamma distributed, but this is mainly an issue of computational convenience; see *Methods and formulas*. Theoretically, any distribution with positive support, mean 1, and finite variance may be used to model frailty.

Shared-frailty models are used to model within-group correlation; observations within a group are correlated because they share the same frailty. The estimate of \(\theta \) is used to measure the degree of within-group correlation, and the shared-frailty model reduces to standard Cox when \(\theta = 0 \).

For \(\nu_i = \log \alpha_i \), the hazard can also be expressed as

\[
h_{ij}(t) = h_0(t) \exp(x_{ij} \beta + \nu_i)
\]

and thus the log frailties, \(\nu_i \), are analogous to random effects in standard linear models.
Example 10

Consider the data from a study of 38 kidney dialysis patients, as described in McGilchrist and Aisbett (1991). The study is concerned with the prevalence of infection at the catheter insertion point. Two recurrence times (in days) are measured for each patient, and each recorded time is the time from initial insertion (onset of risk) to infection or censoring:

```
. use http://www.stata-press.com/data/r13/catheter, clear
(Kidney data, McGilchrist and Aisbett, Biometrics, 1991)
. list patient time infect age female in 1/10
```

<table>
<thead>
<tr>
<th>patient</th>
<th>time</th>
<th>infect</th>
<th>age</th>
<th>female</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1</td>
<td>1</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>1</td>
<td>8</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>2</td>
<td>13</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>2</td>
<td>23</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>5.</td>
<td>3</td>
<td>22</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>3</td>
<td>28</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>4</td>
<td>318</td>
<td>31.5</td>
<td>1</td>
</tr>
<tr>
<td>8.</td>
<td>4</td>
<td>447</td>
<td>31.5</td>
<td>1</td>
</tr>
<tr>
<td>9.</td>
<td>5</td>
<td>30</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>10.</td>
<td>5</td>
<td>12</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Each patient (patient) has two recurrence times (time) recorded, with each catheter insertion resulting in either infection (infect==1) or right-censoring (infect==0). Among the covariates measured are age and sex (female==1 if female, female==0 if male).

One subtlety to note concerns the use of the generic term subjects. In this example, the subjects are taken to be the individual catheter insertions, not the patients themselves. This is a function of how the data were recorded—the onset of risk occurs at catheter insertion (of which there are two for each patient), and not, say, at the time of admission of the patient into the study. We therefore have two subjects (insertions) within each group (patient).

It is reasonable to assume independence of patients but unreasonable to assume that recurrence times within each patient are independent. One solution would be to fit a standard Cox model, adjusting the standard errors of the estimated hazard ratios to account for the possible correlation by specifying `vce(cluster patient)`.

We could instead model the correlation by assuming that the correlation is the result of a latent patient-level effect, or frailty. That is, rather than fitting a standard model and specifying `vce(cluster patient)`, we could fit a frailty model by specifying `shared(patient)`:
From the output, we obtain \(\hat{\theta} = 0.475 \), and given the standard error of \(\hat{\theta} \) and likelihood-ratio test of \(H_0: \theta = 0 \), we find a significant frailty effect, meaning that the correlation within patient cannot be ignored. Contrast this with the analysis of the same data in \[ST\] \texttt{streg}, which considered both Weibull and lognormal shared-frailty models. For Weibull, there was significant frailty; for lognormal, there was not.

The estimated \(\nu_i \) are not displayed in the coefficient table but may be retrieved postestimation by using predict with the \texttt{effects} option; see \[ST\] \texttt{stcox postestimation} for an example.

In shared-frailty Cox models, the estimation consists of two steps. In the first step, the optimization is in terms of \(\theta \) only. For fixed \(\theta \), the second step consists of fitting a standard Cox model via penalized log likelihood, with the \(\nu_i \) introduced as estimable coefficients of dummy variables identifying the groups. The penalty term in the penalized log likelihood is a function of \(\theta \); see \textit{Methods and formulas}. The final estimate of \(\theta \) is taken to be the one that maximizes the penalized log likelihood. Once the optimal \(\theta \) is obtained, it is held fixed, and a final penalized Cox model is fit. As a result, the standard errors of the main regression parameters (or hazard ratios, if displayed as such) are treated as conditional on \(\theta \) fixed at its optimal value.
With gamma-distributed frailty, hazard ratios decay over time in favor of the frailty effect and thus the displayed “Haz. Ratio” in the above output is actually the hazard ratio only for \(t = 0 \). The degree of decay depends on \(\theta \). Should the estimated \(\theta \) be close to 0, the hazard ratios do regain their usual interpretation; see Gutierrez (2002) for details.

Technical note

The likelihood-ratio test of \(\theta = 0 \) is a boundary test and thus requires careful consideration concerning the calculation of its \(p \)-value. In particular, the null distribution of the likelihood-ratio test statistic is not the usual \(\chi^2 \) but is rather a 50:50 mixture of a \(\chi^2_0 \) (point mass at zero) and a \(\chi^2_1 \), denoted as \(\chi^2_{01} \). See Gutierrez, Carter, and Drukker (2001) for more details.

Technical note

In [ST] `streg`, shared-frailty models are compared and contrasted with unshared frailty models. Unshared-frailty models are used to model heterogeneity, and the frailties are integrated out of the conditional survivor function to produce an unconditional survivor function, which serves as a basis for all likelihood calculations.

Given the nature of Cox regression (the baseline hazard remains unspecified), there is no Cox regression analog to the unshared parametric frailty model as fit using `streg`. That is not to say that you cannot fit a shared-frailty model with 1 observation per group; you can as long as you do not fit a null model.

Stored results

`stcox` stores the following in `e()`:

Scalars
- `e(N)` number of observations
- `e(N_sub)` number of subjects
- `e(N_fail)` number of failures
- `e(N_g)` number of groups
- `e(df_m)` model degrees of freedom
- `e(r2_p)` pseudo-\(R^2 \)-squared
- `e(ll)` log likelihood
- `e(ll_0)` log likelihood, constant-only model
- `e(ll_c)` log likelihood, comparison model
- `e(N_clust)` number of clusters
- `e(chi2)` \(\chi^2 \)
- `e(chi2_c)` \(\chi^2 \), comparison model
- `e(risk)` total time at risk
- `e(g_min)` smallest group size
- `e(g_avg)` average group size
- `e(g_max)` largest group size
- `e(theta)` frailty parameter
- `e(se_theta)` standard error of \(\theta \)
- `e(p_c)` significance, comparison model
- `e(rank)` rank of `e(V)`
Let x_i be the row vector of covariates for the time interval $(t_{0i}, t_i]$ for the ith observation in the dataset $i = 1, \ldots, N$. stcox obtains parameter estimates, $\hat{\beta}$, by maximizing the partial log-likelihood function
\[
\log L = \sum_{j=1}^{D} \left[\sum_{i \in D_j} x_i \beta - d_j \log \left(\sum_{k \in R_j} \exp(x_k \beta) \right) \right]
\]
where \(j \) indexes the ordered failure times \(t_{(j)}, j = 1, \ldots, D \); \(D \) is the set of \(d_j \) observations that fail at \(t_{(j)} \); \(d_j \) is the number of failures at \(t_{(j)} \); and \(R_j \) is the set of observations \(k \) that are at risk at time \(t_{(j)} \) (that is, all \(k \) such that \(t_{0k} < t_{(j)} \leq t_k \)). This formula for \(\log L \) is for unweighted data and handles ties by using the Peto–Breslow approximation (Peto 1972; Breslow 1974), which is the default method of handling ties in \texttt{stcox}.

If \texttt{strata(varnames)} is specified, then the partial log likelihood is the sum of each stratum-specific partial log likelihood, obtained by forming the ordered failure times \(t_{(j)} \), the failure sets \(D_j \), and the risk sets \(R_j \), using only those observations within that stratum.

The variance of \(\hat{\beta} \) is estimated by the conventional inverse matrix of (negative) second derivatives of \(\log L \), unless \texttt{vce(robust)} is specified, in which case the method of Lin and Wei (1989) is used. That method treats efficient score residuals as analogs to the log-likelihood scores one would find in fully parametric models; see Methods and formulas in \texttt{[ST] stcox postestimation} for how to calculate efficient score residuals. If \texttt{vce(cluster clustvar)} is specified, the efficient score residuals are summed within cluster before the sandwich (robust) estimator is applied.

Tied values are handled using one of four approaches. The log likelihoods corresponding to the four approaches are given with weights (\texttt{exactp} and \texttt{efron} do not allow weights) and offsets by

\[
\log L_{\text{breslow}} = \sum_{j=1}^{D} \sum_{i \in D_j} \left[w_i (x_i \beta + \text{offset}_i) - w_i \log \left\{ \sum_{\ell \in R_j} w_\ell \exp(x_\ell \beta + \text{offset}_\ell) \right\} \right]
\]

\[
\log L_{\text{efron}} = \sum_{j=1}^{D} \sum_{i \in D_j} \left[x_i \beta + \text{offset}_i - d_j^{-1} \sum_{k=0}^{d_j-1} \log \left\{ \sum_{\ell \in R_j} \exp(x_\ell \beta + \text{offset}_\ell) - k A_j \right\} \right]
\]

\[
A_j = d_j^{-1} \sum_{\ell \in D_j} \exp(x_\ell \beta + \text{offset}_\ell)
\]

\[
\log L_{\text{exactm}} = \sum_{j=1}^{D} \log \int_0^\infty \prod_{\ell \in D_j} \left\{ 1 - \exp \left(- \frac{e_\ell}{s} \right) \right\} w_\ell \exp(-t)dt
\]

\[
e_\ell = \exp(x_\ell \beta + \text{offset}_\ell)
\]

\[
s = \sum_{k \in R_j \ k \notin D_j} w_k \exp(x_k \beta + \text{offset}_k) = \text{sum of weighted nondeath risk scores}
\]

\[
\log L_{\text{exactp}} = \sum_{j=1}^{D} \left\{ \sum_{i \in R_j} \delta_{ij} (x_i \beta + \text{offset}_i) - \log f(r_j, d_j) \right\}
\]

\[
f(r, d) = f(r-1, d) + f(r-1, d-1) \exp(x_k \beta + \text{offset}_k)
\]

\[
k = r^{th} \text{ observation in the set } R_j
\]

\[
r_j = \text{cardinality of the set } R_j
\]

\[
f(r, d) = \begin{cases}
0 & \text{if } r < d \\
1 & \text{if } d = 0
\end{cases}
\]

where \(\delta_{ij} \) is an indicator for failure of observation \(i \) at time \(t_{(j)} \).
Calculations for the exact marginal log likelihood (and associated derivatives) are obtained with 15-point Gauss–Laguerre quadrature. The \texttt{breslow} and \texttt{efron} options both provide approximations of the exact marginal log likelihood. The \texttt{efron} approximation is a better (closer) approximation, but the \texttt{breslow} approximation is faster. The choice of the approximation to use in a given situation should generally be driven by the proportion of ties in the data.

For shared-frailty models, the data are organized into G groups with the ith group consisting of n_i observations, $i = 1, \ldots, G$. From Therneau and Grambsch (2000, 253–255), estimation of θ takes place via maximum profile log likelihood. For fixed θ, estimates of β and ν_1, \ldots, ν_G are obtained by maximizing

$$
\log L(\theta) = \log L_{\text{Cox}}(\beta, \nu_1, \ldots, \nu_G) + \sum_{i=1}^{G} \left[\frac{1}{\theta} \{ \nu_i - \exp(\nu_i) \} + \left(\frac{1}{\theta} + D_i \right) \left\{ 1 - \log \left(\frac{1}{\theta} + D_i \right) \right\} - \frac{\log \theta}{\theta} + \log \Gamma \left(\frac{1}{\theta} + D_i \right) - \log \Gamma \left(\frac{1}{\theta} \right) \right]
$$

where D_i is the number of death events in group i, and $\log L_{\text{Cox}}(\beta, \nu_1, \ldots, \nu_G)$ is the standard Cox partial log likelihood, with the ν_i treated as the coefficients of indicator variables identifying the groups. That is, the jth observation in the ith group has log relative hazard $x_{ij}\beta + \nu_i$. The estimate of the frailty parameter, $\hat{\theta}$, is chosen as that which maximizes $\log L(\theta)$. The final estimates of β are obtained by maximizing $\log L(\hat{\theta})$ in β and the ν_i. The ν_i are not reported in the coefficient table but are available via \texttt{predict}; see [ST] \texttt{stcox postestimation}. The estimated variance–covariance matrix of $\hat{\beta}$ is obtained as the appropriate submatrix of the variance matrix of $(\hat{\beta}, \hat{\nu}_1, \ldots, \hat{\nu}_G)$, and that matrix is obtained as the inverse of the negative Hessian of $\log L(\hat{\theta})$. Therefore, standard errors and inference based on $\hat{\beta}$ should be treated as conditional on $\theta = \hat{\theta}$.

The likelihood-ratio test statistic for testing $H_0: \theta = 0$ is calculated as minus twice the difference between the log likelihood for a Cox model without shared frailty and $\log L(\hat{\theta})$ evaluated at the final $(\hat{\beta}, \hat{\nu}_1, \ldots, \hat{\nu}_G)$.

David Roxbee Cox (1924–) was born in Birmingham, England. He earned master’s and PhD degrees in mathematics and statistics from the universities of Cambridge and Leeds, and he worked at the Royal Aircraft Establishment, the Wool Industries Research Association, and the universities of Cambridge, London (Birkbeck and Imperial Colleges), and Oxford. He was knighted in 1985. Sir David has worked on a wide range of theoretical and applied statistical problems, with outstanding contributions in areas such as experimental design, stochastic processes, binary data, survival analysis, asymptotic techniques, and multivariate dependencies. In 2010, Sir David was awarded the Copley Medal, the Royal Society’s highest honor.

Acknowledgment

We thank Peter Sasieni of the Wolfson Institute of Preventive Medicine, London, for his statistical advice and guidance in implementing the robust variance estimator for this command.
References

Also see

[ST] `stcox postestimation` — Postestimation tools for `stcox`

[ST] `stcurve` — Plot survivor, hazard, cumulative hazard, or cumulative incidence function

[ST] `stcox PH-assumption tests` — Tests of proportional-hazards assumption

[ST] `stcrreg` — Competing-risks regression

[ST] `streg` — Parametric survival models

[ST] `sts` — Generate, graph, list, and test the survivor and cumulative hazard functions

[ST] `stset` — Declare data to be survival-time data

[MI] `estimation` — Estimation commands for use with `mi estimate`

[SVY] `svy estimation` — Estimation commands for survey data

[U] 20 Estimation and postestimation commands
Syntax

Check proportional-hazards assumption:

Log-log plot of survival

\texttt{stphplot \{if\}, by(\texttt{varname}) | \texttt{strata(\texttt{varname})}} \ [\texttt{stphplot_options}]

Kaplan–Meier and predicted survival plot

\texttt{stcoxkm \{if\}, by(\texttt{varname})} \ [\texttt{stcoxkm_options}]

Using Schoenfeld residuals

\texttt{estat phtest \{, phtest_options\} }

\texttt{stphplot_options} \quad \text{Description}

Main

* by(\texttt{varname}) \quad \text{fit separate Cox models; the default}

* \texttt{strata(\texttt{varname})} \quad \text{fit stratified Cox model}

\texttt{adjust(\texttt{varlist})} \quad \text{adjust to average values of \texttt{varlist}}

\texttt{zero} \quad \text{adjust to zero values of \texttt{varlist}; use with \texttt{adjust()}}

Options

\texttt{nongative} \quad \text{plot ln\{-ln(survival)\}}

\texttt{nolntime} \quad \text{plot curves against analysis time}

\texttt{noshow} \quad \text{do not show st setting information}

Plot

\texttt{plot\#opts(stphplot_plot_options)} \quad \text{affect rendition of the \#th connected line and \#th plotted points}

Add plots

\texttt{addplot(plot)} \quad \text{add other plots to the generated graph}

Y axis, X axis, Titles, Legend, Overall

\texttt{twoway_options} \quad \text{any options other than by() documented in [G-3] \texttt{twoway_options}}

*Either by(\texttt{varname}) or strata(\texttt{varname}) is required with stphplot.
stphplot_plot_options

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cline_options</td>
</tr>
<tr>
<td>change look of lines or connecting method</td>
</tr>
<tr>
<td>marker_options</td>
</tr>
<tr>
<td>change look of markers (color, size, etc.)</td>
</tr>
</tbody>
</table>

stcoxkm_options

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
</tr>
<tr>
<td>* by(varname)</td>
</tr>
<tr>
<td>report the nominal or ordinal covariate</td>
</tr>
<tr>
<td>ties(breslow)</td>
</tr>
<tr>
<td>use Breslow method to handle tied failures</td>
</tr>
<tr>
<td>ties(efron)</td>
</tr>
<tr>
<td>use Efron method to handle tied failures</td>
</tr>
<tr>
<td>ties(exactm)</td>
</tr>
<tr>
<td>use exact marginal-likelihood method to handle tied failures</td>
</tr>
<tr>
<td>ties(exactp)</td>
</tr>
<tr>
<td>use exact partial-likelihood method to handle tied failures</td>
</tr>
<tr>
<td>separate</td>
</tr>
<tr>
<td>draw separate plot for predicted and observed curves</td>
</tr>
<tr>
<td>nosh</td>
</tr>
<tr>
<td>do not show st setting information</td>
</tr>
<tr>
<td>Observed plot</td>
</tr>
<tr>
<td>obsopts(stcoxkm_plot_options)</td>
</tr>
<tr>
<td>affect rendition of the observed curve</td>
</tr>
<tr>
<td>obs#opts(stcoxkm_plot_options)</td>
</tr>
<tr>
<td>affect rendition of the #th observed curve; not allowed with separate</td>
</tr>
<tr>
<td>Predicted plot</td>
</tr>
<tr>
<td>predopts(stcoxkm_plot_options)</td>
</tr>
<tr>
<td>affect rendition of the predicted curve</td>
</tr>
<tr>
<td>pred#opts(stcoxkm_plot_options)</td>
</tr>
<tr>
<td>affect rendition of the #th predicted curve; not allowed with separate</td>
</tr>
<tr>
<td>Add plots</td>
</tr>
<tr>
<td>addplot(plot)</td>
</tr>
<tr>
<td>add other plots to the generated graph</td>
</tr>
<tr>
<td>Y axis, X axis, Titles, Legend, Overall</td>
</tr>
<tr>
<td>twoway_options</td>
</tr>
<tr>
<td>any options other than by() documented in [G-3] twoway_options</td>
</tr>
<tr>
<td>byopts(byopts)</td>
</tr>
<tr>
<td>how subgraphs are combined, labeled, etc.</td>
</tr>
</tbody>
</table>

* by(varname) is required with stcoxkm.

stcoxkm_plot_options

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connect_options</td>
</tr>
<tr>
<td>change look of connecting method</td>
</tr>
<tr>
<td>marker_options</td>
</tr>
<tr>
<td>change look of markers (color, size, etc.)</td>
</tr>
</tbody>
</table>

You must stset your data before using stphplot and stcoxkm; see [ST] stset.

fweights, iweights, and pweights may be specified using stset; see [ST] stset.
ptest_options
Description

<table>
<thead>
<tr>
<th>Main</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>log</td>
<td>use natural logarithm time-scaling function</td>
</tr>
<tr>
<td>km</td>
<td>use $1 - KM$ product-limit estimate as the time-scaling function</td>
</tr>
<tr>
<td>rank</td>
<td>use rank of analysis time as the time-scaling function</td>
</tr>
<tr>
<td>time(varname)</td>
<td>use varname containing a monotone transformation of analysis time as the time-scaling function</td>
</tr>
<tr>
<td>plot(varname)</td>
<td>plot smoothed, scaled Schoenfeld residuals versus time</td>
</tr>
<tr>
<td>bwidth(#)</td>
<td>use bandwidth of #; default is bwidth(0.8)</td>
</tr>
<tr>
<td>detail</td>
<td>test proportional-hazards assumption separately for each covariate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scatterplot</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>marker_options</td>
<td>change look of markers (color, size, etc.)</td>
</tr>
<tr>
<td>marker_label_options</td>
<td>add marker labels; change look or position</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Smoothed line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lineopts(cline_options)</td>
<td>affect rendition of the smoothed line</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y axis, X axis, Titles, Legend, Overall</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>twoway_options</td>
<td>any options other than by() documented in [G-3] twoway_options</td>
</tr>
</tbody>
</table>

estat phtest is not appropriate after estimation with *svy*.

Menu

- **stphplot**
 - Statistics > Survival analysis > Regression models > Graphically assess proportional-hazards assumption

- **stcoxkm**
 - Statistics > Survival analysis > Regression models > Kaplan-Meier versus predicted survival

- **estat phtest**
 - Statistics > Survival analysis > Regression models > Test proportional-hazards assumption

Description

stphplot plots $-\ln{-\ln{(\text{survival})}}$ curves for each category of a nominal or ordinal covariate versus $\ln{(\text{analysis time})}$. These are often referred to as “log-log” plots. Optionally, these estimates can be adjusted for covariates. The proportional-hazards assumption is not violated when the curves are parallel.

stcoxkm plots Kaplan–Meier observed survival curves and compares them with the Cox predicted curves for the same variable. The closer the observed values are to the predicted, the less likely it is that the proportional-hazards assumption has been violated. Do not run *stcox* before running this command; *stcoxkm* will execute *stcox* itself to fit the model and obtain predicted values.

estat phtest tests the proportional-hazards assumption on the basis of Schoenfeld residuals after fitting a model with *stcox*.
Options for stphplot

by(varname) specifies the nominal or ordinal covariate. Either by() or strata() is required with stphplot.

strata(varname) is an alternative to by(). Rather than fitting separate Cox models for each value of varname, strata() fits one stratified Cox model. You must also specify adjust(varlist) with the strata(varname) option; see [ST] sts graph.

adjust(varlist) adjusts the estimates to that for the average values of the varlist specified. The estimates can also be adjusted to zero values of varlist by specifying the zero option. adjust(varlist) can be specified with by(); it is required with strata(varname).

zero is used with adjust() to specify that the estimates be adjusted to the 0 values of the varlist rather than to average values.

Options

nongative specifies that ln{−ln(survival)} be plotted instead of −ln{−ln(survival)}.

nolntime specifies that curves be plotted against analysis time instead of against ln(analysis time).
noshow prevents stphplot from showing the key st variables. This option is seldom used because most people type stset, show or stset, noshow to set whether they want to see these variables mentioned at the top of the output of every st command; see [ST] stset.

Plot

plot#opts(stphplot_plot_options) affects the rendition of the #th connected line and #th plotted points; see [G-3] cline_options and [G-3] marker_options.

Add plots

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot_option.

Y axis, X axis, Titles, Legend, Overall
twoway_options are any of the options documented in [G-3] twoway_options, excluding by(). These include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see [G-3] saving_option).

Options for stcoxkm

by(varname) specifies the nominal or ordinal covariate. by() is required.

ties(breslow|efron|exactm|exactp) specifies one of the methods available to stcox for handling tied failures. If none is specified, ties(breslow) is assumed; see [ST] stcox.

separate produces separate plots of predicted and observed values for each value of the variable specified with by().

noshow prevents stcoxkm from showing the key st variables. This option is seldom used because most people type stset, show or stset, noshow to set whether they want to see these variables mentioned at the top of the output of every st command; see [ST] stset.
Observed plot

 `obsopts(stcoxkm_plot_options)` affects the rendition of the observed curve; see [G-3] `connect_options` and [G-3] `marker_options`.

 `obs#opts(stcoxkm_plot_options)` affects the rendition of the #th observed curve; see [G-3] `connect_options` and [G-3] `marker_options`. This option is not allowed with `separate`.

Predicted plot

 `predopts(stcoxkm_connect_options)` affects the rendition of the predicted curve; see [G-3] `connect_options` and [G-3] `marker_options`.

 `pred#opts(stcoxkm_connect_options)` affects the rendition of the #th predicted curve; see [G-3] `connect_options` and [G-3] `marker_options`. This option is not allowed with `separate`.

Add plots

 `addplot(plot)` provides a way to add other plots to the generated graph; see [G-3] `addplot_option`.

Y axis, X axis, Titles, Legend, Overall

 `twoway_options` are any of the options documented in [G-3] `twoway_options`, excluding by(). These include options for titling the graph (see [G-3] `title_options`) and for saving the graph to disk (see [G-3] `saving_option`).

 `byopts(byopts)` affects the appearance of the combined graph when by() and `separate` are specified, including the overall graph title and the organization of subgraphs. See [G-3] `by_option`.

Options for estat phtest

Main

 `log`, `km`, `rank`, and `time()` are used to specify the time scaling function.

 By default, `estat phtest` performs the tests using the identity function, that is, analysis time itself.

 `log` specifies that the natural log of analysis time be used.

 `km` specifies that 1 minus the Kaplan–Meier product-limit estimate be used.

 `rank` specifies that the rank of analysis time be used.

 `time(varname)` specifies a variable containing an arbitrary monotonic transformation of analysis time. You must ensure that `varname` is a monotonic transform.

 `plot(varname)` specifies that a scatterplot and smoothed plot of scaled Schoenfeld residuals versus time be produced for the covariate specified by `varname`. By default, the smoothing is performed using the running-mean method implemented in `lowess`, `mean noweight`; see [R] `lowess`.

 `bwidth(#)` specifies the bandwidth. Centered subsets of `bwidth() × N` observations are used for calculating smoothed values for each point in the data except for endpoints, where smaller, uncentered subsets are used. The greater the `bwidth()`, the greater the smoothing. The default is `bwidth(0.8)`.

 `detail` specifies that a separate test of the proportional-hazards assumption be produced for each covariate in the Cox model. By default, `estat phtest` produces only the global test.
Scatterplot

The `scatterplot` command is used to visualize the relationship between two variables, often showing the distribution of cases and identifying patterns or outliers. The `scatterplot` command is particularly useful in exploratory data analysis and can help in identifying potential relationships or associations between variables.

The `scatterplot` command has several options that can be specified to customize the appearance and behavior of the plot. These options include:

- **Marker options**: These options control the appearance of the markers used to represent individual data points. They can affect the shape, size, color, and outline of the markers. For example, `marker_options = size(large) color(red)` will make the markers larger and red.

- **Marker label options**: These options control how the markers are labeled. For example, `marker_label_options = label(position(top) angle(90))` will place the labels at the top of each marker and rotate them by 90 degrees.

- **Smoothed line options**: These options control the appearance of the smoothed line that connects the data points. For example, `lineopts(cline_options = width(thick))` will increase the thickness of the line.

- **Y axis, X axis, Titles, Legend, Overall twoway options**: These options control various aspects of the plot, such as axes labels, titles, legends, and overall appearance. For example, `twoway_options = title(standard) saving(output)` will add a standard title and save the plot to disk.

Remarks and examples

Cox proportional hazards models assume that the hazard ratio is constant over time. Suppose that a group of cancer patients on an experimental treatment is monitored for 10 years. If the hazard of dying for the nontreated group is twice the rate as that of the treated group (HR = 2.0), the proportional-hazards assumption implies that this ratio is the same at 1 year, at 2 years, or at any point on the time scale. Because the Cox model, by definition, is constrained to follow this assumption, it is important to evaluate its validity. If the assumption fails, alternative modeling choices would be more appropriate (for example, a stratified Cox model, time-varying covariates).

`stphplot` and `stcoxkm` provide graphical methods for assessing violations of the proportional-hazards assumption. Although using graphs to assess the validity of the assumption is subjective, it can be a helpful tool.

`stphplot` plots $-\ln(-\ln(\text{survival}))$ curves for each category of a nominal or ordinal covariate versus ln(analysis time). These are often referred to as “log–log” plots. Optionally, these estimates can be adjusted for covariates. If the plotted lines are reasonably parallel, the proportional-hazards assumption has not been violated, and it would be appropriate to base the estimate for that variable on one baseline survivor function.

Another graphical method of evaluating the proportional-hazards assumption, though less common, is to plot the Kaplan–Meier observed survival curves and compare them with the Cox predicted curves for the same variable. This plot is produced with `stcoxkm`. When the predicted and observed curves are close together, the proportional-hazards assumption has not been violated. See Garrett (1997) for more details.

Many popular tests for proportional hazards are, in fact, tests of nonzero slope in a generalized linear regression of the scaled Schoenfeld residuals on time (see Grambsch and Therneau [1994]). The `estat phtest` command tests, for individual covariates and globally, the null hypothesis of zero slope, which is equivalent to testing that the log hazard-ratio function is constant over time. Thus rejection of the null hypothesis of a zero slope indicates deviation from the proportional-hazards assumption. The `estat phtest` command allows three common time-scaling options (log, km, and rank) and also allows you to specify a user-defined function of time through the `time()` option. When no option is specified, the tests are performed using analysis time without further transformation.
Example 1

These examples use data from a leukemia remission study (Garrett 1997). The data consist of 42 patients who are monitored over time to see how long (weeks) it takes them to go out of remission (relapse: 1 = yes, 0 = no). Half the patients receive a new experimental drug, and the other half receive a standard drug (treatment1: 1 = drug A, 0 = standard). White blood cell count, a strong indicator of the presence of leukemia, is divided into three categories (wbc3cat: 1 = normal, 2 = moderate, 3 = high).

. use http://www.stata-press.com/data/r13/leukemia
(Leukemia Remission Study)
. describe
obs: 42 Leukemia Remission Study
vars: 8 23 Mar 2013 10:39
size: 336

+---------------------------------+------------------+
variable name	type	format	label
----------------+------------------	------------------	-------	
weeks	byte	%8.0g	Weeks in Remission
relapse	byte	%8.0g	yesno Relapse
treatment1	byte	%8.0g	trt1lbl Treatment I
treatment2	byte	%8.0g	trt2lbl Treatment II
wbc3cat	byte	%9.0g	wbclbl White Blood Cell Count
wbc1	byte	%8.0g	wbc3cat==Normal
wbc2	byte	%8.0g	wbc3cat==Moderate
wbc3	byte	%8.0g	wbc3cat==High
+---------------------------------+------------------+

Sorted by: weeks
. stset weeks, failure(relapse)
 failure event: relapse != 0 & relapse < .
obs. time interval: (0, weeks]
 exit on or before: failure

 42 total observations
 0 exclusions

 42 observations remaining, representing
 30 failures in single-record/single-failure data
 541 total analysis time at risk and under observation
 at risk from t = 0
 earliest observed entry t = 0
 last observed exit t = 35

In this example, we examine whether the proportional-hazards assumption holds for drug A versus the standard drug (treatment1). First, we will use stphplot, followed by stcoxkm.
. stphplot, by(treatment1)
 failure _d: relapse
 analysis time _t: weeks

Figure 1.

. stcoxkm, by(treatment1) legend(cols(1))
 failure _d: relapse
 analysis time _t: weeks

Figure 2.

Figure 1 (stphplot) displays lines that are parallel, implying that the proportional-hazards assumption for treatment1 has not been violated. This is confirmed in figure 2 (stcoxkm), where the observed values and predicted values are close together.

The graph in figure 3 is the same as the one in figure 1, adjusted for white blood cell count (using two dummy variables). The adjustment variables were centered temporarily by stphplot before the adjustment was made.
The lines in figure 3 are still parallel, although they are somewhat closer together. Examining the proportional-hazards assumption on a variable without adjusting for covariates is usually adequate as a diagnostic tool before using the Cox model. However, if you know that adjustment for covariates in a final model is necessary, you may wish to reexamine whether the proportional-hazards assumption still holds.

Another variable in this dataset measures a different drug (\texttt{treatment2}: 1 = drug B, 0 = standard). We wish to examine the proportional-hazards assumption for this variable.
This variable violates the proportional-hazards assumption. In figure 4, we see that the lines are not only nonparallel but also cross in the data region. In figure 5, we see that there are considerable differences between the observed and predicted values. We have overestimated the positive effect of drug B for the first half of the study and have underestimated it in the later weeks. One hazard ratio describing the effect of this drug would be inappropriate. We definitely would want to stratify on this variable in our Cox model.

Example 2: estat phtest

In this example, we use estat phtest to examine whether the proportional-hazards assumption holds for a model with covariates \(wbc2 \), \(wbc1 \), and \(treatment1 \). After stsetting the data, we first run stcox with these three variables as regressors. Then we use estat phtest:

```stata
. stcox PH-assumption tests — Tests of proportional-hazards assumption 161

. stcoxkm, by(treatment2) separate legend(cols(1))
   failure _d:  relapse
   analysis time _t:  weeks

. stset weeks, failure(relapse)
   failure event:  relapse != 0 & relapse < .
   obs. time interval:  [0, weeks]
   exit on or before:  failure

   42   total observations
   0    exclusions

   42   observations remaining, representing
       30   failures in single-record/single-failure data
       541  total analysis time at risk and under observation
          at risk from t =    0
          earliest observed entry t =  0
          last observed exit t =   35

Figure 5.
```
. stcox treatment1 wbc2 wbc3, nolog
 failure _d: relapse
 analysis time _t: weeks
 Cox regression -- Breslow method for ties
 No. of subjects = 42 Number of obs = 42
 No. of failures = 30
 Time at risk = 541
 LR chi2(3) = 33.02
 Log likelihood = -77.476905 Prob > chi2 = 0.0000

 _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+---
 treatment1 | .2834551 .1229874 -2.91 0.004 .1211042 .6634517
 wbc2 | 3.637825 2.201306 2.13 0.033 1.111134 11.91015
 wbc3 | 10.92214 7.088783 3.68 0.000 3.06093 38.97284

. estat phtest, detail
 Test of proportional-hazards assumption
 Time: Time

 | rho chi2 df Prob>chi2
-------------+-----------------------------------
 treatment1 | -0.07019 0.15 1 0.6948
 wbc2 | -0.03223 0.03 1 0.8650
 wbc3 | 0.01682 0.01 1 0.9237
 global test | 0.33 3 0.9551

Because we specified the detail option with the estat phtest command, both covariate-specific and global tests were produced. We can see that there is no evidence that the proportional-hazards assumption has been violated.

Another variable in this dataset measures a different drug (treatment2: 1 = drug B, 0 = standard). We now wish to examine the proportional-hazards assumption for the previous model by substituting treatment2 for treatment1.

We fit a new Cox model and perform the test for proportional hazards:

. stcox treatment2 wbc2 wbc3, nolog
 failure _d: relapse
 analysis time _t: weeks
 Cox regression -- Breslow method for ties
 No. of subjects = 42 Number of obs = 42
 No. of failures = 30
 Time at risk = 541
 LR chi2(3) = 23.93
 Log likelihood = -82.019053 Prob > chi2 = 0.0000

 _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+---
 treatment2 | .8483777 .3469054 -0.40 0.688 .3806529 1.890816
 wbc2 | 3.409628 2.050784 2.04 0.041 1.048905 11.08353
 wbc3 | 14.0562 8.873693 4.19 0.000 4.078529 48.44314
. estat phtest, detail

Test of proportional-hazards assumption

<table>
<thead>
<tr>
<th></th>
<th>rho</th>
<th>chi2</th>
<th>df</th>
<th>Prob>chi2</th>
</tr>
</thead>
<tbody>
<tr>
<td>treatment2</td>
<td>-0.51672</td>
<td>10.19</td>
<td>1</td>
<td>0.0014</td>
</tr>
<tr>
<td>wbc2</td>
<td>-0.09860</td>
<td>0.29</td>
<td>1</td>
<td>0.5903</td>
</tr>
<tr>
<td>wbc3</td>
<td>-0.03559</td>
<td>0.04</td>
<td>1</td>
<td>0.8448</td>
</tr>
<tr>
<td>global test</td>
<td>10.24</td>
<td>3</td>
<td></td>
<td>0.0166</td>
</tr>
</tbody>
</table>

treatment2 violates the proportional-hazards assumption. A single hazard ratio describing the effect of this drug is inappropriate.

The test of the proportional-hazards assumption is based on the principle that, for a given regressor, the assumption restricts $\beta(t_j) = \beta$ for all t_j. This implies that a plot of $\beta(t_j)$ versus time will have a slope of zero. Grambsch and Therneau (1994) showed that $E(s^*_j) + \widehat{\beta} \approx \beta(t_j)$, where s^*_j is the scaled Schoenfeld residual at failure time t_j and $\widehat{\beta}$ is the estimated coefficient from the Cox model. Thus a plot of $s^*_j + \widehat{\beta}$ versus some function of time provides a graphical assessment of the assumption.

Continuing from above, if you type

```
. predict sch*, scaledsch
```

you obtain three variables—sch1, sch2, and sch3—corresponding to the three regressors, treatment2, wbc2, and wbc3. Given the utility of $s^*_j + \widehat{\beta}$, what is stored in variable sch1 is actually $s^*_j + \widehat{\beta}_1$ and not just the scaled Schoenfeld residual for the first variable, s^*_j, itself. The estimated coefficient, $\widehat{\beta}_1$, is added automatically. The same holds true for the second created variable representing the second regressor, $sch2 = s^*_j + \widehat{\beta}_2$, and so on.

As such, a graphical assessment of the proportional-hazards assumption for the first regressor is as simple as

```
. scatter sch1 _t || lfit sch1 _t
```

which plots a scatter of $s^*_j + \widehat{\beta}_1$ versus analysis time, _t, and overlays a linear fit. Is the slope zero? The answer is no for the first regressor, treatment2, and that agrees with our results from estat phtest.

⚠️ Technical note

The tests of the proportional-hazards assumption assume homogeneity of variance across risk sets. This allows the use of the estimated overall (pooled) variance–covariance matrix in the equations. Although these tests have been shown by Grambsch and Therneau (1994) to be fairly robust to departures from this assumption, exercise care where this assumption may not hold, particularly when performing a stratified Cox analysis. In such cases, we recommend that you check the proportional-hazards assumption separately for each stratum.
Stored results

```
estat phtest stores the following in r():
Scalars
   r(df)  global test degrees of freedom
   r(chi2)  global test χ²
```

Methods and formulas

For one covariate, x, the Cox proportional-hazards model reduces to

$$h(t; x) = h_0(t) \exp(x \beta)$$

where $h_0(t)$ is the baseline hazard function from the Cox model. Let $S_0(t)$ and $H_0(t)$ be the corresponding Cox baseline survivor and baseline cumulative hazard functions, respectively.

The proportional-hazards assumption implies that

$$H(t) = H_0(t) \exp(x \beta)$$

or

$$\ln H(t) = \ln H_0(t) + x \beta$$

where $H(t)$ is the cumulative hazard function. Thus, under the proportional-hazards assumption, the logs of the cumulative hazard functions at each level of the covariate have equal slope. This is the basis for the method implemented in `stphplot`.

The proportional-hazards assumption also implies that

$$S(t) = S_0(t) \exp(x \beta)$$

Let $\hat{S}(t)$ be the estimated survivor function based on the Cox model. This function is a step function like the Kaplan–Meier estimate and, in fact, reduces to the Kaplan–Meier estimate when $x = 0$. Thus for each level of the covariate of interest, we can assess violations of the proportional-hazards assumption by comparing these survival estimates with estimates calculated independently of the model. See Kalbfleisch and Prentice (2002) or Hess (1995).

`stcoxkm` plots Kaplan–Meier estimated curves for each level of the covariate together with the Cox model predicted baseline survival curve. The closer the observed values are to the predicted values, the less likely it is that the proportional-hazards assumption has been violated.

Grambsch and Therneau (1994) presented a scaled adjustment for the Schoenfeld residuals that permits the interpretation of the smoothed residuals as a nonparametric estimate of the log hazard-ratio function. These scaled Schoenfeld residuals, r^*_S, can be obtained directly with `predict’s scaledsch` option; see [ST] stcox postestimation.

Scaled Schoenfeld residuals are centered at $\hat{\beta}$ for each covariate and, when there is no violation of proportional hazards, should have slope zero when plotted against functions of time. The `estat phtest` command uses these residuals, tests the null hypothesis that the slope is equal to zero for each covariate in the model, and performs the global test proposed by Grambsch and Therneau (1994). The test of zero slope is equivalent to testing that the log hazard-ratio function is constant over time.

For a specified function of time, $g(t)$, the statistic for testing the pth individual covariate is, for $\overline{g}(t) = d^{-1} \sum_{i=1}^N \delta_i g(t_i)$,
which is asymptotically distributed as χ^2 with 1 degree of freedom. $r^*_S_{pi}$ is the scaled Schoenfeld residual for observation i, and δ_i indicates failure for observation i, with $d = \sum \delta_i$.

The statistic for the global test is calculated as

$$
\chi^2_g = \left[\sum_{i=1}^N \{ \delta_i g(t_i) - \bar{g}(t) \} r^*_S_{ni} \right]' \left[d \text{Var}(\hat{\beta}) \sum_{i=1}^N \{ \delta_i g(t_i) - \bar{g}(t) \}^2 \right]^{-1} \left[\sum_{i=1}^N \{ \delta_i g(t_i) - \bar{g}(t) \} r^*_S_{ni} \right]
$$

for $r^*_S_{ni}$, a vector of the m (unscaled) Schoenfeld residuals for the ith observation; see [ST] stcox postestimation. The global test statistic is asymptotically distributed as χ^2 with m degrees of freedom.

The equations for the scaled Schoenfeld residuals and the two test statistics just described assume homogeneity of variance across risk sets. Although these tests are fairly robust to deviations from this assumption, care must be exercised, particularly when dealing with a stratified Cox model.

Acknowledgment

The original versions of stphplot and stcoxkm were written by Joanne M. Garrett at the University of North Carolina at Chapel Hill. We also thank Garrett for her contributions to the estat phtest command.

References

Also see

[ST] stcox — Cox proportional hazards model

[ST] sts — Generate, graph, list, and test the survivor and cumulative hazard functions

[ST] stset — Declare data to be survival-time data

[U] 20 Estimation and postestimation commands
Description

The following postestimation commands are of special interest after `stcox`:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>estat concordance</code></td>
<td>compute the concordance probability</td>
</tr>
<tr>
<td><code>stcurve</code></td>
<td>plot the survivor, hazard, and cumulative hazard functions</td>
</tr>
</tbody>
</table>

`estat concordance` is not appropriate after estimation with `svy`.

For information on `estat concordance`, see below. For information on `stcurve`, see [ST] `stcurve`.

The following standard postestimation commands are also available:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>contrast</code></td>
<td>contrasts and ANOVA-style joint tests of estimates</td>
</tr>
<tr>
<td><code>estat ic</code></td>
<td>Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)</td>
</tr>
<tr>
<td><code>estat summarize</code></td>
<td>summary statistics for the estimation sample</td>
</tr>
<tr>
<td><code>estat vce</code></td>
<td>variance–covariance matrix of the estimators (VCE)</td>
</tr>
<tr>
<td><code>estat (svy)</code></td>
<td>postestimation statistics for survey data</td>
</tr>
<tr>
<td><code>estimates</code></td>
<td>cataloging estimation results</td>
</tr>
<tr>
<td><code>lincom</code></td>
<td>point estimates, standard errors, testing, and inference for linear combinations of coefficients</td>
</tr>
<tr>
<td><code>linktest</code></td>
<td>link test for model specification</td>
</tr>
<tr>
<td><code>lrtest</code>¹</td>
<td>likelihood-ratio test</td>
</tr>
<tr>
<td><code>margins</code></td>
<td>marginal means, predictive margins, marginal effects, and average marginal effects</td>
</tr>
<tr>
<td><code>marginsplot</code></td>
<td>graph the results from margins (profile plots, interaction plots, etc.)</td>
</tr>
<tr>
<td><code>nlcom</code></td>
<td>point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients</td>
</tr>
<tr>
<td><code>predict</code></td>
<td>predictions, residuals, influence statistics, and other diagnostic measures</td>
</tr>
<tr>
<td><code>predictnl</code></td>
<td>point estimates, standard errors, testing, and inference for generalized predictions</td>
</tr>
<tr>
<td><code>pwcompare</code></td>
<td>pairwise comparisons of estimates</td>
</tr>
<tr>
<td><code>test</code></td>
<td>Wald tests of simple and composite linear hypotheses</td>
</tr>
<tr>
<td><code>testnl</code></td>
<td>Wald tests of nonlinear hypotheses</td>
</tr>
</tbody>
</table>

¹ `lrtest` is not appropriate with `svy` estimation results.
Special-interest postestimation commands

`estat concordance` calculates the concordance probability, which is defined as the probability that predictions and outcomes are concordant. `estat concordance` provides two measures of the concordance probability: Harrell’s C and Gönen and Heller’s K concordance coefficients. `estat concordance` also reports the Somer’s D rank correlation, which is obtained by calculating $2C - 1$ or $2K - 1$.

Syntax for predict

```
predict [type] newvar [if] [in], sv_statistic nooffset partial
```

```
predict [type] { stub* | newvarlist } [if] [in], mv_statistic [ partial]
```

<table>
<thead>
<tr>
<th>sv_statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hr</td>
<td>predicted hazard ratio, also known as the relative hazard; the default</td>
</tr>
<tr>
<td>xb</td>
<td>linear prediction $x_j\beta$</td>
</tr>
<tr>
<td>stdp</td>
<td>standard error of the linear prediction; SE($x_j\beta$)</td>
</tr>
<tr>
<td>*basesurv</td>
<td>baseline survivor function</td>
</tr>
<tr>
<td>*basechazard</td>
<td>baseline cumulative hazard function</td>
</tr>
<tr>
<td>*basehc</td>
<td>baseline hazard contributions</td>
</tr>
<tr>
<td>*mgale</td>
<td>martingale residuals</td>
</tr>
<tr>
<td>*csnell</td>
<td>Cox–Snell residuals</td>
</tr>
<tr>
<td>*deviance</td>
<td>deviance residuals</td>
</tr>
<tr>
<td>*ldisplace</td>
<td>likelihood displacement values</td>
</tr>
<tr>
<td>*lmax</td>
<td>LMAX measures of influence</td>
</tr>
<tr>
<td>*effects</td>
<td>log frailties</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mv_statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*scores</td>
<td>efficient score residuals</td>
</tr>
<tr>
<td>*esr</td>
<td>synonym for scores</td>
</tr>
<tr>
<td>*dfbeta</td>
<td>DFBETA measures of influence</td>
</tr>
<tr>
<td>*schoenfeld</td>
<td>Schoenfeld residuals</td>
</tr>
<tr>
<td>*scaledsch</td>
<td>scaled Schoenfeld residuals</td>
</tr>
</tbody>
</table>

Unstarred statistics are available both in and out of sample; type `predict ... if e(sample) ...` if wanted only for the estimation sample. Starred statistics are calculated only for the estimation sample, even when `e(sample)` is not specified. `nooffset` is allowed only with unstarred statistics. `mgale, csnell, deviance, ldisplace, lmax, dfbeta, schoenfeld, and scaledsch` are not allowed with `svy` estimation results.

Menu for predict

Statistics > Postestimation > Predictions, residuals, etc.
Options for predict

hr, the default, calculates the relative hazard (hazard ratio), that is, the exponentiated linear prediction, \(\exp(x_j \hat{\beta}) \).

xb calculates the linear prediction from the fitted model. That is, you fit the model by estimating a set of parameters, \(\beta_0, \beta_1, \beta_2, \ldots, \beta_k \), and the linear prediction is \(\hat{\beta}_1 x_{1j} + \hat{\beta}_2 x_{2j} + \cdots + \hat{\beta}_k x_{kj} \), often written in matrix notation as \(x_j \hat{\beta} \).

The \(x_{1j}, x_{2j}, \ldots, x_{kj} \) used in the calculation are obtained from the data currently in memory and do not have to correspond to the data on the independent variables used in estimating \(\beta \).

stdp calculates the standard error of the prediction, that is, the standard error of \(x_j \hat{\beta} \).

basesurv calculates the baseline survivor function. In the null model, this is equivalent to the Kaplan–Meier product-limit estimate. If stcox’s strata() option was specified, baseline survivor functions for each stratum are provided.

basehazard calculates the cumulative baseline hazard. If stcox’s strata() option was specified, cumulative baseline hazards for each stratum are provided.

basehc calculates the baseline hazard contributions. These are used to construct the product-limit type estimator for the baseline survivor function generated by basesurv. If stcox’s strata() option was specified, baseline hazard contributions for each stratum are provided.

mgale calculates the martingale residuals. For multiple-record-per-subject data, by default only one value per subject is calculated, and it is placed on the last record for the subject.

Adding the partial option will produce partial martingale residuals, one for each record within subject; see partial below. Partial martingale residuals are the additive contributions to a subject’s overall martingale residual. In single-record-per-subject data, the partial martingale residuals are the martingale residuals.

csnell calculates the Cox–Snell generalized residuals. For multiple-record data, by default only one value per subject is calculated and, it is placed on the last record for the subject.

Adding the partial option will produce partial Cox–Snell residuals, one for each record within subject; see partial below. Partial Cox–Snell residuals are the additive contributions to a subject’s overall Cox–Snell residual. In single-record data, the partial Cox–Snell residuals are the Cox–Snell residuals.

deviance calculates the deviance residuals. Deviance residuals are martingale residuals that have been transformed to be more symmetric about zero. For multiple-record data, by default only one value per subject is calculated, and it is placed on the last record for the subject.

Adding the partial option will produce partial deviance residuals, one for each record within subject; see partial below. Partial deviance residuals are transformed partial martingale residuals. In single-record data, the partial deviance residuals are the deviance residuals.

ldisplace calculates the likelihood displacement values. A likelihood displacement value is an influence measure of the effect of deleting a subject on the overall coefficient vector. For multiple-record data, by default only one value per subject is calculated, and it is placed on the last record for the subject.

Adding the partial option will produce partial likelihood displacement values, one for each record within subject; see partial below. Partial displacement values are interpreted as effects due to deletion of individual records rather than deletion of individual subjects. In single-record data, the partial likelihood displacement values are the likelihood displacement values.
lmax calculates the LMAX measures of influence. LMAX values are related to likelihood displacement values because they also measure the effect of deleting a subject on the overall coefficient vector. For multiple-record data, by default only one LMAX value per subject is calculated, and it is placed on the last record for the subject.

Adding the partial option will produce partial LMAX values, one for each record within subject; see partial below. Partial LMAX values are interpreted as effects due to deletion of individual records rather than deletion of individual subjects. In single-record data, the partial LMAX values are the LMAX values.

effects is for use after stcox, shared() and provides estimates of the log frailty for each group. The log frailties are random group-specific offsets to the linear predictor that measure the group effect on the log relative-hazard.

scores calculates the efficient score residuals for each regressor in the model. For multiple-record data, by default only one score per subject is calculated, and it is placed on the last record for the subject.

Adding the partial option will produce partial efficient score residuals, one for each record within subject; see partial below. Partial efficient score residuals are the additive contributions to a subject’s overall efficient score residual. In single-record data, the partial efficient score residuals are the efficient score residuals.

One efficient score residual variable is created for each regressor in the model; the first new variable corresponds to the first regressor, the second to the second, and so on.

esr is a synonym for scores.

dfbeta calculates the DFBETA measures of influence for each regressor in the model. The DFBETA value for a subject estimates the change in the regressor’s coefficient due to deletion of that subject. For multiple-record data, by default only one value per subject is calculated, and it is placed on the last record for the subject.

Adding the partial option will produce partial DFBETAs, one for each record within subject; see partial below. Partial DFBETAs are interpreted as effects due to deletion of individual records rather than deletion of individual subjects. In single-record data, the partial DFBETAs are the DFBETAs.

One DFBETA variable is created for each regressor in the model; the first new variable corresponds to the first regressor, the second to the second, and so on.

schoenfeld calculates the Schoenfeld residuals. This option may not be used after stcox with the exactm or exactp option. Schoenfeld residuals are calculated and reported only at failure times.

One Schoenfeld residual variable is created for each regressor in the model; the first new variable corresponds to the first regressor, the second to the second, and so on.

scaledsch calculates the scaled Schoenfeld residuals. This option may not be used after stcox with the exactm or exactp option. Scaled Schoenfeld residuals are calculated and reported only at failure times.

One scaled Schoenfeld residual variable is created for each regressor in the model; the first new variable corresponds to the first regressor, the second to the second, and so on.
Note: The easiest way to use the preceding four options is, for example,

```
   . predict double stub*, scores
```

where `stub` is a short name of your choosing. Stata then creates variables `stub1`, `stub2`, etc. You may also specify each variable explicitly, in which case there must be as many (and no more) variables specified as there are regressors in the model.

`nooffset` is allowed only with `hr`, `xb`, and `stdp`, and is relevant only if you specified `off- set(varname)` for `stcox`. It modifies the calculations made by `predict` so that they ignore the offset variable; the linear prediction is treated as $x_j\hat{\beta}$ rather than $x_j\hat{\beta} + \text{offset}_j$.

`partial` is relevant only for multiple-record data and is valid with `mgale`, `csnell`, `deviance`, `ldisplace`, `lmax`, `scores`, `esr`, and `dfbeta`. Specifying `partial` will produce “partial” versions of these statistics, where one value is calculated for each record instead of one for each subject. The subjects are determined by the `id()` option to `stset`.

Specify partial if you wish to perform diagnostics on individual records rather than on individual subjects. For example, a partial DFBETA would be interpreted as the effect on a coefficient due to deletion of one record, rather than the effect due to deletion of all records for a given subject.

Syntax for estat concordance

```
estat concordance [ if ] [ in ] [ , concordance_options ]
```

```
cordance_options  Description

  Main
  _harrell_        compute Harrell’s $C$ coefficient; the default
  _gheller_        compute Gönen and Heller’s concordance coefficient
  _se_             compute asymptotic standard error of Gönen and Heller’s coefficient
  _all_            compute statistic for all observations in the data
  _noshow_         do not show st setting information
```

Menu for estat

Statistics > Postestimation > Reports and statistics

Options for estat concordance

`harrell`, the default, calculates Harrell’s C coefficient, which is defined as the proportion of all usable subject pairs in which the predictions and outcomes are concordant.

`gheller` calculates Gönen and Heller’s K concordance coefficient instead of Harrell’s C coefficient. The `harrell` and `gheller` options may be specified together to obtain both concordance measures.

`se` calculates the smoothed version of Gönen and Heller’s K concordance coefficient and its asymptotic standard error. The `se` option requires the `gheller` option.

`all` requests that the statistic be computed for all observations in the data. By default, `estat concordance` computes over the estimation subsample.

`noshow` prevents `estat concordance` from displaying the identities of the key st variables above its output.
Remarks and examples

Remarks are presented under the following headings:

- Baseline functions
- Making baseline reasonable
- Residuals and diagnostic measures
- Multiple records per subject
- Predictions after stcox with the tvc() option
- Predictions after stcox with the shared() option
 - estat concordance

Baseline functions

predict after stcox provides estimates of the baseline survivor and baseline cumulative hazard function, among other things. Here the term baseline means that these are the functions when all covariates are set to zero, that is, they reflect (perhaps hypothetical) individuals who have zero-valued measurements. When you specify predict’s basechazard option, you obtain the baseline cumulative hazard. When you specify basesurv, you obtain the baseline survivor function. Additionally, when you specify predict’s basehc option, you obtain estimates of the baseline hazard contribution at each failure time, which are factors used to develop the product-limit estimator for the survivor function generated by basesurv.

Although in theory $S_0(t) = \exp\{-H_0(t)\}$, where $S_0(t)$ is the baseline survivor function and $H_0(t)$ is the baseline cumulative hazard, the estimates produced by basechazard and basesurv do not exactly correspond in this manner, although they closely do. The reason is that predict after stcox uses different estimation schemes for each; the exact formulas are given in Methods and formulas.

When the Cox model is fit with the strata() option, you obtain estimates of the baseline functions for each stratum.

Example 1: Baseline survivor function

Baseline functions refer to the values of the functions when all covariates are set to 0. Let’s graph the survival curve for the Stanford heart transplant model that we fit in example 3 of [ST] stcox, and to make the baseline curve reasonable, let’s do that at age = 40 and year = 70.

Thus we will begin by creating variables that, when 0, correspond to the baseline values we desire, and then we will fit our model with these variables instead. We then predict the baseline survivor function and graph it:

```
. use http://www.stata-press.com/data/r13/stan3
    (Heart transplant data)
. generate age40 = age - 40
. generate year70 = year - 70
```
. stcox age40 posttran surg year70, nolog
 \hspace{3cm} failure _d: died
 \hspace{3cm} analysis time _t: t1
 \hspace{3cm} id: id

Cox regression -- Breslow method for ties
\hspace{3cm} No. of subjects = 103 Number of obs = 172
\hspace{3cm} No. of failures = 75
\hspace{3cm} Time at risk = 31938.1
\hspace{3cm} LR chi2(4) = 17.56
\hspace{3cm} Log likelihood = -289.53378 Prob > chi2 = 0.0015

| _t | Haz. Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------|------------|-----------|------|------|----------------------|
| age40 | 1.030224 | .0143201 | 2.14 | 0.032| 1.002536 1.058677 |
| posttran| .9787243 | .3032597 | -0.07| 0.945| .5332291 1.796416 |
| surgery | .3738278 | .163204 | -2.25| 0.024| .1588759 .8796 |
| year70 | .8873107 | .059808 | -1.77| 0.076| .7775022 1.012628 |

. predict s, basesurv
. summarize s

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>172</td>
<td>.6291871</td>
<td>.2530009</td>
<td>.130666</td>
<td>.9908968</td>
</tr>
</tbody>
</table>

Our recentering of `age` and `year` did not affect the estimation, a fact you can verify by refitting the model with the original `age` and `year` variables.

To see how the values of the baseline survivor function are stored, we first sort according to analysis time and then list some observations.

. sort _t id
. list id _t0 _t _d s in 1/20

<table>
<thead>
<tr>
<th>id</th>
<th>_t0</th>
<th>_t</th>
<th>_d</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0 .9908968</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>1 .9908968</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>0</td>
<td>1</td>
<td>0 .9908968</td>
</tr>
<tr>
<td>4</td>
<td>45</td>
<td>0</td>
<td>1</td>
<td>0 .9908968</td>
</tr>
<tr>
<td>5</td>
<td>39</td>
<td>0</td>
<td>2</td>
<td>0 .9633915</td>
</tr>
<tr>
<td>6</td>
<td>43</td>
<td>0</td>
<td>2</td>
<td>1 .9633915</td>
</tr>
<tr>
<td>7</td>
<td>46</td>
<td>0</td>
<td>2</td>
<td>0 .9633915</td>
</tr>
<tr>
<td>8</td>
<td>61</td>
<td>0</td>
<td>2</td>
<td>1 .9633915</td>
</tr>
<tr>
<td>9</td>
<td>75</td>
<td>0</td>
<td>2</td>
<td>1 .9633915</td>
</tr>
<tr>
<td>10</td>
<td>95</td>
<td>0</td>
<td>2</td>
<td>0 .9633915</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>1 .9356873</td>
</tr>
<tr>
<td>12</td>
<td>23</td>
<td>0</td>
<td>3</td>
<td>0 .9356873</td>
</tr>
<tr>
<td>13</td>
<td>42</td>
<td>0</td>
<td>3</td>
<td>1 .9356873</td>
</tr>
<tr>
<td>14</td>
<td>54</td>
<td>0</td>
<td>3</td>
<td>1 .9356873</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td>0</td>
<td>3</td>
<td>0 .9356873</td>
</tr>
<tr>
<td>16</td>
<td>68</td>
<td>0</td>
<td>3</td>
<td>0 .9356873</td>
</tr>
<tr>
<td>17</td>
<td>72</td>
<td>0</td>
<td>4</td>
<td>0 .9356873</td>
</tr>
<tr>
<td>18</td>
<td>94</td>
<td>0</td>
<td>4</td>
<td>0 .9356873</td>
</tr>
<tr>
<td>19</td>
<td>38</td>
<td>0</td>
<td>5</td>
<td>0 .9264087</td>
</tr>
<tr>
<td>20</td>
<td>70</td>
<td>0</td>
<td>5</td>
<td>0 .9264087</td>
</tr>
</tbody>
</table>
At time \(t = 2 \), the baseline survivor function is 0.9634, or more precisely, \(S_0(2 + \Delta t) = 0.9634 \). What we mean by \(S_0(t + \Delta t) \) is the probability of surviving just beyond \(t \). This is done to clarify that the probability includes escaping failure at precisely time \(t \).

The above also indicates that our estimate of \(S_0(t) \) is a step function, and that the steps occur only at times when failure is observed—our estimated \(S_0(t) \) does not change from \(t = 3 \) to \(t = 4 \) because no failure occurred at time 4. This behavior is analogous to that of the Kaplan–Meier estimate of the survivor function; see \[ST\] \sts.

Here is a graph of the baseline survival curve:

\[
\text{line } s _t, \text{sort c(J)}
\]

This graph was easy enough to produce because we wanted the survivor function at baseline. To graph survivor functions after \stcox with covariates set to any value (baseline or otherwise), use \stcurve; see \[ST\] \stcurve.

The similarity to Kaplan–Meier is not limited to the fact that both are step functions that change only when failure occurs. They are also calculated in much the same way, with predicting \basesurv after \stcox having the added benefit that the result is automatically adjusted for all the covariates in your Cox model. When you have no covariates, both methods are equivalent. If you continue from the previous example, you will find that

\[
\text{sts generate s1 = s}
\]

and

\[
\text{stcox, estimate}
\]

\[
\text{predict double s2, basesurv}
\]

produce the identical variables \(s1 \) and \(s2 \), both containing estimates of the overall survivor function, unadjusted for covariates. We used type \(\text{double} \) for \(s2 \) to precisely match \sts \generate, which gives results in double precision.

If we had fit a stratified model by using the \(\text{strata()} \) option, the recorded survivor-function estimate on each observation would be for the stratum of that observation. That is, what you get is one variable that holds not an overall survivor curve, but instead a set of stratum-specific curves.
Example 2: Baseline cumulative hazard

Obtaining estimates of the baseline cumulative hazard, $H_0(t)$, is just as easy as obtaining the baseline survivor function. Using the same data as previously,

```
. use http://www.stata-press.com/data/r13/stan3, clear
  (Heart transplant data)
. generate age40 = age - 40
. generate year70 = year - 70
. stcox age40 posttran surg year70
  (output omitted)
. predict ch, basechazard
. line ch _t, sort c(J)
```

The estimated baseline cumulative hazard is also a step function with the steps occurring at the observed times of failure. When there are no covariates in your Cox model, what you obtain is equivalent to the Nelson–Aalen estimate of the cumulative hazard (see [ST] sts), but using `predict, basechazard` after `stcox` allows you to also adjust for covariates.

To obtain cumulative hazard curves at values other than baseline, you could either recenter your covariates—as we did previously with `age` and `year”—so that the values in which you are interested become baseline, or simply use `stcurve`; see [ST] stcurve.

Example 3: Baseline hazard contributions

Mathematically, a baseline hazard contribution, $h_i = (1 - \alpha_i)$ (see Kalbfleisch and Prentice 2002, 115), is defined at every analytic time t_i at which a failure occurs and is undefined at other times. Stata stores h_i in observations where a failure occurred and stores missing values in the other observations.

```
. use http://www.stata-press.com/data/r13/stan3, clear
  (Heart transplant data)
. generate age40 = age - 40
. generate year70 = year - 70
. stcox age40 posttran surg year70
  (output omitted)
. predict double h, basehc
  (97 missing values generated)
```
At time \(t = 50 \), the hazard contribution \(h_1 \) is 0.0150. At time \(t = 6 \), the hazard contribution \(h_2 \) is 0.0204. In observation 3, no hazard contribution is stored. Observation 3 contains a missing value because observation 3 did not fail at time 1. We also see that values of the hazard contributions are stored only in observations that are marked as failing.

Hazard contributions by themselves have no substantive interpretation, and in particular they should not be interpreted as estimating the hazard function at time \(t \). Hazard contributions are simply mass points that are used as components to calculate the survivor function; see Methods and formulas. You can also use hazard contributions to estimate the hazard, but because they are only mass points, they need to be smoothed first. This smoothing is done automatically with stcurve; see [ST] stcurve. In summary, hazard contributions in their raw form serve no purpose other than to help replicate calculations done by Stata, and we demonstrate this below simply for illustrative purposes.

When we created the new variable \(h \) for holding the hazard contributions, we used type double because we plan on using \(h \) in some further calculations below and we wish to be as precise as possible.

In contrast with the baseline hazard contributions, the baseline survivor function, \(S_0(t) \), is defined at all values of \(t \): its estimate changes its value when failures occur, and at times when no failures occur, the estimated \(S_0(t) \) is equal to its value at the time of the last failure.

Continuing with our example, we now predict the baseline survivor function:

```
. predict double s, basesurv
. list id _t0 _t _d h s in 1/10
```

In the above, we sorted by \(id \), but it is easier to see how \(h \) and \(s \) are related if we sort by \(_t \) and put the failures on top:
. gsort +_t -_d
. list id _t0 _t _d h s in 1/18

<table>
<thead>
<tr>
<th>id</th>
<th>_t0</th>
<th>_t</th>
<th>_d</th>
<th>h</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>.00910319</td>
</tr>
<tr>
<td>2.</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>3.</td>
<td>20</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>4.</td>
<td>45</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>5.</td>
<td>61</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>.02775802</td>
</tr>
<tr>
<td>6.</td>
<td>75</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>.02775802</td>
</tr>
<tr>
<td>7.</td>
<td>43</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>.02775802</td>
</tr>
<tr>
<td>8.</td>
<td>96</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>9.</td>
<td>46</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>10.</td>
<td>39</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>11.</td>
<td>54</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>.02875689</td>
</tr>
<tr>
<td>12.</td>
<td>42</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>.02875689</td>
</tr>
<tr>
<td>13.</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>.02875689</td>
</tr>
<tr>
<td>14.</td>
<td>23</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>15.</td>
<td>68</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>16.</td>
<td>60</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>17.</td>
<td>72</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>18.</td>
<td>94</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>.</td>
</tr>
</tbody>
</table>

The baseline hazard contribution is stored on every failure record—if multiple failures occur at a given time, the value of the hazard contribution is repeated—and the baseline survivor is stored on every record. (More correctly, baseline values are stored on records that meet the criterion and that were used in estimation. If some observations are explicitly or implicitly excluded from the estimation, their baseline values will be set to missing, no matter what.)

With this listing, we can better understand how the hazard contributions are used to calculate the survivor function. Because the patient with \(\text{id} = 15 \) died at time \(\text{t}_1 = 1 \), the hazard contribution for that patient is \(h_{15} = 0.00910319 \). Because that was the only death at \(\text{t}_1 = 1 \), the estimated survivor function at this time is \(S_0(1) = 1 - h_{15} = 1 - 0.00910319 = 0.99089681 \). The next death occurs at time \(t_1 = 2 \), and the hazard contribution at this time for patient 43 (or patient 61 or patient 75, it does not matter) is \(h_{43} = 0.02775802 \). Multiplying the previous survivor function value by \(1 - h_{43} \) gives the new survivor function at \(t_1 = 2 \) as \(S_0(2) = 0.96339147 \). The other survivor function values are then calculated in succession, using this method at each failure time. At times when no failures occur, the survivor function remains unchanged.

Technical note

Consider manually obtaining the estimate of \(S_0(t) \) from the \(h_i \):

. sort _t _d
. by _t: keep if _d & _n==_N
. generate double s2 = 1-h
. replace s2 = s2[_n-1]*s2 if _n>1

s2 will be equivalent to s as produced above. If you had obtained stratified estimates, the code would be
Making baseline reasonable

When predicting with `basesurv` or `basechazard`, for numerical accuracy reasons, the baseline functions must correspond to something reasonable in your data. Remember, the baseline functions correspond to all covariates equal to 0 in your Cox model.

Consider, for instance, a Cox model that includes the variable calendar year among the covariates. Say that `year` varies between 1980 and 1996. The baseline functions would correspond to year 0, almost 2,000 years in the past. Say that the estimated coefficient on `year` is -0.2, meaning that the hazard ratio for one year to the next is a reasonable 0.82.

Think carefully about the contribution to the predicted log cumulative hazard: it would be approximately $-0.2 \times 2000 = -400$. Now $e^{-400} \approx 10^{-173}$, which on a digital computer is so close to 0 that there is simply no hope that $H_0(t)e^{-400}$ will produce an accurate estimate of $H(t)$.

Even with less extreme numbers, problems arise, even in the calculation of the baseline survivor function. Baseline hazard contributions near 1 produce baseline survivor functions with steps differing by many orders of magnitude because the calculation of the survivor function is cumulative. Producing a meaningful graph of such a survivor function is hopeless, and adjusting the survivor function to other values of the covariates is too much work.

For these reasons, covariate values of 0 must be meaningful if you are going to specify the `basechazard` or `basesurv` option. As the baseline values move to absurdity, the first problem you will encounter is a baseline survivor function that is too hard to interpret, even though the baseline hazard contributions are estimated accurately. Further out, the procedure Stata uses to estimate the baseline hazard contributions will break down—it will produce results that are exactly 1. Hazard contributions that are exactly 1 produce survivor functions that are uniformly 0, and they will remain 0 even after adjusting for covariates.

This, in fact, occurs with the Stanford heart transplant data:

```
. use http://www.stata-press.com/data/r13/stan3, clear
   (Heart transplant data)
. stcox age posttran surg year
   (output omitted)
. predict ch, basechazard
. predict s, basesurv
. summarize ch s
  Variable |      Obs       Mean    Std. Dev.      Min      Max
----------|-------------|-------------|-------------|------------|------------|
       ch |     172  745.1134  682.8671   11.88239  2573.637
        s |     172  1.45e-07  9.43e-07      0   6.24e-06
```

The hint that there are problems is that the values of `ch` are huge and the values of `s` are close to 0. In this dataset, `age` (which ranges from 8 to 64 with a mean value of 45) and `year` (which ranges from 67 to 74) are the problems. The baseline functions correspond to a newborn at the turn of the century on the waiting list for a heart transplant!
To obtain accurate estimates of the baseline functions, type

```
. drop ch s
. generate age40 = age - 40
. generate year70 = year - 70
. stcox age40 posttran surg year70
(output omitted)
. predict ch, basechazard
. predict s, basesurv
. summarize ch s

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>ch</td>
<td>172</td>
<td>.5685743</td>
<td>.521076</td>
<td>.0090671</td>
<td>1.963868</td>
</tr>
<tr>
<td>s</td>
<td>172</td>
<td>.6291871</td>
<td>.2530009</td>
<td>.130666</td>
<td>.9908968</td>
</tr>
</tbody>
</table>
```

Adjusting the variables does not affect the coefficient (and, hence, hazard-ratio) estimates, but it changes the values at which the baseline functions are estimated to be within the range of the data.

Technical note

Above we demonstrated what can happen to predicted baseline functions when baseline values represent a departure from what was observed in the data. In the above example, the Cox model fit was fine and only the baseline functions lacked accuracy. As baseline values move even further toward absurdity, the risk-set accumulations required to fit the Cox model will also break down. If you are having difficulty getting `stcox` to converge or you obtain missing coefficients, one possible solution is to recenter your covariates just as we did above.

Residuals and diagnostic measures

Stata can calculate Cox–Snell residuals, martingale residuals, deviance residuals, efficient score residuals (esr), Schoenfeld residuals, scaled Schoenfeld residuals, likelihood displacement values, LMAX values, and DFBETA influence measures.

Although the uses of residuals vary and depend on the data and user preferences, traditional and suggested uses are the following: Cox–Snell residuals are useful in assessing overall model fit. Martingale residuals are useful in determining the functional form of covariates to be included in the model and are occasionally useful in identifying outliers. Deviance residuals are useful in examining model accuracy and identifying outliers. Schoenfeld and scaled Schoenfeld residuals are useful for checking and testing the proportional-hazards assumption. Likelihood displacement values and LMAX values are useful in identifying influential subjects. DFBETAs also measure influence, but they do so on a coefficient-by-coefficient basis. Likelihood displacement values, LMAX values, and DFBETAs are all based on efficient score residuals.

Example 4: Cox–Snell residuals

Let’s first examine the use of Cox–Snell residuals. Using the cancer data introduced in example 2 in [ST] `stcox`, we first perform a Cox regression and then `predict` the Cox–Snell residuals.

```
. use http://www.stata-press.com/data/r13/drugtr, clear
(Patient Survival in Drug Trial)
. stset studytime, failure(died)
(output omitted)
```
. stcox age drug, nolog
 failure _d: died
 analysis time _t: studytime

Cox regression -- Breslow method for ties

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744
LR chi2(2) = 33.18
Log likelihood = -83.323546 Prob > chi2 = 0.0000

| _t | Haz. Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------|-----------|-----------|---------|--------|-------------------------|
| age | 1.120325 | 0.0417711 | 3.05 | 0.002 | 1.041375 1.20526 |
| drug | 0.1048772 | 0.0477017 | -4.96 | 0.000 | 0.0430057 0.2557622 |

. predict cs, csnell

The csnell option tells predict to output the Cox–Snell residuals to a new variable, cs. If the Cox regression model fits the data, these residuals should have a standard censored exponential distribution with hazard ratio 1. We can verify the model’s fit by calculating—based, for example, on the Kaplan–Meier estimated survivor function or the Nelson–Aalen estimator—an empirical estimate of the cumulative hazard function, using the Cox–Snell residuals as the time variable and the data’s original censoring variable. If the model fits the data, the plot of the cumulative hazard versus cs should approximate a straight line with slope 1.

To do this, we first re-stset the data, specifying cs as our new failure-time variable and died as the failure/censoring indicator. We then use the sts generate command to generate the km variable containing the Kaplan–Meier survivor estimates. Finally, we generate the cumulative hazard, H, by using the relationship $H = -\ln(km)$ and plot it against cs.

. stset cs, failure(died)
(output omitted)
. sts generate km = s
. generate H = -ln(km)
(1 missing value generated)
. line H cs cs, sort ytitle("") clstyle(. reline)

We specified cs twice in the graph command above so that a reference 45° line is plotted. Comparing the jagged line with the reference line, we observe that the Cox model does not fit these data too badly.

Technical note

The statement that “if the Cox regression model fits the data, the Cox–Snell residuals have a standard censored exponential distribution with hazard ratio 1” holds only if the true parameters, β, and the true cumulative baseline hazard function, $H_0(t)$, are used in calculating the residuals. Because we use estimates $\hat{\beta}$ and $\hat{H}_0(t)$, deviations from the 45° line in the above plots could be due in part to uncertainty about these estimates. This is particularly important for small sample sizes and in the right-hand tail of the distribution, where the baseline hazard is more variable because of the reduced effective sample caused by prior failures and censoring.

Example 5: Martingale residuals

Let’s now examine the martingale residuals. Martingale residuals are useful in assessing the functional form of a covariate to be entered into a Cox model. Sometimes the covariate may need transforming so that the transformed variable will satisfy the assumptions of the proportional hazards model. To find the appropriate functional form of a variable, we fit a Cox model excluding the variable and then plot a lowess smooth of the martingale residuals against some transformation of the variable in question. If the transformation is appropriate, then the smooth should be approximately linear.

We apply this procedure to our cancer data to find an appropriate transformation of age (or to verify that age need not be transformed).

```stata
. use http://www.stata-press.com/data/r13/drugtr, clear
    (Patient Survival in Drug Trial)
. stset studytime, failure(died)
    (output omitted)
. stcox drug
    (output omitted)
. predict mg, mgale
. lowess mg age, mean noweight title("") note("") m(o)
```
We used the `lowess` command with the `mean` and `noweight` options to obtain a plot of the running-mean smoother to ease interpretation. A lowess smoother or other smoother could also be used; see [R] lowess. The smooth appears nearly linear, supporting the inclusion of the untransformed version of `age` in our Cox model. Had the smooth not been linear, we would have tried smoothing the martingale residuals against various transformations of `age` until we found one that produced a near-linear smooth.

Martingale residuals can also be interpreted as the difference over time of the observed number of failures minus the difference predicted by the model. Thus a plot of the martingale residuals versus the linear predictor may be used to detect outliers.

Plots of martingale residuals are sometimes difficult to interpret, however, because these residuals are skewed, taking values in \((-\infty, 1)\). For this reason, deviance residuals are preferred for examining model accuracy and identifying outliers.

Example 6: Deviance residuals

Deviance residuals are a rescaling of the martingale residuals so that they are symmetric about 0 and thus are more like residuals obtained from linear regression. Plots of these residuals against the linear predictor, survival time, rank order of survival, or observation number can be useful in identifying aberrant observations and assessing model fit. We continue from the previous example, but we need to first refit the Cox model with `age` included:

```
. drop mg
. stcox drug age
(output omitted)
. predict mg, mgale
. predict xb, xb
```
We first plotted the martingale residuals versus the linear predictor and then plotted the deviance residuals versus the linear predictor. Given their symmetry about 0, deviance residuals are easier to interpret, although both graphs yield the same information. With uncensored data, deviance residuals should resemble white noise if the fit is adequate. Censored observations would be represented as clumps of deviance residuals near 0 (Klein and Moeschberger 2003, 381). Given what we see above, there do not appear to be any outliers.

In evaluating the adequacy of the fitted model, we must determine if any one subject has a disproportionate influence on the estimated parameters. This is known as influence or leverage analysis. The preferred method of performing influence or leverage analysis is to compare the estimated parameter, \(\hat{\beta} \), obtained from the full data, with estimated parameters \(\hat{\beta}_i \), obtained by fitting the model to the \(N - 1 \) subjects remaining after the \(i \)th subject is removed. If \(\beta - \hat{\beta}_i \) is close to 0,
the \(i \)th subject has little influence on the estimate. The process is repeated for all subjects included in the original model. To compute these differences for a dataset with \(N \) subjects, we would have to execute \texttt{stcox} \(N \) additional times, which could be impractical for large datasets.

To avoid fitting \(N \) additional Cox models, an approximation to \(\hat{\beta} - \hat{\beta}_i \) can be made based on the efficient score residuals; see \textit{Methods and formulas}. The difference \(\hat{\beta} - \hat{\beta}_i \) is commonly referred to as DFBETA in the literature; see \texttt{[R] regress postestimation}.

\>

\textbf{Example 7: DFBETAs}

You obtain DFBETAs by using \texttt{predict}'s \texttt{dfbeta} option:

```
. use http://www.stata-press.com/data/r13/drugtr, clear
(Patient Survival in Drug Trial)
. stset studytime, failure(died)
(output omitted)
. stcox age drug
(output omitted)
. predict df*, dfbeta
```

The last command stores the estimates of \(\text{DFBETA}_i = \hat{\beta} - \hat{\beta}_i \) for \(i = 1, \ldots, N \) in the variables \texttt{df1} and \texttt{df2}. We can now plot these versus either time or subject (observation) number to identify subjects with disproportionate influence. To maximize the available information, we plot versus time and label the points by their subject numbers.

```
. generate obs = _n
. scatter df1 studytime, yline(0) mlabel(obs)
```

```
+---------------------------------------------+-------------------+
| Months to death or end of exp. | DFBETA - age     |
|--------------------------------+-------------------|
| 0                             | -0.015            |
| 10                            | -0.01             |
| 20                            | -0.005            |
| 30                            | 0                 |
| 40                            | 0.005             |
| 50                            | 0.01              |
+---------------------------------------------+-------------------+
```

```
+---------------------------------------------+-------------------+
| Months to death or end of exp. | DFBETA - age     |
|--------------------------------+-------------------|
| 0                             | -0.015            |
| 10                            | -0.01             |
| 20                            | -0.005            |
| 30                            | 0                 |
| 40                            | 0.005             |
| 50                            | 0.01              |
+---------------------------------------------+-------------------+
```
DFBETAs as measures of influence have a straightforward interpretation. Their only disadvantage is that the number of values to examine grows both with sample size and with the number of regressors.

Two alternative measures of influence are likelihood displacement values and LMAX values, and both measure each subject’s influence on the coefficient vector as a whole. Thus, for each, you have only one value per subject regardless of the number of regressors. As was the case with DFBETAs, likelihood displacement and LMAX calculations are also based on efficient score residuals; see *Methods and formulas*.

Likelihood displacement values measure influence by approximating what happens to the model log likelihood (more precisely, twice the log likelihood) when you omit subject i. Formally, the likelihood displacement value for subject i approximates the quantity

$$2 \left\{ \log L \left(\hat{\beta} \right) - \log L \left(\hat{\beta}_i \right) \right\}$$

where $\hat{\beta}$ and $\hat{\beta}_i$ are defined as previously and $L(\cdot)$ is the partial likelihood for the Cox model estimated from all the data. In other words, when you calculate $L(\cdot)$, you use all the data, but you evaluate at the parameter estimates $\hat{\beta}_i$ obtained by omitting the ith subject. Note that because $\hat{\beta}$ represents an optimal solution, likelihood displacement values will always be nonnegative.

That likelihood displacements measure influence can be seen through the following logic: if subject i is influential, then the vector $\hat{\beta}_i$ will differ substantially from $\hat{\beta}$. When that occurs, evaluating the log likelihood at such a suboptimal solution will give you a very different log likelihood.

LMAX values are closely related to likelihood displacements and are derived from an eigensystem analysis of the matrix of efficient score residuals; see *Methods and formulas* for details.

Both likelihood displacement and LMAX values measure each subject’s overall influence, but they are not directly comparable with each other. Likelihood displacement values should be compared only with other likelihood displacement values, and LMAX values only with other LMAX values.
Example 8: Likelihood displacement and LMAX values

You obtain likelihood displacement values with predict's ldisplace option, and you obtain LMAX values with the lmax option. Continuing from the previous example:

```
. predict ld, ldisplace
. predict lmax, lmax
. list _t0 _t _d ld lmax in 1/10

_t0 _t _d    ld       lmax
1. 0 1 1   .0059511   .0735375
2. 0 1 1   .032366    .1124505
3. 0 2 1   .0038388   .0686295
4. 0 3 1   .0481942   .0113989
5. 0 4 1   .0078195   .0331513
6. 0 4 1   .0019887   .0308102
7. 0 5 1   .0069245   .0614247
8. 0 5 1   .0051647   .0763283
9. 0 8 1   .0021315   .0353402
10. 0 8 0  .0116187   .1179539
```

We can plot the likelihood displacement values versus time and label the points by observation number:

```
. scatter ld studytime, mlabel(obs)
```

The above shows subjects 16 and 46 to be somewhat influential. A plot of LMAX values will show subject 16 as influential but not subject 46, a fact we leave to you to verify.

Schoenfeld residuals and scaled Schoenfeld residuals are most often used to test the proportional-hazards assumption, as described in [ST] stcox PH-assumption tests.
Multiple records per subject

In the previous section, we analyzed data from a cancer study, and in doing so we were very loose in differentiating “observations” versus “subjects”. In fact, we used both terms interchangeably. We were able to get away with that because in that dataset each subject (patient) was represented by only one observation—the subjects were the observations.

Oftentimes, however, subjects need representation by multiple observations, or records. For example, if a patient leaves the study for some time only to return later, at least one additional record will be needed to denote the subject’s return to the study and the gap in their history. If the covariates of interest for a subject change during the study (for example, transitioning from smoking to nonsmoking), then this will also require representation by multiple records.

Multiple records per subject are not a problem for Stata; you simply specify an \texttt{id()} variable when \texttt{stset}ing your data, and this \texttt{id()} variable tells Stata which records belong to which subjects. The other commands in Stata’s \texttt{st} suite know how to then incorporate this information into your analysis.

For \texttt{predict} after \texttt{stcox}, by default Stata handles diagnostic measures as always being at the \textit{subject level}, regardless of whether that subject comprises one observation or multiple ones.

\section*{Example 9: Stanford heart transplant data}

As an example, consider, as we did previously, data from the Stanford heart transplant study:

\begin{verbatim}
. use http://www.stata-press.com/data/r13/stan3, clear
 (Heart transplant data)
. stset -> stset t1, id(id) failure(died)
 id: id
 failure event: died != 0 & died < .
 obs. time interval: (t1[_n-1], t1]
 exit on or before: failure

 172 total observations
 0 exclusions

 172 observations remaining, representing
 103 subjects
 75 failures in single-failure-per-subject data
31938.1 total analysis time at risk and under observation
 at risk from t = 0
 earliest observed entry t = 0
 last observed exit t = 1799
\end{verbatim}
The data come to us already stset, and we type stset without arguments to examine the current settings. We verify that the id variable has been set as the patient id. We also see that we have 172 records representing 103 subjects, implying multiple records for some subjects. From our listing, we see that multiple records are necessary to accommodate changes in patients’ heart-transplant status (pretransplant versus posttransplant).

Residuals and other diagnostic measures, where applicable, will by default take place at the subject level, meaning that (for example) there will be 103 likelihood displacement values for detecting influential subjects (not observations, but subjects).

Because here we are not interested in predicting any baseline functions, it is perfectly safe to leave age and year uncentered. The “(69 missing values generated)” message after predict tells us that only 103 out of the 172 observations of ld were filled in; that is, we received only one likelihood displacement per subject. Regardless of the current sorting of the data, the ld value for a subject is stored in the last chronological record for that subject as determined by analysis time, t.

Patient 4 has two records in the data, one pretransplant and one posttransplant. As such, the ld value for that patient is interpreted as the change in twice the log likelihood due to deletion of both of these observations, that is, the deletion of patient 4 from the study. The interpretation is at the patient level, not the record level.
If, instead, you want likelihood displacement values that you can interpret at the observation level (that is, changes in twice the log likelihood due to deleting one record), you simply add the `partial` option to the `predict` command above:

```
predict ld, ldisplace partial
```

We do not think these kinds of observation-level diagnostics are generally what you would want, but they are available.

In the above, we discussed likelihood displacement values, but the same issue concerning subject-level versus observation-level interpretation also exists with Cox–Snell residuals, martingale residuals, deviance residuals, efficient score residuals, LMAX values, and DFBETAs. Regardless of which diagnostic you examine, this issue of interpretation is the same.

There is one situation where you do want to use the `partial` option. If you are using martingale residuals to determine functional form and the variable you are thinking of adding varies within subject, then you want to graph the partial martingale residuals against that new variable. Because the variable changes within subject, the martingale residuals should also change accordingly.

Predictions after `stcox` with the `tvc()` option

The residuals and diagnostics discussed previously are not available after estimation with `stcox` with the `tvc()` option, which is a convenience option for handling time-varying covariates:

```
use http://www.stata-press.com/data/r13/drugtr, clear
(Patient Survival in Drug Trial)
stcox drug age, tvc(age) nolog
  failure _d: died
  analysis time _t: studytime
```

```
Cox regression -- Breslow method for ties
No. of subjects = 48  Number of obs = 48
No. of failures = 31
Time at risk = 744
LR chi2(3) = 33.63
Log likelihood = -83.095036  Prob > chi2 = 0.0000

  _t  Haz. Ratio   Std. Err.     z  P>|z|     [95% Conf. Interval]
main
  drug    .1059862   .0478178  -4.97  0.000     .0437737    .2566171
  age     1.156977   .070180   2.40  0.016     1.027288    1.303037

  tvc
  age     .9970966   .0042415  -0.68  0.494     .988818     1.005445
```

Note: variables in `tvc` equation interacted with `_t`

```
predict dev, deviance
this prediction is not allowed after estimation with `tvc();
see `tvc` note for an alternative to the `tvc()` option
r(198);
```

The above fits a Cox model to the cancer data and includes an interaction of `age` with analysis time, `_t`. Such interactions are useful for testing the proportional-hazards assumption: significant interactions are violations of the proportional-hazards assumption for the variable being interacted with analysis time (or some function of analysis time). That is not the situation here.
In any case, models with `tvc()` interactions do not allow predicting the residuals and diagnostics discussed thus far. The solution in such situations is to forgo the use of `tvc()`, expand the data, and use factor variables to specify the interaction:

```
. generate id = _n
. stset, id(id)
(output omitted)
. stsplit, at(failures)
(21 failure times)
(534 observations (episodes) created)
. stcox drug age c.age#c._t, nolog
   failure _d: died
   analysis time _t: studytime
   id: id
Cox regression -- Breslow method for ties
No. of subjects =  48   Number of obs =  582
No. of failures =  31
Time at risk =  744
LR chi2(3) =  33.63
Log likelihood = -83.095036  Prob > chi2 = 0.0000

|     _t |   Haz. Ratio | Std. Err. |  z  |   P>|z|   |  [95% Conf. Interval] |
|--------|-------------|-----------|-----|-------|------------------------|
|   drug |    .1059862 |   .0478178| -4.97| 0.000|  .0437737               |  .2566171               |
|    age |    1.156977 |   0.07018 |  2.40| 0.016 |  1.027288               |  1.303037               |
| c.age#c._t |  .9970966 |   0.0042415| -0.68| 0.494|  .988818                |  1.005445               |
```

We split the observations, currently one per subject, so that the interaction term is allowed to vary over time. Splitting the observations requires that we first establish a subject `id` variable. Once that is done, we split the observations with `stsplit` and the `at(failures)` option, which splits the records only at the observed failure times. This amount of splitting is the minimal amount required to reproduce our previous Cox model. We then include the interaction term `c.age#c._t` in our model, verify that our Cox model is the same as before, and obtain our 48 deviance residuals, one for each subject.

Predictions after stcox with the shared() option

A Cox shared frailty model is a Cox model with added group-level random effects such that

\[h_{ij}(t) = h_0(t) \exp(x_{ij}\beta + \nu_i) \]

with \(\nu_i \) representing the added effect due to being in group \(i \); see *Cox regression with shared frailty* in [ST] stcox for more details. You fit this kind of model by specifying the `shared(varname)` option with `stcox`, where `varname` identifies the groups. `stcox` will produce an estimate of \(\beta \), its covariance matrix, and an estimate of the variance of the \(\nu_i \). What it will not produce are estimates of the \(\nu_i \) themselves. These you can obtain postestimation with `predict`.
Example 10: Shared frailty models

In example 10 of [ST] stcox, we fit a shared frailty model to data from 38 kidney dialysis patients, measuring the time to infection at the catheter insertion point. Two recurrence times (in days) were measured for each patient.

The estimated ν_i are not displayed in the stcox coefficient table but may be retrieved postestimation by using predict with the effects option:

```
. use http://www.stata-press.com/data/r13/catheter, clear
   (Kidney data, McGilchrist and Aisbett, Biometrics, 1991)
. qui stcox age female, shared(patient)
. predict nu, effects
. sort nu
. list patient nu in 1/2
     +------------------+
  patient | nu   |
  |-----|-----|
  1.  | 21  | -2.448707 |
  2.  | 21  | -2.448707 |
    +------------------+
. list patient nu in 75/L
     +------------------+
  patient | nu   |
  |-----|-----|
  75.  | 7   | .5187159  |
  76.  | 7   | .5187159  |
    +------------------+
```

From the results above, we estimate that the least frail patient is patient 21, with $\hat{\nu}_{21} = -2.45$, and that the frailest patient is patient 7, with $\hat{\nu}_7 = 0.52$.

Technical note

When used with shared-frailty models, predict’s basehc, basesurv, and basechazard options produce estimates of baseline quantities that are based on the last-step penalized Cox model fit. Therefore, the term baseline means that not only are the covariates set to 0 but the ν_i are as well.

Other predictions, such as martingale residuals, are conditional on the estimated frailty variance being fixed and known at the onset.

estat concordance

`estat concordance` calculates the concordance probability, which is defined as the probability that predictions and outcomes are concordant. `estat concordance` provides two measures of the concordance probability: Harrell’s C and Gönen and Heller’s K concordance coefficients. Harrell’s C, which is defined as the proportion of all usable subject pairs in which the predictions and outcomes are concordant, is computed by default. Gönen and Heller (2005) propose an alternative measure of concordance, computed when the gheller option is specified, that is not sensitive to the degree of censoring, unlike Harrell’s C coefficient. This estimator is not dependent on the observed event or the censoring time and is a function of only the regression parameters and the covariate distribution, which leads to the asymptotic unbiasedness. `estat concordance` also reports the Somers’ D rank correlation, which is derived by calculating $2C - 1$ for Harrell’s C and $2K - 1$ for Gönen and Heller’s K.
estat concordance may not be used after a Cox regression model with time-varying covariates and may not be applied to weighted data or to data with delayed entries. The computation of Gönen and Heller’s K coefficient is not supported for shared-frailty models, stratified estimation, or multiple-record data.

Example 11: Harrell’s C

Using our cancer data, we wish to evaluate the predictive value of the measurement of drug and age. After fitting a Cox regression model, we use estat concordance to calculate Harrell’s C index.

```
use http://www.stata-press.com/data/r13/drugtr, clear
(Patient Survival in Drug Trial)
.stcox drug age
   failure _d: died
   analysis time _t: studytime
Iteration 0: log likelihood = -99.911448
Iteration 1: log likelihood = -83.551879
Iteration 2: log likelihood = -83.324009
Iteration 3: log likelihood = -83.323546
Refining estimates:
Iteration 0: log likelihood = -83.323546
Cox regression -- Breslow method for ties
No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744
LR chi2(2) = 33.18
Log likelihood = -83.323546 Prob > chi2 = 0.0000
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622
age 1.120325 .0417711 3.05 0.002 1.041375 1.20526
```

```
.estat concordance, noshow
Harrell’s C concordance statistic
    Number of subjects (N) = 48
    Number of comparison pairs (P) = 849
    Number of orderings as expected (E) = 679
    Number of tied predictions (T) = 15
    Harrell’s C = (E + T/2) / P = .8086
    Somers’ D = .6172
```

The result of stcox shows that the drug results in a lower hazard and therefore a longer survival time, controlling for age and older patients being more likely to die. The value of Harrell’s C is 0.8086, which indicates that we can correctly order survival times for pairs of patients 81% of the time on the basis of measurement of drug and age. See Methods and formulas for the full definition of concordance.
Technical note

`estat concordance` does not work after a Cox regression model with time-varying covariates. When the covariates are varying with time, the prognostic score, \(PS = x \beta \), will not capture or condense the information in given measurements, in which case it does not make sense to calculate the rank correlation between \(PS \) and survival time.

Example 12: Gönen and Heller’s K

Alternatively, we can obtain Gönen and Heller’s estimate of the concordance probability, \(K \). To do so, we specify the `gheller` option with `estat concordance`:

```
. estat concordance, noshow gheller
Gönen and Heller’s K concordance statistic
Number of subjects (N) = 48
Gönen and Heller’s K = .7748
Somers’ D = .5496
```

Gönen and Heller’s concordance coefficient may be preferred to Harrell’s \(C \) when censoring is present because Harrell’s \(C \) can be biased. Because 17 of our 48 subjects are censored, we prefer Gönen and Heller’s concordance to Harrell’s \(C \).

Stored results

`estat concordance` stores the following in `r()`:

Scalars

- `r(N)` number of observations
- `r(n_P)` number of comparison pairs
- `r(n_E)` number of orderings as expected
- `r(n_T)` number of tied predictions
- `r(K)` Gönen and Heller’s K coefficient
- `r(K_s)` smoothed Gönen and Heller’s K coefficient
- `r(K_s_se)` standard error of the smoothed K coefficient
- `r(D)` Somers’ D coefficient for Harrell’s \(C \)
- `r(D_K)` Somers’ D coefficient for Gönen and Heller’s K
- `r(C)` Harrell’s \(C \) coefficient

`r(n_P)`, `r(n_E)`, and `r(n_T)` are returned only when strata are not specified.

Methods and formulas

Let \(x_i \) be the row vector of covariates for the time interval \((t_{0i}, t_i] \) for the \(i \)th observation in the dataset \((i = 1, \ldots, N)\). The Cox partial log-likelihood function, using the default Peto–Breslow method for tied failures is

\[
\log L_{\text{breslow}} = \sum_{j=1}^{D} \sum_{i \in D_j} \left[w_i (x_i \beta + \text{offset}_i) - w_i \log \left\{ \sum_{\ell \in R_j} w_{\ell} \exp(x_{\ell} \beta + \text{offset}_{\ell}) \right\} \right]
\]

where \(j \) indexes the ordered failure times \(t_j \ (j = 1, \ldots, D) \), \(D_j \) is the set of \(d_j \) observations that fail at \(t_j \), \(d_j \) is the number of failures at \(t_j \), and \(R_j \) is the set of observations \(k \) that are at risk at time \(t_j \) (that is, all \(k \) such that \(t_{0k} < t_j \leq t_k \)). \(w_i \) and \(\text{offset}_i \) are, respectively, the weight and linear offset for observation \(i \), if specified.
If the Efron method for ties is specified at estimation, the partial log likelihood is

\[
\log L_{\text{efron}} = D \sum_{j=1}^{D} \sum_{i \in D_j} x_i \beta + \text{offset}_i - d_j^{-1} \sum_{k=0}^{d_j-1} \log \left(\sum_{\ell \in R_j} \exp(x_{\ell} \beta + \text{offset}_{\ell}) - kA_j \right)
\]

for \(A_j = d_j^{-1} \sum_{\ell \in D_j} \exp(x_{\ell} \beta + \text{offset}_{\ell})\). Weights are not supported with the Efron method.

At estimation, Stata also supports the exact marginal and exact partial methods for handling ties, but only the Peto–Breslow and Efron methods are supported in regard to the calculation of residuals, diagnostics, and other predictions. As such, only the partial log-likelihood formulas for those two methods are presented above, for easier reference in what follows.

If you specified `efron` at estimation, all predictions are carried out using the Efron method; that is, the handling of tied failures is done analogously to the way it was done when calculating \(\log L_{\text{efron}}\). If you specified `breslow` (or nothing, because `breslow` is the default), `exactm`, or `exactp`, all predictions are carried out using the Peto–Breslow method. That is not to say that if you specify `exactm` at estimation, your predictions will be the same as if you had specified `breslow`. The formulas used will be the same, but the parameter estimates at which they are evaluated will differ because those were based on different ways of handling ties.

Define \(z_i = x_i \hat{\beta} + \text{offset}_i\). Schoenfeld residuals for the \(p\)th variable using the Peto–Breslow method are given by

\[
r_{S,p_i} = \delta_i (x_{p_i} - a_{p_i})
\]

where

\[
a_{p_i} = \frac{\sum_{\ell \in R_i} w_{\ell} x_{p\ell} \exp(z_{\ell})}{\sum_{\ell \in R_i} w_{\ell} \exp(z_{\ell})}
\]

\(\delta_i\) indicates failure for observation \(i\), and \(x_{p_i}\) is the \(p\)th element of \(x_i\). For the Efron method, Schoenfeld residuals are

\[
r_{S,p_i} = \delta_i (x_{p_i} - b_{p_i})
\]

where

\[
b_{p_i} = d_i^{-1} \sum_{k=0}^{d_i-1} \frac{\sum_{\ell \in R_i} x_{p\ell} \exp(z_{\ell}) - kd_i^{-1} \sum_{\ell \in D_i} x_{p\ell} \exp(z_{\ell})}{\sum_{\ell \in R_i} \exp(z_{\ell}) - kd_i^{-1} \sum_{\ell \in D_i} \exp(z_{\ell})}
\]

Schoenfeld residuals are derived from the first derivative of the log likelihood, with

\[
\frac{\partial \log L}{\partial \beta_p} \bigg|_{\hat{\beta}} = \sum_{i=1}^{N} r_{S,p_i} = 0
\]

and only those observations that fail (\(\delta_i = 1\)) contribute a Schoenfeld residual to the derivative.

For censored observations, Stata stores a missing value for the Schoenfeld residual even though the above implies a value of 0. This is to emphasize that no calculation takes place when the observation is censored.

Scaled Schoenfeld residuals are given by

\[
r_{S_i}^* = \hat{\beta} + d \text{ Var}(\hat{\beta}) r_{S_i}
\]

where \(r_{S_i} = (r_{S_{1i}}, \ldots, r_{S_{mi}})'\), \(m\) is the number of regressors, and \(d\) is the total number of failures.
In what follows, we assume the Peto–Breslow method for handling ties. Formulas for the Efron method, while tedious, can be obtained by applying similar principles of averaging across risk sets, as demonstrated above with Schoenfeld residuals.

Efficient score residuals are obtained by

\[r_{E_{pi}} = r_{S_{pi}} - \exp(zi) \sum_{j: t_{0i} < t_j \leq t_i} \frac{\delta_j w_j (x_{pi} - a_{pj})}{\sum_{\ell \in R_j} w_{\ell} \exp(z_{\ell})} \]

Like Schoenfeld residuals, efficient score residuals are also additive components of the first derivative of the log likelihood. Whereas Schoenfeld residuals are the contributions of each failure, efficient score residuals are the contributions of each observation. Censored observations contribute to the log likelihood (and its derivative) because they belong to risk sets at times when other observations fail. As such, an observation’s contribution is twofold: 1) If the observation ends in failure, a risk assessment is triggered, that is, a term in the log likelihood is computed. 2) Whether failed or censored, an observation contributes to risk sets for other observations that do fail. Efficient score residuals reflect both contributions.

The above computes efficient score residuals at the observation level. If you have multiple records per subject and do not specify the `partial` option, then the efficient score residual for a given subject is calculated by summing the efficient scores over the observations within that subject.

Martingale residuals are

\[r_{M_i} = \delta_i - \exp(zi) \sum_{j: t_{0i} < t_j \leq t_i} \frac{w_j \delta_j}{\sum_{\ell \in R_j} w_{\ell} \exp(z_{\ell})} \]

The above computes martingale residuals at the observation level. If you have multiple records per subject and do not specify the `partial` option, then the martingale residual for a given subject is calculated by summing \(r_{M_i} \) over the observations within that subject.

Martingale residuals are in the range \((-\infty, 1)\). Deviance residuals are transformations of martingale residuals designed to have a distribution that is more symmetric about zero. Deviance residuals are calculated using

\[r_{D_i} = \text{sign}(r_{M_i}) \left[-2 \left\{ r_{M_i} + \delta_i \log(\delta_i - r_{M_i}) \right\} \right]^{1/2} \]

These residuals are expected to be symmetric about zero but do not necessarily sum to zero.

The above computes deviance residuals at the observation level. If you have multiple records per subject and do not specify the `partial` option, then the deviance residual for a given subject is calculated by applying the above transformation to the subject-level martingale residual.

The estimated baseline hazard contribution is obtained at each failure time as \(h_j = 1 - \hat{\alpha}_j \), where \(\hat{\alpha}_j \) is the solution to

\[\sum_{k \in D_j} \frac{\exp(z_k)}{1 - \hat{\alpha}_j \exp(z_k)} = \sum_{\ell \in R_j} \exp(z_{\ell}) \]

(Kalbfleisch and Prentice 2002, eq. 4.34, 115).
The estimated baseline survivor function is
\[\hat{S}_0(t) = \prod_{j: t_j \leq t} \hat{\alpha}_j \]

When estimated with no covariates, \(\hat{S}_0(t) \) is the Kaplan–Meier estimate of the survivor function.

The estimated baseline cumulative hazard function, if requested, is related to the baseline survivor function calculation, yet the values of \(\hat{\alpha}_j \) are set at their starting values and are not iterated. Equivalently,
\[\hat{H}_0(t) = \sum_{j: t_j \leq t} \frac{d_j}{\sum_{\ell \in R_j} \exp(z_\ell)} \]

When estimated with no covariates, \(\hat{H}_0(t) \) is the Nelson–Aalen estimate of the cumulative hazard.

Cox–Snell residuals are calculated with
\[r_{C_i} = \delta_i - r_{M_i} \]

where \(r_{M_i} \) are the martingale residuals. Equivalently, Cox–Snell residuals can be obtained with
\[r_{C_i} = \exp(z_i)\hat{H}_0(t_i) \]

The above computes Cox–Snell residuals at the observation level. If you have multiple records per subject and do not specify the partial option, then the Cox–Snell residual for a given subject is calculated by summing \(r_{C_i} \) over the observations within that subject.

DFBETAs are calculated with
\[\text{DFBETA}_i = \mathbf{r}_{E_i} \tilde{\text{Var}}(\hat{\beta}) \]

where \(\mathbf{r}_{E_i} = (r_{E_{i1}}, \ldots, r_{E_{im}}) \) is a row vector of efficient score residuals with one entry for each regressor, and \(\tilde{\text{Var}}(\hat{\beta}) \) is the model-based variance matrix of \(\hat{\beta} \).

Likelihood displacement values are calculated with
\[\text{LD}_i = \mathbf{r}_{E_i} \text{Var}(\hat{\beta}) \mathbf{r}_{E_i}' \]

(Collett 2003, 136). In both of the above, \(\mathbf{r}_{E_i} \) can represent either one observation or, in multiple-record data, the cumulative efficient score for an entire subject. For the former, the interpretation is that due to deletion of one record; for the latter, the interpretation is that due to deletion of all a subject’s records.

Following Collett (2003, 137), LMAX values are obtained from an eigensystem analysis of
\[\mathbf{B} = \Theta \text{Var}(\hat{\beta}) \Theta' \]

where \(\Theta \) is the \(N \times m \) matrix of efficient score residuals, with element \((i, j)\) representing the \(j \)th regressor and the \(i \)th observation (or subject). LMAX values are then the absolute values of the elements of the unit-length eigenvector associated with the largest eigenvalue of the \(N \times N \) matrix \(\mathbf{B} \).
For shared-frailty models, the data are organized into G groups, with the ith group consisting of n_i observations, $i = 1, \ldots, G$. From Therneau and Grambsch (2000, 253–255), for fixed θ, estimates of β and ν_1, \ldots, ν_G are obtained by maximizing

$$
\log L(\theta) = \log L_{\text{Cox}}(\beta, \nu_1, \ldots, \nu_G) + \sum_{i=1}^{G} \left[\frac{1}{\theta} \{\nu_i - \exp(\nu_i)\} + \left(\frac{1}{\theta} + D_i\right) \left\{1 - \log \left(\frac{1}{\theta} + D_i\right)\right\} - \frac{\log \theta}{\theta} + \log \Gamma\left(\frac{1}{\theta} + D_i\right) - \log \Gamma\left(\frac{1}{\theta}\right) \right]
$$

where D_i is the number of death events in group i, and $\log L_{\text{Cox}}(\beta, \nu_1, \ldots, \nu_G)$ is the standard Cox partial log likelihood, with the ν_i treated as the coefficients of indicator variables identifying the groups. That is, the jth observation in the ith group has log relative-hazard $x_{ij}\beta + \nu_i$.

You obtain the estimates of ν_1, \ldots, ν_G with the `predict`'s effects option after `stcox`, `shared()`.

estat concordance

Harrell’s C was proposed by Harrell et al. (1982) and was developed to evaluate the results of a medical test. The C index is defined as the proportion of all usable subject pairs in which the predictions and outcomes are concordant. The C index may be applied to ordinary continuous outcomes, dichotomous diagnostic outcomes, ordinal outcomes, and censored time-until-event response variables.

In predicting the time until death, C is calculated by considering all comparable patient pairs. A pair of patients is comparable if either 1) the two have different values on the time variable, and the one with the lowest value presents a failure, or 2) the two have the same value on the time variable, and exactly one of them presents a failure. If the predicted survival time is larger for the patient who lived longer, the predictions for the pair are said to be concordant with the outcomes. From Fibrinogen Studies Collaboration (2009), Harrell’s C is defined as $\sum_k (E_k + T_k/2)/\sum_k (D_k)$, where D_k is the total number of pairs usable for comparison in stratum k, E_k is the number of pairs for which the predictions are concordant with the outcomes and the predictions are not identical in stratum k, and T_k is the number of usable pairs for which the predictions are identical in stratum k. If there are no strata specified, then the formula for Harrell’s C reduces to $(E + T/2)/D$.

For a Cox proportional hazards model, the probability that the patient survives past time t is given by $S_0(t)$ raised to the $\exp(x\beta)$ power, where $S_0(t)$ is the baseline survivor function, x denotes a set of measurements for the patient, and β is the vector of coefficients. A Cox regression model is fit by the `stcox` command. The hazard ratio, $\exp(x\beta)$, is obtained by `predict` after `stcox`. Because the predicted survival time and the predicted survivor function are one-to-one functions of each other, the predicted survivor function can be used to calculate C instead of the predicted survival time. The predicted survivor function decreases when the predicted hazard ratio increases; therefore, Harrell’s C can be calculated by computing E, T, and D, based on the observed outcomes and the predicted hazard ratios.

C takes a value between 0 and 1. A value of 0.5 indicates no predictive discrimination, and values of 0 or 1.0 indicate perfect separation of subjects with different outcomes. See Harrell, Lee, and Mark (1996) for more details. Somers’ D rank correlation is calculated by $2C - 1$; see Newson (2002) for a discussion of Somers’ D.

In the presence of censoring, Harrell’s C coefficient tends to be biased. An alternative measure of concordance that is asymptotically unbiased with censored data was proposed by Gönen and Heller (2005). This estimator does not depend on observed time directly and is a function of only the regression parameters and the covariate distribution, which leads to its asymptotic unbiasedness and thus robustness to the degree of censoring.
Let Δx_{ij} be the pairwise difference $x_i - x_j$. Then Gönen and Heller’s concordance probability estimator is given by

$$K \equiv K_N(\hat{\beta}) = \frac{2}{N(N-1)} \sum_{i<j} \left\{ \frac{I(\Delta x_{ji}\hat{\beta} \leq 0)}{1 + \exp(\Delta x_{ji}\hat{\beta})} + \frac{I(\Delta x_{ij}\hat{\beta} < 0)}{1 + \exp(\Delta x_{ij}\hat{\beta})} \right\}$$

where $I(\cdot)$ is the indicator function. Somers’ D rank correlation is calculated by $2K - 1$.

The concordance probability estimator (1) involves indicator functions and thus is a nonsmooth function for which the asymptotic standard error cannot be computed directly. To obtain the standard error, a smooth approximation to this estimator is considered:

$$\tilde{K} \equiv \tilde{K}_N(\hat{\beta}) = \frac{2}{N(N-1)} \sum_{i<j} \left\{ \frac{\Phi(-\Delta x_{ji}\hat{\beta}/h)}{1 + \exp(\Delta x_{ji}\hat{\beta})} + \frac{\Phi(-\Delta x_{ij}\hat{\beta}/h)}{1 + \exp(\Delta x_{ij}\hat{\beta})} \right\}$$

where $\Phi(\cdot)$ is a standard normal distribution function, $h = 0.5\hat{\sigma}N^{-1/3}$ is a smoothing bandwidth, and $\hat{\sigma}$ is the estimated standard deviation of the subject-specific linear predictors $x_i\hat{\beta}$.

The asymptotic standard error is then computed using a first-order Taylor series expansion of (2) around the true parameter β; see Gönen and Heller (2005) for computational details.

References

Also see

[ST] **stcox** — Cox proportional hazards model

[ST] **stcox PH-assumption tests** — Tests of proportional-hazards assumption

[ST] **stcurve** — Plot survivor, hazard, cumulative hazard, or cumulative incidence function

[U] 20 Estimation and postestimation commands
Syntax

```
stcrreg [varlist] [if] [in], compete(crvar[==numlist]) [options]
```

<table>
<thead>
<tr>
<th>options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td></td>
</tr>
<tr>
<td>* compete(crvar[==numlist])</td>
<td>specify competing-risks event(s)</td>
</tr>
<tr>
<td>tvc(tvarlist)</td>
<td>time-varying covariates</td>
</tr>
<tr>
<td>texp(exp)</td>
<td>multiplier for time-varying covariates; default is texp(_t)</td>
</tr>
<tr>
<td>offset(varname)</td>
<td>include varname in model with coefficient constrained to 1</td>
</tr>
<tr>
<td>constraints(constraints)</td>
<td>apply specified linear constraints</td>
</tr>
<tr>
<td>collinear</td>
<td>keep collinear variables</td>
</tr>
<tr>
<td>SE/Robust</td>
<td>vcetype may be robust, cluster clustvar, bootstrap, or jackknife</td>
</tr>
<tr>
<td>noadjust</td>
<td>do not use standard degree-of-freedom adjustment</td>
</tr>
<tr>
<td>Reporting</td>
<td></td>
</tr>
<tr>
<td>level(#)</td>
<td>set confidence level; default is level(95)</td>
</tr>
<tr>
<td>nosh</td>
<td>report coefficients, not subhazard ratios</td>
</tr>
<tr>
<td>noshow</td>
<td>do not show st setting information</td>
</tr>
<tr>
<td>noheader</td>
<td>suppress header from coefficient table</td>
</tr>
<tr>
<td>notable</td>
<td>suppress coefficient table</td>
</tr>
<tr>
<td>nodisplay</td>
<td>suppress output; iteration log is still displayed</td>
</tr>
<tr>
<td>nocnsreport</td>
<td>do not display constraints</td>
</tr>
<tr>
<td>display_options</td>
<td>control column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling</td>
</tr>
<tr>
<td>Maximization</td>
<td></td>
</tr>
<tr>
<td>maximize_options</td>
<td>control the maximization process; seldom used</td>
</tr>
<tr>
<td>coeflegend</td>
<td>display legend instead of statistics</td>
</tr>
</tbody>
</table>
stcrreg — Competing-risks regression

*compete(crvar[==numlist]) is required.
You must stset your data before using stcrreg; see [ST] stset.
varlist and tvarlist may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, fp, jackknife, mfp, mi estimate, nestreg, statsby, and stepwise are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweight, iweight, and pweight may be specified using stset; see [ST] stset. In multiple-record data, weights are applied to subjects as a whole, not to individual observations. iweights are treated as fweights that can be noninteger, but not negative.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

Statistics > Survival analysis > Regression models > Competing-risks regression

Description

stcrreg fits, via maximum likelihood, competing-risks regression models on st data, according to the method of Fine and Gray (1999). Competing-risks regression posits a model for the subhazard function of a failure event of primary interest. In the presence of competing failure events that impede the event of interest, a standard analysis using Cox regression (see [ST] stcox) is able to produce incidence-rate curves that either 1) are appropriate only for a hypothetical universe where competing events do not occur or 2) are appropriate for the data at hand, yet the effects of covariates on these curves are not easily quantified. Competing-risks regression, as performed using stcrreg, provides an alternative model that can produce incidence curves that represent the observed data and for which describing covariate effects is straightforward.

stcrreg can be used with single- or multiple-record data. stcrreg cannot be used when you have multiple failures per subject.

Options

compete(crvar[==numlist]) is required and specifies the events that are associated with failure due to competing risks.
If compete(crvar) is specified, crvar is interpreted as an indicator variable; any nonzero, nonmissing values are interpreted as representing competing events.
If compete(crvar==numlist) is specified, records with crvar taking on any of the values in numlist are assumed to be competing events.
The syntax for compete() is the same as that for stset’s failure() option. Use stset, failure() to specify the failure event of interest, that is, the failure event you wish to model using stcox, streg, stcrreg, or whatever. Use stcrreg, compete() to specify the event or events that compete with the failure event of interest. Competing events, because they are not the failure event of primary interest, must be stset as censored.
If you have multiple records per subject, only the value of crvar for the last chronological record for each subject is used to determine the event type for that subject.
stcrreg — Competing-risks regression

`tvc(tvarlist)` specifies those variables that vary continuously with respect to time, that is, time-varying covariates. These variables are multiplied by the function of time specified in `texp()`.

`texp(exp)` is used in conjunction with `tvc(tvarlist)` to specify the function of analysis time that should be multiplied by the time-varying covariates. For example, specifying `texp(ln(_t))` would cause the time-varying covariates to be multiplied by the logarithm of analysis time. If `tvc(tvarlist)` is used without `texp(exp)`, Stata understands that you mean `texp(_t)`, and thus multiplies the time-varying covariates by the analysis time.

Both `tvc(tvarlist)` and `texp(exp)` are explained more in Option `tvc()` and testing the proportional-subhazards assumption below.

`offset(varname)`, `constraints(constraints)`, `collinear`; see [R] estimation options.

`vce(vcetype)` specifies the type of standard error reported, which includes types that are robust to some kinds of misspecification (`robust`), that allow for intragroup correlation (`cluster clustvar`), and that use bootstrap or jackknife methods (`bootstrap`, `jackknife`); see [R] `vce_option`. `vce(robust)` is the default in single-record-per-subject st data. For multiple-record st data, `vce(cluster idvar)` is the default, where `idvar` is the ID variable previously `stset`.

Standard Hessian-based standard errors—`vcetype oim`—are not statistically appropriate for this model and thus are not allowed.

`noadjust` is for use with `vce(robust)` or `vce(cluster clustvar)`. `noadjust` prevents the estimated variance matrix from being multiplied by `N/(N-1)` or `g/(g-1)`, where `g` is the number of clusters. The default adjustment is somewhat arbitrary because it is not always clear how to count observations or clusters. In such cases, however, the adjustment is likely to be biased toward 1, so we would still recommend making it.

`level(#);` see [R] estimation options.

`noshr` specifies that coefficients be displayed rather than exponentiated coefficients or subhazard ratios. This option affects only how results are displayed and not how they are estimated. `noshr` may be specified at estimation time or when redisplaying previously estimated results (which you do by typing `stcrreg` without a variable list).

`noshow` prevents `stcrreg` from showing the key `st` variables. This option is seldom used because most people type `stset, show` or `stset, noshow` to set whether they want to see these variables mentioned at the top of the output of every `st` command; see [ST] `stset`.

`noheader` suppresses the header information from the output. The coefficient table is still displayed. `noheader` may be specified at estimation time or when redisplaying previously estimated results.

`notable` suppresses the table of coefficients from the output. The header information is still displayed. `notable` may be specified at estimation time or when redisplaying previously estimated results.

`nodisplay` suppresses the output. The iteration log is still displayed.

`nocnsreport`; see [R] estimation options.

`display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,nofvlabel, fvwrap(#), fvwrapon(style), cformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch;` see [R] estimation options.
The following option is available with \texttt{stcrreg} but is not shown in the dialog box: \texttt{coeflegend}; see \texttt{[R] estimation options}.

Remarks and examples

This section provides a summary of what can be done with \texttt{stcrreg}. For a more general tutorial on competing-risks analysis, see Cleves et al. (2010, chap. 17).

Remarks are presented under the following headings:

- The case for competing-risks regression
- Using \texttt{stcrreg}
- Multiple competing-event types
- \texttt{stcrreg} as an alternative to \texttt{stcox}
- Multiple records per subject
- Option \texttt{tvc()} and testing the proportional-subhazards assumption

The case for competing-risks regression

In this section, we provide a brief history and literature review of competing-risks analysis, and provide the motivation behind the \texttt{stcrreg} model. If you know you want to use \texttt{stcrreg} and are anxious to get started, you can safely skip this section.

Based on the method of Fine and Gray (1999), competing-risks regression provides a useful alternative to Cox regression (Cox 1972) for survival data in the presence of competing risks. Consider the usual survival analysis where one measures time-to-failure as a function of experimental or observed factors. For example, we may be interested in measuring time from initial treatment to recurrence of breast cancer in relation to factors such as treatment type and smoking status. The term competing risk refers to the chance that instead of cancer recurrence, you will observe a competing event, for example, death. The competing event, death, impedes the occurrence of the event of interest, breast cancer. This is not to be confused with the usual right-censoring found in survival data, such as censoring due to loss to follow-up. When subjects are lost to follow-up, they are still considered at risk of recurrent breast cancer—it is just that the researcher is not in a position to record the precise time that it happens. In contrast, death is a permanent condition that prevents future breast cancer. While censoring merely obstructs you from observing the event of interest, a competing event prevents the event of interest from occurring altogether. Because competing events are distinct from standard censorings, a competing-risks analysis requires some new methodology and some caution when interpreting the results from the old methodology.

Putter, Fiocco, and Geskus (2007) and Gichangi and Vach (2005) provide excellent tutorials covering the problem of competing risks, nonparametric estimators and tests, competing-risks regression, and the more general multistate models. Textbook treatments of competing-risks analysis can be found within Andersen et al. (1993), Klein and Moeschberger (2003), Therneau and Grambsch (2000), and Marubini and Valsecchi (1997). The texts by Crowder (2001) and Pintilie (2006) are devoted entirely to the topic. In what follows, we assume that you are familiar with the basic concepts of survival analysis, for example, hazard functions and Kaplan–Meier curves. For such an introduction to survival analysis aimed at Stata users, see Cleves et al. (2010).
Without loss of generality, assume a situation where there is only one event that competes with the failure event of interest. Before analyzing the problem posed by competing-risks data—the problem \texttt{stcrreg} proposes to solve—we first formalize the mechanism behind it. Ignoring censoring for the moment, recording a failure time in a competing-risks scenario can be represented as observing the minimum of two potential failures times: the time to the event of interest, T_1, and the time to the competing event, T_2. The problem of competing risks then becomes one of understanding the nature of the bivariate distribution of (T_1, T_2), and in particular the correlation therein. Although conceptually simple, unfortunately this joint distribution cannot be identified by the data (Pepe and Mori 1993; Tsiatis 1975; Gail 1975). If you get to observe only the minimum, you are getting only half the picture.

An alternate representation of the competing-risks scenario that relies on quantities that are data-identifiable is described by Beyersman et al. (2009). In that formulation, we consider the hazard for the event of interest, $h_1(t)$, and that for the competing event, $h_2(t)$. Both hazards can be estimated from available data and when combined form a total hazard that any event will occur equal to $h(t) = h_1(t) + h_2(t)$. As risk accumulates according to $h(t)$, event times T are observed. Whether these events turn out to be failures of interest (type 1) or competing events (type 2) is determined by the two component hazards at that precise time. The event will be a failure of interest with probability $h_1(T)/\{h_1(T) + h_2(T)\}$, or a competing event with probability one minus that.

Instead of focusing on the survivor function for the event of interest, $P(T > t$ and event type 1), when competing risks are present you want to focus on the failure function, $P(T \leq t$ and event type 1), also known as the cumulative incidence function (CIF). That is because you will not know what type of event will occur until after it has occurred. It makes more sense to ask “What is the probability of breast cancer within 5 months?” than to ask “What is probability that nothing happens before 5 months, and that when something does happen, it will be breast cancer and not death?”

Much of the literature on competing risks focuses on the inadequacy of the Kaplan–Meier (1958) estimator (which we refer to as KM) as a measure of prevalence for the event of interest. Among others, Gooley et al. (1999) point out that $1 - \text{KM}$ is a biased estimate of the CIF. The bias results from KM treating competing events as if they were censored. That is, subjects that experience competing events are treated as if they could later experience the event of interest, even though that is impossible. Although you could interpret $1 - \text{KM}$ as the probability of a type 1 failure in a hypothetical setting where type 2 failures do not occur, this requires you to assume that $h_1(t)$ remains unchanged given that $h_2(t) = 0$, a rather strong and untestable assumption. Regardless of whether the independence assumption holds, $1 - \text{KM}$ is still not representative of the data at hand, under which competing events do take place.

As such, $1 - \text{KM}$ should be rejected in favor of the cumulative incidence estimator of the CIF; see Coviello and Boggess (2004) for a Stata-specific presentation. The cumulative incidence estimator is superior to $1 - \text{KM}$ because it acknowledges that cumulative incidence is a function of both cause-specific hazards, $h_1(t)$ and $h_2(t)$. Conversely, $1 - \text{KM}$ treats the CIF as a function solely of $h_1(t)$.

When you have covariates, you can use \texttt{stcox} to perform regression on $h_1(t)$ by treating failures of type 2 as censored, on $h_2(t)$ by treating failures of type 1 as censored, or on $h_1(t)$ and $h_2(t)$ simultaneously by using the method of data duplication described by Lunn and McNeil (1995) and Cleves (1999). Because cause-specific hazards are identified by the data, all three of the above analyses are suitable for estimating how covariates affect the mechanism behind a given type of failure. For example, if you are interested in how smoking affects breast cancer in general terms (competing death notwithstanding), then a Cox model for $h_1(t)$ that treats death as censored is perfectly valid; see Pintilie (2007).

If you are interested in the incidence of breast cancer, however, you want to use a Cox model that models both $h_1(t)$ and $h_2(t)$, because the CIF for breast cancer will likely depend on both. Based on the fitted model, you will have a hard time spotting the effects of covariates on cumulative incidence,
because the covariates can affect $h_1(t)$ and $h_2(t)$ differently, and the CIF is a nonlinear function of these effects and of the baseline hazards. Whether increasing a covariate increases or decreases the cumulative incidence depends on time and on the nominal value of that covariate, as well as on the values of the other covariates. There is no way to determine the full effects of the covariates by just looking at the model coefficients. You would have to estimate and graph the CIF for various sets of covariate values, and this requires a bit of programming; see example 4.

An alternative model for the CIF that does make it easy to see the effects of covariates is that due to Fine and Gray (1999). They specify a model for the hazard of the subdistribution (Gray 1988), formally defined for failure type 1 as

$$h_1(t) = \lim_{\delta \to 0} \left\{ \frac{P(t < T \leq t + \delta \text{ and event type } 1) | T > t \text{ or } (T \leq t \text{ and not event type } 1)}{\delta} \right\}$$

Less formally, think of this hazard as that which generates failure events of interest while keeping subjects who experience competing events “at risk” so that they can be adequately counted as not having any chance of failing. The advantage of modeling the subdistribution hazard, or subhazard, is that you can readily calculate the CIF from it;

$$\text{CIF}_1(t) = 1 - \exp\{-\int_0^t h_1(t) \, dt\}$$

where $\int_0^t h_1(t) \, dt$ is the cumulative subhazard.

Competing-risks regression performed in this manner using stcrreg is quite similar to Cox regression performed using stcox. The model is semiparametric in that the baseline subhazard $h_{1,0}(t)$ (that for covariates set to zero) is left unspecified, while the effects of the covariates x are assumed to be proportional:

$$h_1(t|x) = h_{1,0}(t) \exp(x \beta)$$

Estimation with stcrreg will produce estimates of β, or exponentiated coefficients known as subhazard ratios. A positive (negative) coefficient means that the effect of increasing that covariate is to increase (decrease) the subhazard and thus increase (decrease) the CIF across the board.

Estimates of the baseline cumulative subhazard and of the baseline CIF are available via predict after stcrreg; see [ST] stcrreg postestimation. Because proportionality holds for cumulative subhazards as well, adjusting the baseline cumulative hazard and baseline CIF for a given set of covariate values is quite easy and, in fact, done automatically for you by stcurve; see [ST] stcurve.

Using stcrreg

If you have used stcox before, stcrreg will look very familiar.

Example 1: Cervical cancer study

Pintilie (2006, sec. 1.6.2) describes data from 109 cervical cancer patients that were treated at a cancer center between 1994 and 2000. The patients were treated and then the time in years until relapse or loss to follow-up was recorded. Relapses were recorded as either “local” if cancer relapsed in the pelvis, or “distant” if cancer recurred elsewhere but not in the pelvis. Patients who did not respond to the initial treatment were considered to have relapsed locally after one day.
The \texttt{dftime} variable records analysis time in years and the \texttt{failtype} variable records the type of event observed: 0 for loss to follow-up (censored), 1 for a local relapse, and 2 for a distant relapse. Among the covariates used in the analysis were a hypoxia marker (\texttt{hp5}) that measures the degree of oxygenation in the tumor, interstitial fluid pressure (\texttt{ifp}), tumor size (\texttt{tumsize}), and an indicator of pelvic node involvement (\texttt{pelnode} == 0 if positive involvement and \texttt{pelnode} == 1 otherwise). The main goal of the study was to determine whether \texttt{ifp} and \texttt{hp5} influence the outcome, controlling for the other covariates. Following Pintilie (2006), we focus on \texttt{ifp} and not on \texttt{hp5}. For more details regarding this study and the process behind the measured data, see Fyles et al. (2002) and Milosevic et al. (2001).

We wish to fit a competing-risks model that treats a local relapse as the event of interest and a distant relapse as the competing event. Although a distant relapse does not strictly prevent a future local relapse, presumably, the treatment protocol changed based on which event was first observed. As such, both events can be treated as competing with one another because the conditions of the study ended once any relapse was observed. Because no deaths occurred before first relapse, death is not considered a competing event in this analysis.
To fit the model, we first \texttt{stset} the data and specify that a local relapse, \texttt{failtype == 1}, is the event of interest. We then specify to \texttt{stcrreg} the covariates and that a distant relapse (\texttt{failtype == 2}) is a competing event.

\begin{verbatim}
. stset dftime, failure(failtype == 1)
(output omitted)
. stcrreg ifp tumsize pelnode, compete(failtype == 2)
 failure _d: failtype == 1
 analysis time _t: dftime
Iteration 0: log pseudolikelihood = -138.67925
Iteration 1: log pseudolikelihood = -138.53082
Iteration 2: log pseudolikelihood = -138.5308
Iteration 3: log pseudolikelihood = -138.5308

Competing-risks regression
 No. of obs = 109
 No. of subjects = 109
 Failure event : failtype == 1 No. failed = 33
 Competing event: failtype == 2 No. competing = 17
 No. censored = 59
 Wald chi2(3) = 33.21
 Log pseudolikelihood = -138.5308

 Prob > chi2 = 0.0000

<table>
<thead>
<tr>
<th></th>
<th>Robust</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SHR</td>
<td>Std. Err.</td>
<td>z</td>
<td>P></td>
<td>z</td>
</tr>
<tr>
<td>ifp</td>
<td>1.033206</td>
<td>.0178938</td>
<td>1.89</td>
<td>0.059</td>
<td>.9987231</td>
</tr>
<tr>
<td>tumsize</td>
<td>1.297332</td>
<td>.1271191</td>
<td>2.66</td>
<td>0.008</td>
<td>1.070646</td>
</tr>
<tr>
<td>pelnode</td>
<td>.4588124</td>
<td>.1972067</td>
<td>-1.81</td>
<td>0.070</td>
<td>.1975931</td>
</tr>
</tbody>
</table>
\end{verbatim}

From the above we point out the following:

- When we \texttt{stset} the data, distant relapses were set as censored because they are not the event of interest and any standard, noncompeting-risks analysis would want to treat them as censored. \texttt{stcrreg} option \texttt{compete()} tells Stata which of these "censored" events are actually competing events that require special consideration in a competing-risks regression. Because competing events are not the event of interest, \texttt{stcrreg} will issue an error if competing events are not \texttt{stset} as censored.

- \texttt{stcrreg} lists the event code(s) for the event of interest under "Failure event(s):" and the competing event code(s) under "Competing event(s):". The syntax for \texttt{stset} and \texttt{stcrreg} allows you to have multiple codes for both. For competing events, multiple event codes can be devoted entirely to one competing event type, many competing event types, or some combination of both. The methodology behind \texttt{stcrreg} extends to more than one competing event type and is concerned only with whether events are competing events, not with their exact type. The focus is on the event of interest.

- We see that out of the 109 patients, 33 experienced a local relapse, 17 experienced a distant relapse, and the remaining 59 were lost to follow-up before any relapse.

- In the column labeled "SHR" are the estimated subhazard ratios, and you interpret these similarly to hazard ratios in Cox regression. Because the estimated subhazard ratio for \texttt{ifp} is greater than 1, higher interstitial fluid pressures are associated with higher incidence of local relapses controlling for tumor size, pelvic node involvement, and the fact that distant relapses can also occur. However, this effect is not highly significant.

- To see the estimated coefficients instead of subhazard ratios, use the \texttt{noshr} option either when fitting the model or when replaying results.
Standard errors are listed as “Robust”, even though we did not specify any sampling weights, `vce(robust)`, or `vce(cluster clustvar)`. As mentioned in the previous section, competing-risks regression works by keeping subjects who experience competing events at risk so that they can be adequately counted as having no chance of failing. Doing so requires a form of sample weighting that invalidates the usual model-based standard errors; see _Methods and formulas_. Robust standard errors are conventional in _stcrreg_.

The output lists a “log pseudolikelihood” rather than the standard log likelihood. This is also a consequence of the inherent sample weighting explained in the previous bullet. The log pseudolikelihood is used as a maximization criterion to obtain parameter estimates, but is not representative of the distribution of the data. For this reason, likelihood-ratio (LR) tests (the `lrtest` command) are not valid after _stcrreg_. Use Wald tests (the `test` command) instead.

As mentioned above, you can use the `noshr` option to obtain coefficients instead of subhazard ratios.

```stata
descript stcrreg, noshr
Competing-risks regression
No. of obs = 109
No. of subjects = 109
Failure event : failtype == 1
No. failed = 33
Competing event: failtype == 2
No. competing = 17
No. censored = 59
Log pseudolikelihood = -138.5308
Prob > chi2 = 0.0000
```

| | Robust Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---|--------------|-----------|-----|------|---------------------|
| _t | | | | | |
| ifp | .0326664 | .0173188 | 1.89| 0.059| -.0012777 | .0666105 |
| tumsize | .2603096 | .0979851 | 2.66| 0.008| .0682623 | .4523568 |
| pelnode | -.7791139 | .4298199 | -1.81| 0.070| -1.621545 | .0633176 |

Just as with _stcox_, this model has no constant term. It is absorbed as part of the baseline subhazard, which is not directly estimated.

Example 2: CIF curves after _stcrreg_

In the above analysis, we stated that with increased interstitial fluid pressure comes an increase in the incidence of local relapses in the presence of possible distant relapses. To demonstrate this visually, we use _stcurve_ to compare two CIF curves: one for _ifp == 5_ and one for _ifp == 20_. For both curves, we assume positive pelvic node involvement (_pelnode==0_) and tumor size set at the mean over the data.
stcrreg — Competing-risks regression

```
stcurve, cif at1(ifp = 5 pelnode = 0) at2(ifp = 20 pelnode = 0)
```

For positive pelvic node involvement and mean tumor size, the probability of local relapse within 2 years is roughly 26% when the interstitial fluid pressure is 5 mmHg and near 40% when this is increased to 20 mmHg. Both probabilities take into account the possibility that a distant relapse could occur instead.

Multiple competing-event types

Competing-risks regression generalizes to the case where more than one type of event competes with the event of interest. If you have such data, after you `stset` the failure event of interest, you can lump together all competing event codes into the `compete()` option of `stcrreg`. It does not matter whether multiple codes represent the same competing-event type, or if they represent multiple types. The results will be the same.

Example 3: UDCA in patients with PBC

Therneau and Grambsch (2000, sec. 8.4.3) analyze data from patients with primary biliary cirrhosis (PBC), a chronic liver disease characterized by progressive destruction of the bile ducts. Data were obtained from 170 patients in a randomized double-blind trial conducted at the Mayo Clinic from 1988 to 1992. The trial was for a new treatment, ursodeoxycholic acid (UDCA; Lindor et al. [1994]).
. use http://www.stata-press.com/data/r13/udca
(Randomized trial of UDCA in PBC)
. describe
Contains data from http://www.stata-press.com/data/r13/udca.dta
obs: 188 Randomized trial of UDCA in PBC
vars: 8 3 Apr 2013 09:37
size: 5,264 (_dta has notes)

<table>
<thead>
<tr>
<th>variable name</th>
<th>storage</th>
<th>display</th>
<th>value</th>
<th>label</th>
<th>variable label</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>int</td>
<td>%9.0g</td>
<td></td>
<td></td>
<td>Patient ID</td>
</tr>
<tr>
<td>entry</td>
<td>float</td>
<td>%td</td>
<td></td>
<td></td>
<td>Date of enrollment</td>
</tr>
<tr>
<td>eventtime</td>
<td>float</td>
<td>%td</td>
<td></td>
<td></td>
<td>Date of first event or loss to follow-up</td>
</tr>
<tr>
<td>treat</td>
<td>byte</td>
<td>%9.0g</td>
<td></td>
<td></td>
<td>0=placebo 1=UDCA</td>
</tr>
<tr>
<td>stage</td>
<td>byte</td>
<td>%9.0g</td>
<td></td>
<td></td>
<td>histologic stage: 0=stage 1/2 at entry 1=stage 3/4</td>
</tr>
<tr>
<td>lbili</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
<td></td>
<td>log(bilirubin value)</td>
</tr>
<tr>
<td>etype</td>
<td>float</td>
<td>%9.0g</td>
<td>event</td>
<td></td>
<td>Event type (see notes)</td>
</tr>
<tr>
<td>wt</td>
<td>double</td>
<td>%4.2f</td>
<td></td>
<td></td>
<td>Observation weight</td>
</tr>
</tbody>
</table>

Sorted by: id

The etype variable is coded as any of eight distinct event types (or no event) according to table 1.

<table>
<thead>
<tr>
<th>Event code</th>
<th>Event type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No event (censored)</td>
</tr>
<tr>
<td>1</td>
<td>Death</td>
</tr>
<tr>
<td>2</td>
<td>Transplant</td>
</tr>
<tr>
<td>3</td>
<td>Histologic progression</td>
</tr>
<tr>
<td>4</td>
<td>Development of varices</td>
</tr>
<tr>
<td>5</td>
<td>Development of ascites</td>
</tr>
<tr>
<td>6</td>
<td>Development of encephalopathy</td>
</tr>
<tr>
<td>7</td>
<td>Doubling of bilirubin</td>
</tr>
<tr>
<td>8</td>
<td>Worsening of symptoms</td>
</tr>
</tbody>
</table>

Cleves (1999) analyzed these data by estimating the cause-specific hazards for each of the eight events. In the version of the data used there, the time at which any adverse event occurred was recorded, but here we record only the time of the first adverse event for each patient. We do so because we wish to perform a competing-risks analysis where we are interested in the time to the first adverse event and the type of that event. The events compete because only one can be first.

We are interested in whether treatment will decrease the incidence of histologic progression (etype == 3) as the first adverse outcome, in reference to treatment (treat), the logarithm of bilirubin level (lbili), and histologic stage at entry (stage). Because the patients entered the study at different times (entry), when stseting the data we must specify this variable as the origin, or onset of risk.

The competing-risks analysis described above could thus proceed as follows:

. stset eventtime, failure(etype == 3) origin(entry)
. stcrreg treat lbili stage, compete(etype == 1 2 4 5 6 7 8)

except for one minor complication. Some patients experienced multiple “first events”, and thus ties exist. For example, consider patient 8 who experienced four adverse events at the same time:
While most patients are represented by one record each, patients with multiple first events are represented by multiple records. Rather than break ties arbitrarily, we take advantage of how importance weights (iweights) are handled by \texttt{stcrreg}. Importance weights are treated like frequency weights, but they are allowed to be noninteger. As such, we define the weight variable (\texttt{wt}) to equal one for single-record patients and to equal one divided by the number of tied events for multiple-record patients. In this way, each patient contributes a total weight of one observation.

The only further modification we need is to specify \texttt{vce(cluster id)} so that our standard errors account for the correlation within multiple records on the same patient.

\begin{verbatim}
. stset eventtime [iw=wt], failure(etype == 3) origin(entry)
(output omitted)
. stcrreg treat lbili stage, compete(etype == 1 2 4 5 6 7 8) vce(cluster id)

Iteration 0: log pseudolikelihood = -62.158461
Iteration 1: log pseudolikelihood = -61.671367
Iteration 2: log pseudolikelihood = -61.669225
Iteration 3: log pseudolikelihood = -61.669225

Competing-risks regression No. of obs = 170
No. of subjects = 170
Failure event : etype == 3 No. failed = 12.66667
Competing events: etype == 1 2 4 5 6 7 8 No. competing = 59.33333
No. censored = 98
Wald chi2(3) = 1.89
Log pseudolikelihood = -61.669225
(Std. Err. adjusted for 170 clusters in id)

| _t | SHR | Robust Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|-------|------------------|------|-------|---------------------|
| treat | .5785214 | .3238038 | -0.98 | 0.328 | .1931497 | 1.732786 |
| lbili | 1.012415 | .367095 | 0.03 | 0.973 | .4974143 | 2.060623 |
| stage | .5537101 | .3305371 | -0.99 | 0.322 | .1718534 | 1.78405 |
\end{verbatim}

In the above, we clustered on \texttt{id} but we did not \texttt{stset} it as an \texttt{id()} variable. That was because we wanted \texttt{stcrreg} to treat each observation within patient as its own distinct spell, not as a set of overlapping spells.

Treatment with UDCA seems to decrease the incidence of histologic progression as a first adverse event. However, the effect is not significant, most likely as a result of observing so few failures.
stcrreg as an alternative to stcox

In this section, we demonstrate that you may also use stcox to perform a cumulative-incidence analysis, and we compare that approach with one that uses stcrreg.

Example 4: HIV and SI as competing events

Geskus (2000) and Putter, Fiocco, and Geskus (2007) analyzed data from 324 homosexual men from the Amsterdam Cohort Studies on HIV infection and AIDS. During the course of infection, the syncytium inducing (SI) HIV phenotype appeared in many of these individuals. The appearance of the SI phenotype worsens prognosis. Thus the time to SI appearance in the absence of an AIDS diagnosis is of interest. In this context, a diagnosis of AIDS acts as a competing event.

```
. use http://www.stata-press.com/data/r13/hiv_si
(HIV and SI as competing risks)
. describe
Contains data from http://www.stata-press.com/data/r13/hiv_si.dta
obs: 324 HIV and SI as competing risks
vars: 4 3 Apr 2013 13:40
size: 2,592 (_dta has notes)

storage  display  value
variable name type format label variable label
  patnr int %8.0g ID
  time float %9.0g Years from HIV infection
  status byte %10.0g stat 1 = AIDS, 2 = SI, 0 = event-free
  ccr5 byte %9.0g ccr5 1 if WM (deletion in C-C chemokine receptor 5 gene)
```

Sorted by:

In what follows, we re-create the analysis performed by Putter, Fiocco, and Geskus (2007), treating AIDS and SI as competing events and modeling cumulative incidence in relation to covariate ccr5.

ccr5 equals 1 if a specific deletion in the C-C chemokine receptor 5 gene is present and equals zero otherwise (wild type).

We can model the cumulative incidence of SI on ccr5 directly with stcrreg:

```
. stset time, failure(status == 2) // SI is the event of interest
(output omitted)
. stcrreg ccr5, compete(status == 1) // AIDS is the competing event
(output omitted)
Competing-risks regression
No. of obs = 324
No. of subjects = 324
No. failed = 107
No. competing = 113
No. censored = 104
Wald chi2(1) = 0.01
Log pseudolikelihood = -579.06241 Prob > chi2 = 0.9172

      _t  Robust SHR Std. Err.    z    P>|z|  [95% Conf. Interval]
        ccr5      1.023865 .2324119  0.10   0.917   .6561827    1.597574
```

It seems that this particular genetic mutation has little relation with the incidence of SI, a point we emphasize further with a graph:
The above analysis compared SI incidence curves under the assumption that the subhazard for SI, that which generates SI events in the presence of AIDS, was proportional with respect to ccr5. Because we modeled the subhazard and not the cause-specific hazard, obtaining estimates of cumulative incidence was straightforward and depended only on the subhazard for SI and not on that for AIDS.

As explained in *The case for competing-risks regression*, the cumulative incidence of SI is a function of both the cause-specific hazard for SI, \(h_1(t) \), and that for AIDS, \(h_2(t) \), because SI and AIDS are competing events. Suppose for the moment that we are not interested in the incidence of SI in the presence of AIDS, but instead in the biological mechanism that causes SI in general. We can model this mechanism with *stcox* by treating AIDS events as censored.

Because we initially *stset* our data with SI as the event of interest, AIDS events are treated as censored by *stcox* (but not by *stcrreg*). In any case, the ccr5 mutation somewhat decreases the risk of SI, but this effect is not significant.

We make the above interpretation with no regard to AIDS as a competing risk because we are interested only in the biological mechanism behind SI. To estimate the cumulative incidence of SI, we first need to make a choice. Either we can pretend a diagnosis of AIDS does not exist as a competing risk and use *stcurve* to plot survivor curves for SI based on the Cox model above, or we can acknowledge AIDS as a competing risk and model that cause-specific hazard also.

We choose the latter. Before fitting the model, however, we need to re-*stset* the data with AIDS as the event of interest.
. stset time, failure(status == 1) // AIDS is the event of interest
(output omitted)
. stcox ccr5
(output omitted)
Cox regression -- Breslow method for ties
No. of subjects = 324 Number of obs = 324
No. of failures = 113 Time at risk = 2261.959996
Log likelihood = -555.37301 LR chi2(1) = 21.98
Prob > chi2 = 0.0000

<table>
<thead>
<tr>
<th>_t</th>
<th>Haz. Ratio</th>
<th>Std. Err.</th>
<th>z</th>
<th>P>z</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccr5</td>
<td>0.2906087</td>
<td>0.0892503</td>
<td>-4.02</td>
<td>0.000</td>
<td>0.1591812</td>
</tr>
</tbody>
</table>

Patients with the ccr5 mutation have a significantly lower risk of AIDS.

We have now modeled both cause-specific hazards separately. Cleves (1999); Lunn and McNeil (1995); and Putter, Fiocco, and Geskus (2007) (among others) describe an approach based on data duplication where both hazards can be modeled simultaneously. Such an approach has the advantage of being able to set the effects of ccr5 on both hazards as equal and to test that hypothesis. Also, you can model the baseline hazards as proportional rather than entirely distinct. However, for the least parsimonious model with event-specific covariate effects and event-specific baseline hazards, the data duplication method is no different than fitting separate models for each event type, just as we have done above. Because data duplication will reveal no simpler model for these data, we do not describe it further.

We can derive estimates of cumulative incidence for SI based on the above cause-specific hazard models, but the process is a bit more complicated than before. The cumulative incidence of SI (event type 1) in the presence of AIDS (event type 2) is calculated as

\[
\hat{CIF}_1(t) = \sum_{j:t_j \leq t} \hat{h}_1(t_j) \hat{S}(t_j - 1)
\]

with

\[
\hat{S}(t) = \prod_{j:t_j \leq t} \left\{ 1 - \hat{h}_1(t_j) - \hat{h}_2(t_j) \right\}
\]

The \(t_j \) index the times at which events (of any type) occur, and \(\hat{h}_1(t_j) \) and \(\hat{h}_2(t_j) \) are the cause-specific hazard contributions for SI and AIDS respectively. Baseline hazard contributions can be obtained with `predict` after `stcox`, and they can be transformed to hazard contributions for any covariate pattern by multiplying them by the exponentiated linear predictor for that pattern. Hazard contributions represent the increments of the cumulative hazards at each event time. \(\hat{S}(t) \) estimates the probability that you are event free at time \(t \).
We begin by refitting both models and predicting the hazard contributions.

```
. stset time, failure(status == 2) // SI
(output omitted)
. stcox ccr5
(output omitted)
. predict h_si_0, basehc
(217 missing values generated)
. gen h_si_1 = h_si_0*exp(_b[ccr5])
(217 missing values generated)
. stset time, failure(status == 1) // AIDS
(output omitted)
. stcox ccr5
(output omitted)
. predict h_aids_0, basehc
(211 missing values generated)
. gsort _t -_d
. by _t: replace h_aids_0 = . if _n > 1
(1 real change made, 1 to missing)
. gen h_aids_1 = h_aids_0*exp(_b[ccr5])
(212 missing values generated)
```

Variables h_{si0} and h_{aids0} hold the baseline hazard contributions, those for $ccr5 == 0$. Variables h_{si1} and h_{aids1} hold the hazard contributions for $ccr5 == 1$, and they were obtained by multiplying the baseline contributions by the exponentiated coefficient for $ccr5$. When we ran `stcox` with AIDS as the event of interest, the output indicated that we had tied failure times (the analysis for SI had no ties). As such, this required the extra step of setting any duplicated hazard contributions to missing. As it turned out, this affected only one observation.

Hazard contributions are generated only at times when events are observed and are set to missing otherwise. Because we will be summing and multiplying over event times, we next drop the observations that contribute nothing and then replace missing with zero for those observations that have some hazard contributions missing and some nonmissing.

```
. drop if missing(h_si_0) & missing(h_aids_0)
(105 observations deleted)
. replace h_aids_0 = 0 if missing(h_aids_0)
(107 real changes made)
. replace h_aids_1 = 0 if missing(h_aids_1)
(107 real changes made)
. replace h_si_0 = 0 if missing(h_si_0)
(112 real changes made)
. replace h_si_1 = 0 if missing(h_si_1)
(112 real changes made)
```

We can now sort by analysis time and calculate the estimated event-free survivor functions. Recall that you can express a product as an exponentiated sum of logarithms, which allows us to take advantage of Stata’s `sum()` function for obtaining running sums.

```
. sort _t
. gen S_0 = exp(sum(log(1- h_aids_0 - h_si_0)))
. gen S_1 = exp(sum(log(1- h_aids_1 - h_si_1)))
```

Finally, we calculate the estimated CIFs and graph:

```
. gen cif_si_0 = sum(S_0[_n-1]*h_si_0)
. label var cif_si_0 "ccr5 = 0"
```

This model formulation shows \textit{ccr5} to have more of an effect on the incidence of \textit{SI}, although the effect is still small. Note that under this formulation, the effect of \textit{ccr5} is not constrained to be overall increasing or overall decreasing. In fact, when \(t > 11 \) years or so, those with the \textit{ccr5} mutation actually have an increased SI incidence. That is due to time-accumulated reduced competition from AIDS, the risk of which is significantly lower when the \textit{ccr5} mutation is present.

\begin{itemize}
 \item Putter, Fiocco, and Geskus (2007) also performed the same analysis using AIDS as the event of interest, something we leave to you as an exercise.
\end{itemize}

We have described two different modeling approaches for estimating the cumulative incidence of \textit{SI}. Although you may prefer the \texttt{stcrreg} approach because it is much simpler, that does not mean it is a better model than the one based on \texttt{stcox}. The better model is the one whose assumptions more closely fit the data. The \texttt{stcrreg} model assumes that the effect of \textit{ccr5} is proportional on the subhazard for \textit{SI}. The \texttt{stcox} model assumes proportionality on the cause-specific hazards for both \textit{SI} and AIDS. Because our analysis uses only one binary covariate, we can compare both models with a nonparametric estimator of the \textit{CIF} to see which fits the data more closely; see \[ST\] \texttt{stcrreg postestimation}.

Multiple records per subject

\texttt{stcrreg} can be used with data where you have multiple records per subject, as long as 1) you \texttt{stset} an ID variable that identifies the subjects and 2) you carefully consider the role played by time-varying covariates in subjects who fail because of competing events. We explain both issues below.

Stata’s \texttt{st} suite of commands allows for multiple records per subject. Having multiple records allows you to record gaps in subjects’ histories and to keep track of time-varying covariates. If you have multiple records per subject, you identify which records belong to which subjects by specifying an ID variable to \texttt{stset} option \texttt{id()}.

Consider the sample data listed below:

```
.*list if id == 18
```

<table>
<thead>
<tr>
<th></th>
<th>id</th>
<th>_t0</th>
<th>_t</th>
<th>_d</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>5.1</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>5</td>
<td>8</td>
<td>0</td>
<td>7.8</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>11</td>
<td>12</td>
<td>0</td>
<td>6.7</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>12</td>
<td>20</td>
<td>1</td>
<td>8.9</td>
</tr>
</tbody>
</table>

These data reflect the following:

- Subject 18 first became at risk at analysis time 3 (delayed entry) with covariate value x equal to 5.1.
- At time 5, subject 18’s x value changed to 7.8.
- Subject 18 left the study at time 8 only to return at time 11 (gap), with x equal to 6.7 at that time.
- At time 12, x changed to 8.9.
- Subject 18 failed at time 20 with x equal to 8.9 at that time.

An analysis of these data with Cox regression using `stcox` is capable of processing all this information. Intermittent records are treated as censored (\(_d==0\)), and either failure or censoring occurs on the last record (here failure with \(_d==1\)). When subjects are not under observation, they are simply not considered at risk of failure. Time-varying covariates are also processed correctly. For example, if some other subject failed at time 7, then the risk calculations would count subject 18 at risk with x equal to 7.8 at that time.

`stcox` will give the same results for the above data whether or not you `stset` the ID variable, `id`. Whether you treat the above data as four distinct subjects (three censored and one failed) or as one subject with a four-record history is immaterial. The only difference you may encounter concerns robust and replication-based standard errors, in which case if you `stset` an ID variable, then `stcox` will automatically cluster on this variable.

Such a distinction, however, is of vital importance to `stcrreg`. While `stcox` is concerned only about detecting one type of failure, `stcrreg` relies on precise accounting of the number of subjects who fail because of the event of interest, those who fail because of competing events, and those who are censored. In particular, the weighting mechanism behind `stcrreg` depends on an accurate estimate of the probability a subject will be censored; see Methods and formulas. As such, it makes a difference whether you want to treat the above as four distinct subjects or as one subject. If you have multiple records per subject, you must `stset` your ID variable before using `stcrreg`. When counting the number failed, number competing, and number censored, `stcrreg` only considers what happened at the end of a subject’s history. Intermittent records are treated simply as temporary entries to and exits from the analysis, and the exits are not counted as censored in the strict sense.

Furthermore, when using `stcrreg` with covariates that change over multiple records (time-varying covariates), you need to carefully consider what happens when subjects experience competing failures. For the above sample data, subject 18 failed because of the event interest (\(_d==1\)). Consider, however, what would have happened had this subject failed because of a competing event instead. Competing-risks regression keeps such subjects “at risk” of failure from the event of interest even after they fail from competing events; see Methods and formulas. Because these subjects will be used in future risk calculations for which they have no data, `stcrreg` will use the last available covariate values for these calculations. For the above example, if subject 18 experiences a competing event at time 20, then the last available value of x, 8.9, will be used in all subsequent risk calculations. If the last
available values are as good a guess as any as to what future values would have been—for example, a binary covariate recording pretransplant versus posttransplant status—then this is not an issue. If, however, you have reason to believe that a subject’s covariates would have been much different had the subject remained under observation, then the results from \texttt{stcrreg} could be biased.

Example 5: Hospital-acquired pneumonia

Consider the following simulated data from a competing-risks analysis studying the effects of pneumonia.

\begin{verbatim}
. use http://www.stata-press.com/data/r13/pneumonia, clear
 (Hospital-acquired pneumonia)
. describe
Contains data from http://www.stata-press.com/data/r13/pneumonia.dta
 obs: 957 Hospital-acquired pneumonia
 vars: 7
 size: 8,613
storage display value
variable name type format label variable label
 id int %9.0g Patient id
 age byte %9.0g Age at admission
 ndays int %9.0g Days in ICU
 died byte %9.0g 1 if died
 censored byte %9.0g 1 if alive and in ICU at the end of the study
 discharged byte %9.0g 1 if discharged
 pneumonia byte %9.0g 1 if pneumonia

Sorted by: id
\end{verbatim}

The above data are for 855 ICU patients. One hundred twenty-three patients contracted pneumonia, of which 21 did before admission and 102 during their stay. Those patients who contracted pneumonia during their stay are represented by two records with the time-varying covariate \texttt{pneumonia} recording the change in status.

We perform a competing-risks regression for the cumulative incidence of death during ICU stay with \texttt{age} and \texttt{pneumonia} as covariates. We also treat hospital discharge as a competing event.

\begin{verbatim}
. stset ndays, id(id) failure(died)
 (output omitted)
. stcrreg age pneumonia, compete(discharged) noshow nolog
 Competing-risks regression
 No. of obs = 957
 No. of subjects = 855
 Failure events : died nonzero, nonmissing
 No. failed = 178
 Competing events: discharged nonzero, nonmissing
 No. competing = 641
 No. censored = 36
 Wald chi2(2) = 121.21
 Log pseudolikelihood = -1128.6096
 Prob > chi2 = 0.0000
 (Std. Err. adjusted for 855 clusters in id)

 _t | SHR Std. Err. z P>|z| [95% Conf. Interval]
 ---|----------|-------------|------|--------|------------------------
 age | 1.021612 .0076443 2.86 0.004 1.006739 1.036705
 pneumonia | 5.587052 .9641271 9.97 0.000 3.983782 7.835558
\end{verbatim}
Both increased age and contracting pneumonia are associated with an increased incidence of death in the ICU.

Option tvc() and testing the proportional-subhazards assumption

In the previous section, we considered data with multiple records per subject. Such data makes it possible to record discrete time-varying covariates, those whose values change at discrete points in time. Each change is captured by a new record.

Consider instead what happens when you have covariates that vary continuously with respect to time. Competing-risks regression assumes the following relationship between subhazard and baseline subhazard

\[h_1(t) = h_{1,0}(t) \exp(\beta_1 x_1 + \cdots + \beta_k x_k) \]

where \(h_{1,0}(t) \) is the baseline subhazard function. For most purposes, this model is sufficient, but sometimes we may wish to introduce variables of the form \(z_i(t) = z_i g(t) \), which vary continuously with time so that

\[h_1(t) = h_{1,0}(t) \exp \{ \beta_1 x_1 + \cdots + \beta_k x_k + g(t)(\gamma_1 z_1 + \cdots + \gamma_m z_m) \} \]

(1)

where \((z_1, \ldots, z_m) \) are the time-varying covariates. Fitting this model has the net effect of estimating the regression coefficient, \(\gamma_i \), for the covariate \(g(t)z_i \), which is a function of analysis time.

The time-varying covariates \((z_1, \ldots, z_m) \) are specified using the \texttt{tvc(tvarlist)} option, and \(g(t) \) is specified using the \texttt{texp(exp)} option, where \(t \) in \(g(t) \) is analysis time. For example, if we want \(g(t) = \log(t) \), we would use \texttt{texp(log(_t))} because _t stores the analysis time once the data are \texttt{stset}.

When subjects fail because of competing events, covariate values for these subjects continue to be used in subsequent risk calculations; see the previous section for details. When this occurs, any time-varying covariates specified using \texttt{tvc()} will continue to respect their time interactions even after these subjects fail. Because such behavior is unlikely to reflect any real data situation, we do not recommend using \texttt{tvc()} for this purpose.

We do, however, recommend using \texttt{tvc()} to model \textit{time-varying coefficients}, because these can be used to test the proportionality assumption behind competing-risks regression. Consider a version of (1) that contains only one fixed covariate, \(x_1 \), and sets \(z_1 = x_1 \):

\[h_1(t) = h_{1,0}(t) \exp \{ [\beta_1 + \gamma_1 g(t)] x_1 \} \]

Given this new arrangement, we consider that \(\beta_1 + \gamma_1 g(t) \) is a (possibly) time-varying coefficient on the covariate \(x_1 \), for some specified function of time \(g(t) \). The coefficient has a time-invariant component \(\beta_1 \), with \(\gamma_1 \) determining the magnitude of the time-dependent deviations from \(\beta_1 \). As such, a test of \(\gamma_1 = 0 \) is a test of time invariance for the coefficient on \(x_1 \).

Confirming that a coefficient is time invariant is one way of testing the proportional-subhazards assumption. Proportional subhazards implies that the relative subhazard (that is, \(\beta \)) is fixed over time, and this assumption would be violated if a time interaction proved significant.
Example 6: Testing proportionality of subhazards

Returning to our cervical cancer study (example 1), we now include time interactions on all three covariates as a way of testing the proportional-subhazards assumption for each:

```
. use http://www.stata-press.com/data/r13/hypoxia
  (Hypoxia study)
. stset dftime, failure(failtype == 1)
  (output omitted)
. stcrreg ifp tumsize pelnode, compete(failtype == 2) tvc(ifp tumsize pelnode) 
  > noshr
  (output omitted)
Competing-risks regression
  No. of obs = 109
  No. of subjects = 109
  Failure event : failtype == 1
    No. failed = 33
  Competing event: failtype == 2
    No. competing = 17
    No. censored = 59
    Wald chi2(6) = 44.93
  Log pseudolikelihood = -136.79
  Prob > chi2 = 0.0000

<p>|   | Coef. | Std. Err. | z    | P&gt;|z|  | [95% Conf. Interval] |
|---|-------|-----------|------|------|---------------------|
|   |       |           |      |      |                     |</p>
<table>
<thead>
<tr>
<th>_t</th>
<th>Robust</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>main</td>
<td>ifp</td>
<td>.0262093</td>
<td>.0174458</td>
<td>1.50</td>
<td>0.133</td>
</tr>
<tr>
<td></td>
<td>tumsize</td>
<td>.37897</td>
<td>.1096628</td>
<td>3.46</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>pelnode</td>
<td>-.766362</td>
<td>.473674</td>
<td>-1.62</td>
<td>0.106</td>
</tr>
<tr>
<td>tvc</td>
<td>ifp</td>
<td>.0055901</td>
<td>.0081809</td>
<td>0.68</td>
<td>0.494</td>
</tr>
<tr>
<td></td>
<td>tumsize</td>
<td>-.1415204</td>
<td>.0908955</td>
<td>-1.56</td>
<td>0.119</td>
</tr>
<tr>
<td></td>
<td>pelnode</td>
<td>.0610457</td>
<td>.5676173</td>
<td>0.11</td>
<td>0.914</td>
</tr>
</tbody>
</table>

Note: variables in tvc equation interacted with _t

We used the default function of time \( g(t) = t \), although we could have specified otherwise with the `texp()` option. After looking at the significance levels in the equation labeled “tvc”, we find no indication that the proportionality assumption has been violated.

When you use `tvc()` in this manner, there is no issue of postfailure covariate values for subjects who fail from competing events. The covariate values are assumed constant—the *coefficients* change with time.
Stored results

`stcrreg` stores the following in `e()`:

 Scalars

- `e(N)` number of observations
- `e(N_sub)` number of subjects
- `e(N_fail)` number of failures
- `e(N_compete)` number of competing events
- `e(N_censor)` number of censored subjects
- `e(k)` number of parameters
- `e(k_eq)` number of equations in `e(b)`
- `e(k_eq_model)` number of equations in overall model test
- `e(k_dv)` number of dependent variables
- `e(df_m)` model degrees of freedom
- `e(ll)` log pseudolikelihood
- `e(N_clust)` number of clusters
- `e(chi2)` $\chi^2$
- `e(p)` significance
- `e(rank)` rank of `e(V)`
- `e(fmult)` 1 if > 1 failure events, 0 otherwise
- `e(crmult)` 1 if > 1 competing events, 0 otherwise
- `e(fnz)` 1 if nonzero indicates failure, 0 otherwise
- `e(crnz)` 1 if nonzero indicates competing, 0 otherwise
- `e(ic)` number of iterations
- `e(rc)` return code
- `e(converged)` 1 if converged, 0 otherwise

 Macros

- `e(cmd)` `stcrreg`
- `e(cmdline)` command as typed
- `e(depvar)` name of dependent variable
- `e(mainvars)` variables in main equation
- `e(tvc)` time-varying covariates
- `e(texp)` function used for time-varying covariates
- `e(fevent)` failure event(s) in estimation output
- `e(crevent)` competing event(s) in estimation output
- `e(compete)` competing event(s) as typed
- `e(vtype)` weight type
- `e(wexp)` weight expression
- `e(title)` title in estimation output
- `e(clustvar)` name of cluster variable
- `e(offset1)` offset
- `e(chi2type)` Wald; type of model $\chi^2$ test
- `e(vce)` vcetype specified in vce() 
- `e(vcetype)` title used to label Std. Err.
- `e(opt)` type of optimization
- `e(which)` max or min; whether optimizer is to perform maximization or minimization
- `e(ml_method)` type of ml method
- `e(user)` name of likelihood-evaluator program
- `e(technique)` maximization technique
- `e(properties)` b V
- `e(predict)` program used to implement predict
- `e(marginsnotok)` predictions disallowed by margins
- `e(asbalanced)` factor variables fvset as asbalanced
- `e(asobserved)` factor variables fvset as asobserved
Methods and formulas

In what follows, we assume single-record data and time-invariant covariates or coefficients. Extensions to both multiple-record data and continuous time-varying covariates are achieved by treating the mechanisms that generate censorings, competing events, and failure events of interest as counting processes; see Fine and Gray (1999) and Andersen et al. (1993) for further details.

Let $x_i$ be the row vector of $m$ covariates for the time interval $(t_{0i}, t_i]$ for the $i$th observation in the dataset ($i = 1, \ldots, n$). `stcrreg` obtains parameter estimates $\hat{\beta}$ by maximizing the log-pseudolikelihood function

$$
\log L = \sum_{i=1}^{n} \delta_i w_i \left[ x_i \hat{\beta} + \text{offset}_i - \log \left( \sum_{j \in R_i} w_j \pi_{ji} \exp(x_j \hat{\beta} + \text{offset}_j) \right) \right]
$$

where $\delta_i$ indicates a failure of interest for observation $i$ and $R_i$ is the set of observations, $j$, that are at risk at time $t_i$ (that is, all $j$ such that $t_{0j} < t_i \leq t_j$). $w_i$ and offset$_i$ are the usual observation weights and linear offsets, if specified.

The log likelihood given above is identical to that for standard Cox regression (Breslow method for ties) with the exception of the weights $\pi_{ji}$. These weights are used to keep subjects who have failed because of competing events in subsequent risk sets and to decrease their weight over time as their likelihood of being otherwise censored increases.

Formally, extend $R_i$ above not only to include those at risk of failure at time $t_i$, but also to include those subjects already having experienced a competing-risks event. Also, define

$$
\pi_{ji} = \frac{\hat{S}_c(t_i)}{\hat{S}_c(\min(t_j, t_i))}
$$

if subject $j$ experiences a competing event; $\pi_{ji} = 1$ otherwise. $\hat{S}_c(t)$ is the Kaplan–Meier estimate of the survivor function for the censoring distribution—that which treats censorings as the events of interest—evaluated at time $t$, and $t_j$ is the time at which subject $j$ experienced his or her competing-failure event. As a matter of convention, $\hat{S}_c(t)$ is treated as the probability of being censored up to but not including time $t$.

Because of the sample weighting inherent to this estimator, the standard Hessian-based estimate of variance is not statistically appropriate and is thus rejected in favor of a robust, sandwich-type estimator, as derived by Fine and Gray (1999).

Define $z_i = x_i \hat{\beta} + \text{offset}_i$. (Pseudo)likelihood scores are given by

$$
\hat{u}_i = \eta_i + \psi_i
$$
where \( \hat{\eta}_i = (\hat{\eta}_{1i}, \ldots, \hat{\eta}_{mi})' \), and

\[
\hat{\eta}_{ki} = \delta_i (x_{ki} - a_{ki}) - \exp(z_i) \sum_{j: t_{0i} < t_j \leq t_i} \frac{\delta_j w_j \pi_{ij} (x_{ki} - a_{kj})}{\sum_{\ell \in R_j} w_{\ell} \pi_{\ell j} \exp(z_{\ell})}
\]

for

\[
a_{ki} = \frac{\sum_{\ell \in R_i} w_{\ell} \pi_{\ell i} x_{k\ell} \exp(z_{\ell})}{\sum_{\ell \in R_i} w_{\ell} \pi_{\ell i} \exp(z_{\ell})}
\]

The \( \hat{\psi}_i \) are variance contributions due to data estimation of the weights \( \pi_{ji} \), with

\[
\hat{\psi}_i = \frac{\gamma_i \hat{q}(t_i)}{r(t_i)} - \sum_{j: t_{0i} < t_j \leq t_i} \frac{\gamma_j \hat{h}_c(t_j) \hat{q}(t_j)}{r(t_j)}
\]

\( \gamma_i \) indicates censoring for observation \( i \), \( r(t) \) is the number at risk of failure (or censoring) at time \( t \),

\[
\hat{h}_c(t) = \sum_{i=1}^{n} \gamma_i I(t_i = t) / r(t)
\]

and the \( k \)th component of \( \hat{q}(t) \) is

\[
\hat{q}_k(t) = \sum_{i \in C(t)} w_i \exp(z_i) \sum_{j: t_{0i} < t_j \leq t_i} \frac{\delta_j w_j \pi_{ij} (x_{ki} - a_{kj})}{\sum_{\ell \in R_j} w_{\ell} \pi_{\ell j} \exp(z_{\ell})} I(t_j \geq t)
\]

where \( C(t) \) is the set of observations that experienced a competing event prior to time \( t \).

By default, \texttt{stcrreg} calculates the Huber/White/sandwich estimator of the variance and calculates its clustered version if either the \texttt{vce(cluster clustvar)} option is specified or an ID variable has been \texttt{stset}. See \textit{Maximum likelihood estimators} and \textit{Methods and formulas} in \texttt{[P] _robust} for details on how the pseudolikelihood scores defined above are used to calculate this variance estimator.

\section*{Acknowledgment}

We thank Jason Fine of the Gillings School of Global Public Health at the University of North Carolina, Chapel Hill, for answering our technical questions.

\section*{References}


Also see

[ST] stcrreg postestimation — Postestimation tools for stcrreg

[ST] stcurve — Plot survivor, hazard, cumulative hazard, or cumulative incidence function

[ST] stcox — Cox proportional hazards model

[ST] stcox PH-assumption tests — Tests of proportional-hazards assumption

[ST] stcox postestimation — Postestimation tools for stcox

[ST] streg — Parametric survival models

[ST] sts — Generate, graph, list, and test the survivor and cumulative hazard functions

[ST] stset — Declare data to be survival-time data

[M] estimation — Estimation commands for use with mi estimate

[U] 20 Estimation and postestimation commands
The following postestimation command is of special interest after `stcrreg`:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>stcurve</code></td>
<td>plot the cumulative subhazard and cumulative incidence functions</td>
</tr>
</tbody>
</table>

For information on `stcurve`, see `[ST] stcurve`.

The following standard postestimation commands are also available:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>contrast</code></td>
<td>contrasts and ANOVA-style joint tests of estimates</td>
</tr>
<tr>
<td><code>estat ic</code></td>
<td>Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)</td>
</tr>
<tr>
<td><code>estat summarize</code></td>
<td>summary statistics for the estimation sample</td>
</tr>
<tr>
<td><code>estat vce</code></td>
<td>variance–covariance matrix of the estimators (VCE)</td>
</tr>
<tr>
<td><code>estimates</code></td>
<td>cataloging estimation results</td>
</tr>
<tr>
<td><code>lincom</code></td>
<td>point estimates, standard errors, testing, and inference for linear combinations of coefficients</td>
</tr>
<tr>
<td><code>margins</code></td>
<td>marginal means, predictive margins, marginal effects, and average marginal effects</td>
</tr>
<tr>
<td><code>marginsplot</code></td>
<td>graph the results from margins (profile plots, interaction plots, etc.)</td>
</tr>
<tr>
<td><code>nlcom</code></td>
<td>point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients</td>
</tr>
<tr>
<td><code>predict</code></td>
<td>predictions, residuals, influence statistics, and other diagnostic measures</td>
</tr>
<tr>
<td><code>predictnl</code></td>
<td>point estimates, standard errors, testing, and inference for generalized predictions</td>
</tr>
<tr>
<td><code>pwcompare</code></td>
<td>pairwise comparisons of estimates</td>
</tr>
<tr>
<td><code>test</code></td>
<td>Wald tests of simple and composite linear hypotheses</td>
</tr>
<tr>
<td><code>testnl</code></td>
<td>Wald tests of nonlinear hypotheses</td>
</tr>
</tbody>
</table>

**Syntax for predict**

```plaintext
predict [type] newvar [if] [in] [, sv_statistic nooffset]
predict [type] { stub* | newvarlist } [if] [in] , mv_statistic [partial]
```
sv_statistic	Description
Main	shr
xb	linear prediction $x_j \beta$
stdp	standard error of the linear prediction; $\text{SE}(x_j \beta)$
*basecif	baseline cumulative incidence function (CIF)
*basecshazard	baseline cumulative subhazard function
*kmcensor	Kaplan–Meier survivor curve for the censoring distribution

mv_statistic	Description
Main	*scores
*esr	efficient score residuals
*dfbeta	DFBETA measures of influence
*schoenfeld	Schoenfeld residuals

Unstarred statistics are available both in and out of sample; type `predict ... if e(sample) ...` if wanted only for the estimation sample. Starred statistics are calculated only for the estimation sample, even when `if e(sample)` is not specified.

`nooffset` is allowed only with unstarred statistics.

**Menu for predict**

Statistics > Postestimation > Predictions, residuals, etc.

**Options for predict**

shr, the default, calculates the relative subhazard (subhazard ratio), that is, the exponentiated linear prediction, $\exp(x_j \hat{\beta})$.

xb calculates the linear prediction from the fitted model. That is, you fit the model by estimating a set of parameters, $\beta_1, \beta_2, \ldots, \beta_k$, and the linear prediction is $\hat{\beta}_1 x_{1j} + \hat{\beta}_2 x_{2j} + \cdots + \hat{\beta}_k x_{kj}$, often written in matrix notation as $x_j \hat{\beta}$.

The $x_{1j}, x_{2j}, \ldots, x_{kj}$ used in the calculation are obtained from the data currently in memory and do not have to correspond to the data on the independent variables used in estimating $\beta$.

stdp calculates the standard error of the prediction, that is, the standard error of $x_j \hat{\beta}$.

basecif calculates the baseline CIF. This is the CIF of the subdistribution for the cause-specific failure process.

basecshazard calculates the baseline cumulative subhazard function. This is the cumulative hazard function of the subdistribution for the cause-specific failure process.
**kmcensor** calculates the Kaplan–Meier survivor function for the censoring distribution. These estimates are used to weight within risk pools observations that have experienced a competing event. As such, these values are not predictions or diagnostics in the strict sense, but are provided for those who wish to reproduce the pseudolikelihood calculations performed by **stcrreg**; see \[**ST**\] **stcrreg**.

**nooffset** is allowed only with **shr**, **xb**, and **stdp**, and is relevant only if you specified **offset(varname)** for **stcrreg**. It modifies the calculations made by **predict** so that they ignore the offset variable; the linear prediction is treated as $x_j\hat{\beta}$ rather than $x_j\hat{\beta} + \text{offset}_j$.

**scores** calculates the pseudolikelihood scores for each regressor in the model. These scores are components of the robust estimate of variance. For multiple-record data, by default only one score per subject is calculated and it is placed on the last record for the subject.

Adding the **partial** option will produce partial scores, one for each record within subject; see **partial** below. Partial pseudolikelihood scores are the additive contributions to a subject’s overall pseudolikelihood score. In single-record data, the partial pseudolikelihood scores are the pseudolikelihood scores.

One score variable is created for each regressor in the model; the first new variable corresponds to the first regressor, the second to the second, and so on.

**esr** calculates the efficient score residuals for each regressor in the model. Efficient score residuals are diagnostic measures equivalent to pseudolikelihood scores, with the exception that efficient score residuals treat the censoring distribution (that used for weighting) as known rather than estimated. For multiple-record data, by default only one score per subject is calculated and it is placed on the last record for the subject.

Adding the **partial** option will produce partial efficient score residuals, one for each record within subject; see **partial** below. Partial efficient score residuals are the additive contributions to a subject’s overall efficient score residual. In single-record data, the partial efficient scores are the efficient scores.

One efficient variable is created for each regressor in the model; the first new variable corresponds to the first regressor, the second to the second, and so on.

**dfbeta** calculates the DFBETA measures of influence for each regressor of in the model. The DFBETA value for a subject estimates the change in the regressor’s coefficient due to deletion of that subject. For multiple-record data, by default only one value per subject is calculated and it is placed on the last record for the subject.

Adding the **partial** option will produce partial DFBETAS, one for each record within subject; see **partial** below. Partial DFBETAS are interpreted as effects due to deletion of individual records rather than deletion of individual subjects. In single-record data, the partial DFBETAS are the DFBETAS.

One DFBETA variable is created for each regressor in the model; the first new variable corresponds to the first regressor, the second to the second, and so on.

**schoenfeld** calculates the Schoenfeld-like residuals. Schoenfeld-like residuals are diagnostic measures analogous to Schoenfeld residuals in Cox regression. They compare a failed observation’s covariate values to the (weighted) average covariate values for all those at risk at the time of failure. Schoenfeld-like residuals are calculated only for those observations that end in failure; missing values are produced otherwise.

One Schoenfeld residual variable is created for each regressor in the model; the first new variable corresponds to the first regressor, the second to the second, and so on.
Note: The easiest way to use the preceding four options is, for example,

```
predict double stub*, scores
```

where `stub` is a short name of your choosing. Stata then creates variables `stub1`, `stub2`, etc. You may also specify each variable name explicitly, in which case there must be as many (and no more) variables specified as there are regressors in the model.

`partial` is relevant only for multiple-record data and is valid with `scores`, `esr`, and `dfbeta`. Specifying `partial` will produce “partial” versions of these statistics, where one value is calculated for each record instead of one for each subject. The subjects are determined by the `id()` option to `stset`.

Specify `partial` if you wish to perform diagnostics on individual records rather than on individual subjects. For example, a partial `DFBETA` would be interpreted as the effect on a coefficient due to deletion of one record, rather than the effect due to deletion of all records for a given subject.

### Remarks and examples

Remarks are presented under the following headings:

- Baseline functions
- Null models
- Measures of influence

### Baseline functions

> Example 1: Cervical cancer study

In example 1 of [ST] `stcrreg`, we fit a proportional subhazards model on data from a cervical cancer study.

```
use http://www.stata-press.com/data/r13/hypoxia
(stata-press.com data)
sts dftime, failure(failtype == 1)
(output omitted)
sts crreg ifp tumsize pelnode, compete(failtype == 2)
(output omitted)
```

```
<table>
<thead>
<tr>
<th>Competing-risks regression</th>
<th>No. of obs</th>
<th>109</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure event: failtype == 1</td>
<td>No. failed</td>
<td>33</td>
</tr>
<tr>
<td>Competing event: failtype == 2</td>
<td>No. competing</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>No. censored</td>
<td>59</td>
</tr>
<tr>
<td>Wald chi2(3)</td>
<td>33.21</td>
<td></td>
</tr>
<tr>
<td>Log pseudolikelihood</td>
<td>-138.5308</td>
<td></td>
</tr>
<tr>
<td>Prob > chi2</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

| _t | SHR | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----|-----|-----------|------|----------|--------------------|
| ifp | 1.033206 | .0178938 | 1.89 | 0.059 | .9987231 | 1.068879 |
| tumsize | 1.297332 | .1271191 | 2.66 | 0.008 | 1.070646 | 1.572013 |
| pelnode | .4588124 | .1972067 | -1.81 | 0.070 | .1975931 | 1.065365 |
```
After fitting the model, we can predict the baseline cumulative subhazard, $\overline{H}_{1,0}(t)$, and the baseline CIF, $\text{CIF}_{1,0}(t)$:

\[
\begin{align*}
\text{predict bch, basecsh} \\
\text{predict bcif, basecif} \\
\text{list dftime failtype ifp tumsize pelnode bch bcif in 1/15}
\end{align*}
\]

<table>
<thead>
<tr>
<th>dftime</th>
<th>failtype</th>
<th>ifp</th>
<th>tumsize</th>
<th>pelnode</th>
<th>bch</th>
<th>bcif</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>6.152</td>
<td>0</td>
<td>8</td>
<td>7</td>
<td>1.0658792</td>
<td>0.063756</td>
</tr>
<tr>
<td>2.</td>
<td>8.008</td>
<td>0</td>
<td>8.2</td>
<td>2</td>
<td>1.0813224</td>
<td>0.0781036</td>
</tr>
<tr>
<td>3.</td>
<td>0.003</td>
<td>1</td>
<td>8.6</td>
<td>10</td>
<td>0.0260186</td>
<td>0.025683</td>
</tr>
<tr>
<td>4.</td>
<td>1.073</td>
<td>1</td>
<td>3.3</td>
<td>8</td>
<td>0.0379107</td>
<td>0.0372011</td>
</tr>
<tr>
<td>5.</td>
<td>0.003</td>
<td>1</td>
<td>18.5</td>
<td>8</td>
<td>0.0260186</td>
<td>0.025683</td>
</tr>
<tr>
<td>6.</td>
<td>7.929</td>
<td>0</td>
<td>20</td>
<td>8</td>
<td>0.0813224</td>
<td>0.0781036</td>
</tr>
<tr>
<td>7.</td>
<td>8.454</td>
<td>0</td>
<td>21.8</td>
<td>4</td>
<td>0.0813224</td>
<td>0.0781036</td>
</tr>
<tr>
<td>8.</td>
<td>7.107</td>
<td>1</td>
<td>31.6</td>
<td>5</td>
<td>0.0813224</td>
<td>0.0781036</td>
</tr>
<tr>
<td>9.</td>
<td>8.378</td>
<td>0</td>
<td>16.5</td>
<td>5</td>
<td>0.0813224</td>
<td>0.0781036</td>
</tr>
<tr>
<td>10.</td>
<td>8.178</td>
<td>0</td>
<td>31.5</td>
<td>3</td>
<td>0.0813224</td>
<td>0.0781036</td>
</tr>
<tr>
<td>11.</td>
<td>3.395</td>
<td>0</td>
<td>18.5</td>
<td>4</td>
<td>0.0658792</td>
<td>0.063756</td>
</tr>
<tr>
<td>12.</td>
<td>0.003</td>
<td>1</td>
<td>12.8</td>
<td>5</td>
<td>0.0260186</td>
<td>0.025683</td>
</tr>
<tr>
<td>13.</td>
<td>1.35</td>
<td>1</td>
<td>18.4</td>
<td>4</td>
<td>0.051079</td>
<td>0.0497964</td>
</tr>
<tr>
<td>14.</td>
<td>0.003</td>
<td>1</td>
<td>18.5</td>
<td>8</td>
<td>0.0260186</td>
<td>0.025683</td>
</tr>
<tr>
<td>15.</td>
<td>0.512</td>
<td>2</td>
<td>21</td>
<td>10</td>
<td>0.0260186</td>
<td>0.025683</td>
</tr>
</tbody>
</table>

The baseline functions are for subjects who have zero-valued covariates, which in this example are not representative of the data. If baseline is an extreme departure from the covariate patterns in your data, then we recommend centering your covariates to avoid numerical overflows when predicting baseline functions; see *Making baseline reasonable* in [ST] stcox postestimation for more details.

For our data, baseline is close enough to not cause any numerical problems, but far enough to not be of scientific interest (zero tumor size?). You can transform the baseline functions to those for other covariate patterns according to the relationships

\[
\overline{H}_1(t) = \exp(x\beta)\overline{H}_{1,0}(t)
\]

and

\[
\text{CIF}_1(t) = 1 - \exp\{-\exp(x\beta)\overline{H}_{1,0}(t)\}
\]

but it is rare that you will ever have to do that. stcurve will predict, transform, and graph these functions for you. When you use stcurve, you specify the covariate settings, and any you leave unspecified are set at the mean over the data used in the estimation.
Because they were left unspecified, the cumulative incidence curves are for mean tumor size. If you wish to graph cumulative subhazards instead of CIFs, use the `stcurve` option `cumhaz` in place of `cif`.

**Null models**

Predicting baseline functions after fitting a null model (one without covariates) yields nonparametric estimates of the cumulative subhazard and the CIF.

**Example 2: HIV and SI as competing events**

In example 4 of [ST] `stcrreg`, we analyzed the incidence of appearance of the SI HIV phenotype, where a diagnosis of AIDS is a competing event. We modeled SI incidence in reference to a genetic mutation indicated by the covariate `ccr5`. We compared two approaches: one that used `stcrreg` and assumed that the subhazard of SI was proportional with respect to `ccr5` versus one that used `stcox` and assumed that the cause-specific hazards for both SI and AIDS were each proportional with respect to `ccr5`. For both approaches, we produced cumulative incidence curves for SI comparing those who did not have the mutation (`ccr5==0`) to those who did (`ccr5==1`).

To see which approach better fits these data, we now produce cumulative incidence curves that make no model assumption about the effect of `ccr5`. We do this by fitting null models on the two subsets of the data defined by `ccr5` and predicting the baseline CIF for each. Because the models have no covariates, the estimated baseline CIFs are nonparametric estimators.
After comparing with the graphs produced in [ST] `stcrreg`, we find that the nonparametric analysis favors the `stcox` approach over the `stcrreg` approach.
Technical note

Predicting the baseline CIF after fitting a null model with \texttt{stcrreg} produces a nonparametric CIF estimator that is asymptotically equivalent, but not exactly equal, to an alternate estimator that is often used; see Coviello and Boggess (2004) for the details of that estimator. The estimator used by \texttt{predict} after \texttt{stcrreg} is a competing-risks extension of the Nelson–Aalen estimator (Nelson 1972; Aalen 1978); see \textit{Methods and formulas}. The other is a competing-risks extension of the Kaplan–Meier (1958) estimator.

In large samples with many failures, the difference is negligible.

Measures of influence

With \texttt{predict} after \texttt{stcrreg}, you can obtain pseudolikelihood scores that are used to calculate robust estimates of variance, Schoenfeld residuals that reflect each failure’s contribution to the gradient of the log pseudolikelihood, efficient score residuals that represent each subject’s (observation’s) contribution to the gradient, and DFBETAs that measure the change in coefficients due to deletion of a subject or observation.

Example 3: DFBETAs

Returning to our cervical cancer study, we obtain DFBETAs for each of the three coefficients in the model and graph those for the first with respect to analysis time.

```
. use http://www.stata-press.com/data/r13/hypoxia, clear
 (Hypoxia study)
. stset dftime, failure(failtype == 1)
 (output omitted)
. stcrreg ifp tumsize pelnode, compete(failtype == 2)
 (output omitted)
. predict df*, dfbeta
. generate obs = _n
. twoway scatter df1 dftime, yline(0) mlabel(obs)
```
predict created the variables df1, df2, and df3, holding DFBETA values for variables ifp, tumsize, and pelnode, respectively. Based on the graph, we see that subject 4 is the most influential on the coefficient for ifp, the first covariate in the model.

In the previous example, we had single-record data. If you have data with multiple records per subject, then by default DFBETAs will be calculated at the subject level, with one value representing each subject and measuring the effect of deleting all records for that subject. If you instead want record-level DFBETAs that measure the change due to deleting single records within subjects, add the partial option; see [ST] stcox postestimation for further details.

Methods and formulas

Continuing the discussion from Methods and formulas in [ST] stcrreg, the baseline cumulative subhazard function is calculated as

$$\hat{H}_{1,0}(t) = \sum_{j: t_j \leq t} \sum_{\ell \in R_j} \delta_j \frac{w_\ell \pi_{\ell j} \exp(z_\ell)}{\tilde{r}(t_j)}$$

The baseline CIF is

$$\hat{\text{CIF}}_{1,0}(t) = 1 - \exp\{-\hat{H}_{1,0}(t)\}.$$  

The Kaplan–Meier survivor curve for the censoring distribution is

$$\hat{S}_c(t) = \prod_{t(j) \leq t} \left\{ 1 - \sum_i \gamma_i \frac{I(t_i = t(j))}{r(t(j))} \right\}$$

where $t(j)$ indexes the times at which censorings occur.

Both the pseudolikelihood scores, $\hat{u}_i$, and the efficient score residuals, $\hat{\eta}_i$, are as defined previously. DFBETAs are calculated according to Collett (2003):

$$\text{DFBETA}_i = \hat{\eta}_i \text{Var}^*(\hat{\beta})$$

where $\text{Var}^*(\hat{\beta})$ is the model-based variance estimator, that is, the inverse of the negative Hessian.

Schoenfeld residuals are $r_i = (\hat{r}_{1i}, \ldots, \hat{r}_{mi})$ with

$$\hat{r}_{ki} = \delta_i (x_{ki} - a_{ki})$$

References


**Also see**

[ST] *streg* — Competing-risks regression

[ST] *stcurve* — Plot survivor, hazard, cumulative hazard, or cumulative incidence function

[U] 20 Estimation and postestimation commands
**Syntax**

```
stcurve [, options]
```

**options**

- **Main**
  - `*survival`  
    plot survivor function
  - `*hazard`  
    plot hazard function
  - `*cumhaz`  
    plot cumulative hazard function
  - `*cif`  
    plot cumulative incidence function
  - `at(varname=# [varname=#...])`  
    value of the specified covariates and mean of unspecified covariates
  - `at1(varname=# [varname=#...])`  
    unspecified covariates
  - `at2(varname=# [varname=#...])`  
    unspecified covariates

- **Options**
  - `alpha`  
    conditional frailty model
  - `unconditional`  
    unconditional frailty model
  - `range(# #)`  
    range of analysis time
  - `outfile(filename [, replace])`  
    save values used to plot the curves
  - `width(#)`  
    override “optimal” width; use with `hazard`
  - `kernel(kernel)`  
    kernel function; use with `hazard`
  - `noboundary`  
    no boundary correction; use with `hazard`

- **Plot**
  - `connect_options`  
    affect rendition of plotted survivor, hazard, or cumulative hazard function

- **Add plots**
  - `addplot(plot)`  
    add other plots to the generated graph

- **Y axis, X axis, Titles, Legend, Overall**
  - `twoway_options`  
    any options other than `by()` documented in `G-3` **twoway_options**

*One of `survival`, `hazard`, `cumhaz`, or `cif` must be specified.

- `survival` and `hazard` are not allowed after estimation with `stcrreg`; see `[ST] stcrreg`.
- `cif` is allowed only after estimation with `stcrreg`; see `[ST] stcrreg`. 
Menu

Statistics > Survival analysis > Regression models > Plot survivor, hazard, cumulative hazard, or cumulative incidence function

Description

stcurve plots the survivor, hazard, or cumulative hazard function after stcox or streg and plots the cumulative subhazard or cumulative incidence function (CIF) after stcrreg.

Options

**Main**

survival requests that the survivor function be plotted. survival is not allowed after estimation with stcrreg.

hazard requests that the hazard function be plotted. hazard is not allowed after estimation with stcrreg.

cumhaz requests that the cumulative hazard function be plotted when used after stcox or streg and requests that the cumulative subhazard function be plotted when used after stcrreg.

cif requests that the cumulative incidence function be plotted. This option is available only after estimation with stcrreg.

at(varname=#...) requests that the covariates specified by varname be set to #. By default, stcurve evaluates the function by setting each covariate to its mean value. This option causes the function to be evaluated at the value of the covariates listed in at() and at the mean of all unlisted covariates.

at1(varname=#...), at2(varname=#...), ..., at10(varname=#...) specify that multiple curves (up to 10) be plotted on the same graph. at1(), at2(), ..., at10() work like the at() option. They request that the function be evaluated at the value of the covariates specified and at the mean of all unlisted covariates. at1() specifies the values of the covariates for the first curve, at2() specifies the values of the covariates for the second curve, and so on.

**Options**

alpha1, when used after fitting a frailty model, plots curves that are conditional on a frailty value of one. This is the default for shared-frailty models.

unconditional, when used after fitting a frailty model, plots curves that are unconditional on the frailty; that is, the curve is “averaged” over the frailty distribution. This is the default for unshared-frailty models.

range(#) specifies the range of the time axis to be plotted. If this option is not specified, stcurve plots the desired curve on an interval expanding from the earliest to the latest time in the data.

outfile(filename [, replace]) saves in filename.dta the values used to plot the curve(s).

width(#) is for use with hazard (and applies only after stcox) and is used to specify the bandwidth to be used in the kernel smooth used to plot the estimated hazard function. If left unspecified, a default bandwidth is used, as described in [R] kdensity.
kernel(kernel) is for use with hazard and is for use only after stcox because, for Cox regression, an estimate of the hazard function is obtained by smoothing the estimated hazard contributions. kernel() specifies the kernel function for use in calculating the weighted kernel-density estimate required to produce a smoothed hazard-function estimator. The default is kernel(Epanechnikov), yet kernel may be any of the kernels supported by kdensity; see [R] kdensity.

noboundary is for use with hazard and applies only to the plotting of smoothed hazard functions after stcox. It specifies that no boundary-bias adjustments are to be made when calculating the smoothed hazard-function estimator. By default, the smoothed hazards are adjusted near the boundaries; see [ST] sts graph. If the epan2, biweight, or rectangular kernel is used, the bias correction near the boundary is performed using boundary kernels. For other kernels, the plotted range of the smoothed hazard function is restricted to be inside of one bandwidth from each endpoint. For these other kernels, specifying noboundary merely removes this range restriction.

connect_options affect the rendition of the plotted survivor, hazard, or cumulative hazard function; see [G-3] connect_options.

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot_option.

twoway_options are any of the options documented in [G-3] twoway_options, excluding by( ). These include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see [G-3] saving_option).

Remarks and examples

Remarks are presented under the following headings:

stcurve after stcox
stcurve after streg
stcurve after stcrreg

stcurve after stcox

After fitting a Cox model, stcurve can be used to plot the estimated hazard, cumulative hazard, and survivor functions.
Example 1

```
. use http://www.stata-press.com/data/r13/drugtr
(Patient Survival in Drug Trial)
. stcox age drug
 (output omitted)
. stcurve, survival
```

By default, the curve is evaluated at the mean values of all the predictors, but we can specify other values if we wish.

```
. stcurve, survival at1(drug=0) at2(drug=1)
```

In this example, we asked for two plots, one for the placebo group and one for the treatment group. For both groups, the value of `age` was held at its mean value for the overall estimation sample.

See Cefalu (2011) for a Stata command to plot the survivor or cumulative hazard function with pointwise confidence intervals.
Example 2

```
Example 2

stcurve can also be used to plot estimated hazard functions. The hazard function is estimated by a kernel smooth of the estimated hazard contributions; see [ST] sts graph for details. We can thus customize the smooth as we would any other; see [R] kdensity for details.

. stcurve, hazard at1(drug=0) at2(drug=1) kernel(gauss) yscale(log)
```

For the hazard plot, we plotted on a log scale to demonstrate the proportionality of hazards under this model; see the technical note below on smoothed hazards.

Technical note

For survivor or cumulative hazard estimation, *stcurve* works by first estimating the baseline function and then modifying it to adhere to the specified (or by default, mean) covariate patterns. As mentioned previously, *baseline* (when all covariates are equal to zero) must correspond to something that is meaningful and preferably in the range of your data. Otherwise, *stcurve* could encounter numerical difficulties. We ignored our own advice above and left *age* unchanged. Had we encountered numerical problems, or funny-looking graphs, we would have known to try shifting *age* so that *age==0* was in the range of our data.

For hazard estimation, *stcurve* works by first transforming the estimated hazard contributions to adhere to the necessary covariate pattern and then applying the smooth. When you plot multiple curves, each is smoothed independently, although the same bandwidth is used for each.

The smoothing takes place in the hazard scale and not in the log hazard-scale. As a result, the resulting curves will look nearly, but not exactly, parallel when plotted on a log scale. This inexactitude is a product of the smoothing and should not be interpreted as a deviation from the proportional-hazards assumption; *stcurve* (after *stcox*) assumes proportionality of hazards and will reflect this in the produced plots. If smoothing were a perfect science, the curves would be parallel when plotted on a log scale. If you encounter estimated hazards exhibiting severe disproportionality, this may signal a numerical problem as described above. Try recentering your covariates so that baseline is more reasonable.
**stcurve after streg**

`stcurve` is used after `streg` to plot the fitted survivor, hazard, and cumulative hazard functions. By default, `stcurve` computes the means of the covariates and evaluates the fitted model at each time in the data, censored or uncensored. The resulting plot is therefore the survival experience of a subject with a covariate pattern equal to the average covariate pattern in the study. You can produce the plot at other values of the covariates by using the `at()` option or specify a time range by using the `range()` option.

> **Example 3**

We pick up where example 6 of [ST] `streg` left off. The cancer dataset we are using has three values for variable `drug`: 1 corresponds to placebo, and 2 and 3 correspond to two alternative treatments. Using the cancer data with `drug` remapped to form an indicator of treatment, let’s fit a loglogistic regression model and plot its survival curves. We can perform a loglogistic regression by issuing the following commands:

```
use http://www.stata-press.com/data/r13/cancer
(Count of Patients in Drug Trial)
replace drug = drug==2 | drug==3 // 0, placebo : 1, nonplacebo
(stoutput omitted)
stset studytime, failure(died)
streg age drug, distribution(llogistic) nolog
 failure _d: died
 analysis time _t: studytime
```

```
Log-logistic regression -- accelerated failure-time form
No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744
LR chi2(2) = 35.14
Log likelihood = -43.21698 Prob > chi2 = 0.0000

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----|--------|-----------|-------|------|----------------------|
| age | -.0803289 | .0221598 | -3.62 | 0.000 | -.1237614 -.0368964 |
| drug| 1.420237 | .2502148 | 5.68 | 0.000 | .9298251 1.910649 |
| _cons| 6.446711 | 1.231914 | 5.23 | 0.000 | 4.032204 8.861218 |

/ln_gam| -.8456552 | .1479337 | -5.72 | 0.000 | -.1.1356 -.5557105 |
| gamma| .429276 | .0635044 | .3212293 | 0.5736646 |
```
Now we wish to plot the survivor and the hazard functions:

```
stcurve, survival ylabels(0 .5 1)
```

![Survival plot](image1)

Figure 3. Loglogistic survival distribution at mean value of all covariates

```
stcurve, hazard
```

![Hazard plot](image2)

Figure 4. Loglogistic hazard distribution at mean value of all covariates

These plots show the fitted survivor and hazard functions evaluated for a cancer patient of average age receiving the average drug. Of course, the “average drug” has no meaning here because `drug` is an indicator variable. It makes more sense to plot the curves at a fixed value (level) of the drug. We can do this with the `at` option. For example, we may want to compare the average-age patient’s survival curve under placebo (`drug==0`) and under treatment (`drug==1`).
We can plot both curves on the same graph:

```
 . stcurve, surv at1(drug = 0) at2(drug = 1) ylabels(0 .5 1)
```

![Loglogistic regression](image)

Figure 5. Loglogistic survival distribution at mean age for placebo

In the plot, we can see from the loglogistic model that the survival experience of an average-age patient receiving the placebo is worse than the survival experience of that same patient receiving treatment. We can also see the accelerated-failure-time feature of the loglogistic model. The survivor function for treatment is a time-decelerated (stretched-out) version of the survivor function for placebo.

Example 4

In our discussion of frailty models in [ST] streg, we emphasize the distinction between the individual hazard (or survivor) function and the hazard (survivor) function for the population. When significant frailty is present, the population hazard will tend to begin falling past a certain point, regardless of the shape of the individual hazard. This is due to the frailty effect—as time passes, the frailer individuals will fail, leaving a more homogeneous population comprising only the most robust individuals.

The frailty effect may be demonstrated using stcurve to plot the estimated hazard (both individual and population) after fitting a frailty model. Use the alpha1 option to specify the individual hazard ($\alpha = 1$) and the unconditional option to specify the population hazard. Applying this to the Weibull/inverse-Gaussian shared-frailty model on the kidney data of example 11 of [ST] streg:

```
 . use http://www.stata-press.com/data/r13/catheter, clear
 (Kidney data, McGilchrist and Aisbett, Biometrics, 1991)
 . stset time infect
 (output omitted)
 . quietly streg age female, d(weibull) frailty(invgauss) shared(patient)
```
. stcurve, hazard at(female = 1) alpha1

Figure 6. Individual hazard for females at mean age

Compare with

. stcurve, hazard at(female = 1) unconditional

Figure 7. Population hazard for females at mean age
Example 5

In [ST] stcrreg, we analyzed data from 109 patients with primary cervical cancer, treated at a cancer center between 1994 and 2000. We fit a competing-risks regression model where local relapse was the failure event of interest (failtype == 1), distant relapse with no local relapse was the competing risk event (failtype == 2), and we were interested primarily in the effect of interstitial fluid pressure (ifp) while controlling for tumor size and pelvic node involvement.

After fitting the competing-risks regression model, we can use stcurve to plot the estimated cumulative incidence of local relapses in the presence of the competing risk. We wish to compare the cumulative incidence curves for ifp == 5 versus ifp == 20, assuming positive pelvic node involvement (pelnode == 0) and a tumor size that is the average over the data.

```stata
use http://www.stata-press.com/data/r13/hypoxia

. use http://www.stata-press.com/data/r13/hypoxia
(Hypoxia study)
. stset dftime, fail(failtype==1)
(output omitted)
. stcrreg ifp tumsize pelnode, compete(failtype==2)
(output omitted)
. stcurve, cif at1(ifp=5 pelnode=0) at2(ifp=20 pelnode=0)

Figure 8. Comparative cumulative incidence functions
```

References


Also see

[ST] stcox — Cox proportional hazards model
[ST] stcox postestimation — Postestimation tools for stcox
[ST] stcrreg — Competing-risks regression
[ST] stcrreg postestimation — Postestimation tools for stcrreg
[ST] streg — Parametric survival models
[ST] streg postestimation — Postestimation tools for streg
[ST] sts — Generate, graph, list, and test the survivor and cumulative hazard functions
[ST] stset — Declare data to be survival-time data
stdescribe — Describe survival-time data

Syntax

```
stdescribe [if] [in] [, weight noshow]
```

You must `stset` your data before using `stdescribe`; see [ST] stset.

`fweights`, `iweights`, and `pweights` may be specified using `stset`; see [ST] stset.

`by` is allowed; see [D] by.

Menu

Statistics > Survival analysis > Summary statistics, tests, and tables > Describe survival-time data

Description

`stdescribe` produces a summary of the st data in a computer or data-based sense rather than in an analytical or statistical sense.

`stdescribe` can be used with single- or multiple-record or single- or multiple-failure st data.

Options

- `weight`: specifies that the summary use weighted rather than unweighted statistics. `weight` does nothing unless you specified a weight when you `stset` the data. The `weight` option and the ability to ignore weights are unique to `stdescribe`. The purpose of `stdescribe` is to describe the data in a computer sense—the number of records, etc.—and for that purpose, the weights are best ignored.

- `noshow`: prevents `stdescribe` from showing the key st variables. This option is seldom used because most people type `stset, show` or `stset, noshow` to set whether they want to see these variables mentioned at the top of the output of every st command; see [ST] stset.
Here is an example of `stdescribe` with single-record survival data:

```stata
.use http://www.stata-press.com/data/r13/page2
.stdescribe
default _d: dead
analysis time _t: time
```

<table>
<thead>
<tr>
<th>Category</th>
<th>total</th>
<th>mean</th>
<th>min</th>
<th>median</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. of subjects</td>
<td>40</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>no. of records</td>
<td>40</td>
<td>1.00</td>
<td>0</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>(first) entry time</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(final) exit time</td>
<td>227.95</td>
<td>142</td>
<td>231</td>
<td>344</td>
<td></td>
</tr>
<tr>
<td>subjects with gap</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time on gap if gap</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time at risk</td>
<td>9118</td>
<td>227.95</td>
<td>142</td>
<td>231</td>
<td>344</td>
</tr>
<tr>
<td>failures</td>
<td>36</td>
<td>.9</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

There is one record per subject. The purpose of this summary is not analysis—it is to describe how the data are arranged. We can quickly see that there is one record per subject (the number of subjects equals the number of records, but if there is any doubt, the minimum and maximum number of records per subject is 1), that all the subjects entered at time 0, that the subjects exited between times 142 and 344 (median 231), that there are no gaps (as there could not be if there is only one record per subject), that the total time at risk is 9,118 (distributed reasonably evenly across the subjects), and that the total number of failures is 36 (with a maximum of 1 failure per subject).

Here is a description of the multiple-record Stanford heart transplant data that we introduced in [ST] `stset`:

```stata
.use http://www.stata-press.com/data/r13/stan3
.stset (Heart transplant data)
.stdescribe
default _d: died
analysis time _t: t1
id: id
```

<table>
<thead>
<tr>
<th>Category</th>
<th>total</th>
<th>mean</th>
<th>min</th>
<th>median</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. of subjects</td>
<td>103</td>
<td>1.669903</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>no. of records</td>
<td>172</td>
<td>1.669903</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(first) entry time</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(final) exit time</td>
<td>310.0786</td>
<td>1</td>
<td>90</td>
<td>1799</td>
<td></td>
</tr>
<tr>
<td>subjects with gap</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time on gap if gap</td>
<td>0</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time at risk</td>
<td>31938.1</td>
<td>310.0786</td>
<td>1</td>
<td>90</td>
<td>1799</td>
</tr>
<tr>
<td>failures</td>
<td>75</td>
<td>.7281553</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Here patients have one or two records. Although this is not revealed by the output, a patient has one record if the patient never received a heart transplant and two if the patient did receive a transplant; the first reflects the patient’s survival up to the time of transplantation and the second their subsequent survival:
```
. stset, noshow /* to not show the st marker variables */
. stdescribe if !transplant

<table>
<thead>
<tr>
<th>Category</th>
<th>total</th>
<th>mean</th>
<th>min</th>
<th>median</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. of subjects</td>
<td>34</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>no. of records</td>
<td>34</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(first) entry time</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(final) exit time</td>
<td>96.61765</td>
<td>1</td>
<td>21</td>
<td>1400</td>
<td></td>
</tr>
<tr>
<td>subjects with gap</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time on gap if gap</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time at risk</td>
<td>3285</td>
<td>96.61765</td>
<td>1</td>
<td>21</td>
<td>1400</td>
</tr>
<tr>
<td>failures</td>
<td>30</td>
<td>.8823529</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

. stdescribe if transplant

<table>
<thead>
<tr>
<th>Category</th>
<th>total</th>
<th>mean</th>
<th>min</th>
<th>median</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. of subjects</td>
<td>69</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>no. of records</td>
<td>138</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(first) entry time</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(final) exit time</td>
<td>415.2623</td>
<td>5.1</td>
<td>207</td>
<td>1799</td>
<td></td>
</tr>
<tr>
<td>subjects with gap</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time on gap if gap</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time at risk</td>
<td>28653.1</td>
<td>415.2623</td>
<td>5.1</td>
<td>207</td>
<td>1799</td>
</tr>
<tr>
<td>failures</td>
<td>45</td>
<td>.6521739</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Finally, here are the results of `stdescribe` from multiple-failure data:

```
. use http://www.stata-press.com/data/r13/mfail2
. stdescribe

<table>
<thead>
<tr>
<th>Category</th>
<th>total</th>
<th>mean</th>
<th>min</th>
<th>median</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. of subjects</td>
<td>926</td>
<td>1.87257</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>no. of records</td>
<td>1734</td>
<td>1.87257</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>(first) entry time</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(final) exit time</td>
<td>470.6857</td>
<td>1</td>
<td>477</td>
<td>960</td>
<td></td>
</tr>
<tr>
<td>subjects with gap</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time on gap if gap</td>
<td>411</td>
<td>68.5</td>
<td>16</td>
<td>57.5</td>
<td>133</td>
</tr>
<tr>
<td>time at risk</td>
<td>435444</td>
<td>470.2419</td>
<td>1</td>
<td>477</td>
<td>960</td>
</tr>
<tr>
<td>failures</td>
<td>808</td>
<td>.8725702</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
```

The maximum number of failures per subject observed is three, although 50% had just one failure, and six subjects have gaps in their histories.
Stored results

`stdescribe` stores the following in `r()`:  

Scalars

- `r(N_sub)` number of subjects
- `r(N_total)` total number of records
- `r(N_min)` minimum number of records
- `r(N_mean)` mean number of records
- `r(N_max)` maximum number of records
- `r(gap)` total gap, if gap
- `r(gap_min)` minimum gap, if gap
- `r(gap_mean)` mean gap, if gap
- `r(gap_med)` median gap, if gap
- `r(gap_max)` maximum gap, if gap
- `r(tr)` total time at risk
- `r(tr_min)` minimum time at risk
- `r(tr_mean)` mean time at risk
- `r(tr_med)` median time at risk
- `r(tr_max)` maximum time at risk
- `r(t0_min)` minimum first entry time
- `r(t0_mean)` mean first entry time
- `r(t0_med)` median first entry time
- `r(t0_max)` maximum first entry time
- `r(t1_min)` minimum final exit time
- `r(t1_mean)` mean final exit time
- `r(t1_med)` median final exit time
- `r(t1_max)` maximum final exit time
- `r(f_min)` minimum number of failures
- `r(f_mean)` mean number of failures
- `r(f_med)` median number of failures
- `r(f_max)` maximum number of failures
- `r(N_gap)` number of subjects with gap
- `r(N_fail)` number of failures

Reference


Also see

- `[ST] stset` — Declare data to be survival-time data
- `[ST] stsum` — Summarize survival-time data
- `[ST] stvary` — Report variables that vary over time
stfill — Fill in by carrying forward values of covariates

Syntax

\texttt{stfill} \texttt{varlist [if] [in], \{baseline forward\} [options]}

\textbf{options} \quad \textbf{Description}

\begin{itemize}
  \item **baseline** replace with values at baseline
  \item **forward** carry forward values
  \item **noshow** do not show \texttt{st} setting information
\end{itemize}

* Either baseline or forward is required.

You must \texttt{stset} your data before using \texttt{stfill}; see [ST] \texttt{stset}.

\texttt{fweights}, \texttt{iweights}, and \texttt{pweights} may be specified using \texttt{stset}; see [ST] \texttt{stset}.

Menu

Statistics > Survival analysis > Setup and utilities > Fill forward with values of covariates

Description

\texttt{stfill} is intended for use with multiple-record \texttt{st} data for which \texttt{id()} has been \texttt{stset}. \texttt{stfill} may be used with single-record data, but it does nothing. That is, \texttt{stfill} can be used with multiple-record or single- or multiple-failure \texttt{st} data.

\texttt{stfill, baseline} changes variables to contain the value at the earliest time each subject was observed, making the variable constant over time. \texttt{stfill, baseline} changes all subsequent values of the specified variables to equal the first value, whether they originally contained missing or not.

\texttt{stfill, forward} fills in missing values of each variable with that of the most recent time at which the variable was last observed. \texttt{stfill, forward} changes only missing values.

You must specify either the \texttt{baseline} or the \texttt{forward} option.

If \texttt{exp} and in \texttt{range} operate slightly differently from their usual definitions to work as you would expect. \texttt{if} and \texttt{in} restrict where changes can be made to the data, but no matter what, all \texttt{stset} observations are used to provide the values to be carried forward.

Options

\begin{itemize}
  \item **baseline** specifies that values be replaced with the values at baseline, the earliest time at which the subject was observed. All values of the specified variables are replaced, missing and nonmissing.
forward specifies that values be carried forward and that previously observed, nonmissing values be used to fill in later values that are missing in the specified variables.

noshow prevents stfill from showing the key st variables. This option is seldom used because most people type stset, show or stset, noshow to set whether they want to see these variables mentioned at the top of the output of every st command; see [ST] stset.

Remarks and examples

stfill assists in fixing data errors and makes baseline analyses easier.

Example 1

Let's begin by repairing broken data.

You have a multiple-record st dataset that, because of how it was constructed, has a problem with the gender variable:

```
. use http://www.stata-press.com/data/r13/mrecord
. stvary sex
 failure _d: myopic
 analysis time _t: t
 id: id

subjects for whom the variable is
 variable never always sometimes
 constant varying missing missing missing
 sex 131 1 22 0 110
```

For 110 subjects, sex is sometimes missing, and for one more subject, the value of sex changes over time! The sex change is an error, but the missing values occurred because sometimes the subject's sex was not filled in on the revisit forms. We will assume that you have checked the changing-sex subject and determined that the baseline record is correct in that case, too.

```
. stfill sex, baseline
 failure _d: myopic
 analysis time _t: t
 id: id

replace all values with value at earliest observed:
 sex: 221 real changes made

. stvary sex
 failure _d: myopic
 analysis time _t: t
 id: id

subjects for whom the variable is
 variable never always sometimes
 constant varying missing missing missing
 sex 132 0 132 0 0
```

The sex variable is now completely filled in.

In this same dataset, there is another variable—bp, blood pressure—that is not always filled in because readings were not always taken.
. stvary bp
  failure _d: myopic
  analysis time _t: t
  id: id

subjects for whom the variable is
variable	constant	varying	never missing	always missing	sometimes missing
bp       | 18       | 114     | 9             | 0              | 123

(bp is constant for 18 patients because it was taken only once—at baseline.) Anyway, you decide that it will be good enough when bp is missing to use the previous value of bp:

. stfill bp, forward noshow
replace missing values with previously observed values:
  bp: 263 real changes made

. stvary bp, noshow

subjects for whom the variable is
variable	constant	varying	never missing	always missing	sometimes missing
bp       | 18       | 114     | 132           | 0              | 0

So much for data repair and fabrication.

Example 2

Much later, deep in analysis, you are concerned about the bp variable and decide to compare results with a model that simply includes blood pressure at baseline. You are undecided on the issue and want to have both variables in your data:

. stset, noshow
. gen bp0 = bp
. stfill bp0, baseline
replace all values with value at earliest observed:
  bp0: 406 real changes made

. stvary bp bp0

subjects for whom the variable is
variable	constant	varying	never missing	always missing	sometimes missing
bp       | 18       | 114     | 132           | 0              | 0
bp0      | 132      | 0       | 132           | 0              | 0

Also see

[ST] stbase — Form baseline dataset
[ST] stgen — Generate variables reflecting entire histories
[ST] stset — Declare data to be survival-time data
[ST] stvary — Report variables that vary over time
Title

**stgen — Generate variables reflecting entire histories**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Menu</th>
<th>Description</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remarks and examples</td>
<td>Also see</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Syntax

```
stgen [type] newvar = function
```

where function is

- `ever(exp)`
- `never(exp)`
- `always(exp)`
- `min(exp)`
- `max(exp)`
- `when(exp)`
- `when0(exp)`
- `count(exp)`
- `count0(exp)`
- `minage(exp)`
- `maxage(exp)`
- `avgage(exp)`
- `nfailures()`
- `ngaps()`
- `gaplen()`
- `hasgap()`

You must `stset` your data before using `stgen`; see `[ST] stset`.

### Menu

Statistics > Survival analysis > Setup and utilities > Generate variable reflecting entire histories

### Description

`stgen` provides a convenient way to generate new variables reflecting entire histories—variables you could create for yourself by using `generate` (and especially, `generate` with the `by varlist:` prefix) (see `[D] generate`), but that would require too much thought, and there would be too much chance of making a mistake.

These functions are intended for use with multiple-record survival data but may be used with single-record data. With single-record data, each function reduces to one `generate`, and `generate` would be a more natural way to approach the problem.

`stgen` can be used with multiple-record or single- or multiple-failure `st` data.

If you want to generate calculated values, such as the survivor function, see `[ST] sts`.

254


**Functions**

In the description of the functions below, time units refer to the same units as `timevar` from `stset`. For instance, if `timevar` is the number of days since 01 January 1960 (a Stata date), time units are days. If `timevar` is in years—years since 1960, years since diagnosis, or whatever—time units are years.

When we say variable X records a “time”, we mean a variable that records when something occurred in the same units and with the same base as `timevar`. If `timevar` is a Stata date, “time” is correspondingly a Stata date.

`t` units, or analysis-time units, refer to a variable in the units `timevar/scale()` from `stset`. If you did not specify a `scale()`, `t` units are the same as time units. Alternatively, say that `timevar` is recorded as a Stata date and you specified `scale(365.25)`. Then `t` units are years. If you specified a nonconstant scale—`scale(myvar)`, where `myvar` varies from subject to subject—`t` units are different for every subject.

“An analysis time” refers to the time something occurred, recorded in the units `(timevar-origin())/scale()`. We speak about analysis time only in terms of the beginning and end of each time-span record.

Although in Description above we said that `stgen` creates variables reflecting entire histories, `stgen` restricts itself to the `stset` observations, so “entire history” means the entire history as it is currently `stset`. If you really want to use entire histories as recorded in the data, type `streset, past` or `streset, past future` before using `stgen`. Then type `streset` to reset to the original analysis sample.

The following functions are available:

`ever(exp)` creates `newvar` containing 1 (true) if the expression is ever true (nonzero) and 0 otherwise. For instance,

```
. stgen everlow = ever(bp<100)
```

would create `everlow` containing, for each subject, uniformly 1 or 0. Every record for a subject would contain `everlow = 1` if, on any `stset` record for the subject, `bp < 100`; otherwise, `everlow` would be 0.

`never(exp)` is the reverse of `ever()`; it creates `newvar` containing 1 (true) if the expression is always false (0) and 0 otherwise. For instance,

```
. stgen neverlow = never(bp<100)
```

would create `neverlow` containing, for each subject, uniformly 1 or 0. Every record for a subject would contain `neverlow = 1` if, on every `stset` record for the subject, `bp < 100` is false.

`always(exp)` creates `newvar` containing 1 (true) if the expression is always true (nonzero) and 0 otherwise. For instance,

```
. stgen lowlow = always(bp<100)
```

would create `lowlow` containing, for each subject, uniformly 1 or 0. Every record for a subject would contain `lowlow = 1` if, on every `stset` record for a subject, `bp < 100`.

`min(exp)` and `max(exp)` create `newvar` containing the minimum or maximum nonmissing value of `exp` within `id()`. `min()` and `max()` are often used with variables recording a time (see definition above), such as `min(visitdat)`.

`when(exp)` and `when0(exp)` create `newvar` containing the time when `exp` first became true within the previously `stset id()`. The result is in time, not `t` units; see the definition above.
when() and when0() differ about when the exp became true. Records record time spans (time0, time1]. when() assumes that the expression became true at the end of the time span, time1. when0() assumes that the expression became true at the beginning of the time span, time0.

Assume that you previously stset myt, failure(eventvar=...) .... when() would be appropriate for use with eventvar, and, presumably, when0() would be appropriate for use with the remaining variables.

count(exp) and count0(exp) create newvar containing the number of occurrences when exp is true within id().

count() and count0() differ in when they assume that exp occurs. count() assumes that exp corresponds to the end of the time-span record. Thus even if exp is true in this record, the count would remain unchanged until the next record.

count0() assumes that exp corresponds to the beginning of the time-span record. Thus if exp is true in this record, the count is immediately updated.

For example, assume that you previously stset myt, failure(eventvar=...) .... count() would be appropriate for use with eventvar, and, presumably, count0() would be appropriate for use with the remaining variables.

minage(exp), maxage(exp), and avgage(exp) return the elapsed time, in time units, because exp is at the beginning, end, or middle of the record, respectively. exp is expected to evaluate to a time in time units. minage(), maxage(), and avgage() would be appropriate for use with the result of when(), when0(), min(), and max(), for instance.

Also see [ST] stsplit; stsplit will divide the time-span records into new time-span records that record specified intervals of ages.

nfailures() creates newvar containing the cumulative number of failures for each subject as of the entry time for the observation. nfailures() is intended for use with multiple-failure data; with single-failure data, nfailures() is always 0. In multiple-failure data,

    . stgen nfail = nfailures()

might create, for a particular subject, the following:

<table>
<thead>
<tr>
<th>id</th>
<th>time0</th>
<th>time1</th>
<th>fail</th>
<th>x</th>
<th>nfail</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>93</td>
<td>20</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>93</td>
<td>30</td>
<td>40</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>93</td>
<td>40</td>
<td>60</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>93</td>
<td>60</td>
<td>70</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>93</td>
<td>70</td>
<td>80</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

The total number of failures for this subject is 3, and yet the maximum of the new variable nfail is 2. At time 70, the beginning of the last record, there had been two failures previously, and there were two failures up to but not including time 80.

ngaps() creates newvar containing the cumulative number of gaps for each subject as of the entry time for the record. Delayed entry (an opening gap) is not considered a gap. For example,

    . stgen ngap = ngaps()

might create, for a particular subject, the following:

<table>
<thead>
<tr>
<th>id</th>
<th>time0</th>
<th>time1</th>
<th>fail</th>
<th>x</th>
<th>ngap</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>10</td>
<td>30</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>94</td>
<td>30</td>
<td>40</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>94</td>
<td>50</td>
<td>60</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>94</td>
<td>60</td>
<td>70</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>94</td>
<td>82</td>
<td>90</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
gaplen() creates newvar containing the time on gap, measured in analysis-time units, for each subject as of the entry time for the observation. Delayed entry (an opening gap) is not considered a gap. Continuing with the previous example,

```
. stgen gl = gaplen()
```

would produce

<table>
<thead>
<tr>
<th>id</th>
<th>time0</th>
<th>time1</th>
<th>fail</th>
<th>x</th>
<th>ngap</th>
<th>gl</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>10</td>
<td>30</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>94</td>
<td>30</td>
<td>40</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>94</td>
<td>50</td>
<td>60</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>94</td>
<td>60</td>
<td>70</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>94</td>
<td>82</td>
<td>90</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>12</td>
</tr>
</tbody>
</table>

hasgap() creates newvar containing uniformly 1 if the subject ever has a gap and 0 otherwise. Delayed entry (an opening gap) is not considered a gap.

**Remarks and examples**

**stgen** does nothing you cannot do in other ways, but it is convenient.

Consider how you would obtain results like those created by **stgen** should you need something that **stgen** will not create for you. Say that we have an st dataset for which we have previously

```
. stset t, failure(d) id(id)
```

Assume that these are some of the data:

<table>
<thead>
<tr>
<th>id</th>
<th>t</th>
<th>d</th>
<th>bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>30</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>27</td>
<td>50</td>
<td>0</td>
<td>110</td>
</tr>
<tr>
<td>27</td>
<td>60</td>
<td>1</td>
<td>85</td>
</tr>
<tr>
<td>28</td>
<td>11</td>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>28</td>
<td>40</td>
<td>1</td>
<td>130</td>
</tr>
</tbody>
</table>

If we were to type

```
. stgen everlow = ever(bp<100)
```

the new variable, everlow, would contain for these two subjects

<table>
<thead>
<tr>
<th>id</th>
<th>t</th>
<th>d</th>
<th>bp</th>
<th>everlow</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>30</td>
<td>0</td>
<td>90</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>50</td>
<td>0</td>
<td>110</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>60</td>
<td>1</td>
<td>85</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>11</td>
<td>0</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>40</td>
<td>1</td>
<td>130</td>
<td>0</td>
</tr>
</tbody>
</table>

Variable everlow is 1 for subject 27 because, in two of the three observations, bp < 100, and everlow is 0 for subject 28 because everlow is never less than 100 in either observation.

Here is one way we could have created everlow for ourselves:

```
. generate islow = bp<100
. sort id
. by id: generate sumislow = sum(islow)
. by id: generate everlow = sumislow[_N]>0
. drop islow sumislow
```

The generic term for code like this is explicit subscripting; see [U] 13.7 Explicit subscripting.
Anyway, that is what \texttt{stgen} did for us, although, internally, \texttt{stgen} used denser code that was equivalent to
\begin{verbatim}
. by id, sort: generate everlow=sum(bp<100)
. by id: replace everlow = everlow[_N]>0
\end{verbatim}

Obtaining things like the time on gap is no more difficult. When we \texttt{stset} the data, \texttt{stset} created variable \texttt{t0} to record the entry time. \texttt{stgen}'s \texttt{gaplen()} function is equivalent to
\begin{verbatim}
. sort id _t
. by id: generate gaplen = _t0-_t[_n-1]
. by id: replace gaplen = 0 if _n == 1
\end{verbatim}

Seeing this, you should realize that if all you wanted was the cumulative length of the gap before the current record, you could type
\begin{verbatim}
. sort id _t
. by id: generate curgap = sum(_t0-_t[_n-1])
\end{verbatim}

If, instead, you wanted a variable that was 1 if there were a gap just before this record and 0 otherwise, you could type
\begin{verbatim}
. sort id _t
. by id: generate iscurgap = (_t0-_t[_n-1])>0
\end{verbatim}

\section*{Example 1}

Let's use the \texttt{stgen} commands to real effect. We have a multiple-record, multiple-failure dataset.
\begin{verbatim}
. use http://www.stata-press.com/data/r13/mrmf, clear
. st
  -> stset t, id(id) failure(d) time0(t0) exit(time .) noshow
      id: id
    failure event: d != 0 & d < .
      obs. time interval: (t0, t]
    exit on or before: time .
. stdescribe
    per subject
\begin{tabular}{l|rrrr}
\hline
Category & total & mean & min & median & max \\
\hline
no. of subjects & 926 & & & & \\
no. of records & 1734 & 1.87257 & 1 & 2 & 4 \\
(first) entry time & & 0 & 0 & 0 & 0 \\
(final) exit time & 470.6857 & 1 & 477 & 960 & \\
subjects with gap & 6 & & & & \\
  time on gap if gap & 411 & 68.5 & 16 & 57.5 & 133 \\
  time at risk & 435444 & 470.2419 & 1 & 477 & 960 \\
failures & 808 & .8725702 & 0 & 1 & 3 \\
\hline
\end{tabular}
\end{verbatim}

Also in this dataset are two covariates, x1 and x2. We wish to fit a Cox model on these data but wish to assume that the baseline hazard for first failures is different from that for second and later failures.
Our data contain six subjects with gaps. Because failures might have occurred during the gap, we begin by dropping those six subjects:

```stata
. stgen hg = hasgap()
. drop if hg
(14 observations deleted)
```

The six subjects had 14 records among them. We can now create variable `nf` containing the number of failures and, from that, create variable `group`, which will be 0 when subjects have experienced no previous failures and 1 thereafter:

```stata
. stgen nf = nfailures()
. generate byte group = nf>0
```

We can now fit our stratified model:

```stata
. stcox x1 x2, strata(group) vce(robust)
Iteration 0: log pseudolikelihood = -4499.9966
Iteration 1: log pseudolikelihood = -4444.7797
Iteration 2: log pseudolikelihood = -4444.4596
Iteration 3: log pseudolikelihood = -4444.4596
Refining estimates:
Iteration 0: log pseudolikelihood = -4444.4596
Stratified Cox regr. -- Breslow method for ties
No. of subjects = 920 Number of obs = 1720
No. of failures = 800
Time at risk = 432153
Wald chi2(2) = 102.78
Log pseudolikelihood = -4444.4596 Prob > chi2 = 0.0000
(Std. Err. adjusted for 920 clusters in id)
Robust
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
--- -------- -------- -------- -------- -------------
x1 2.087903 .1961725 7.84 0.000 1.736738 2.510074
x2 .2765613 .0522777 -6.80 0.000 .1909383 .4005806
```

Also see

- `stci` — Confidence intervals for means and percentiles of survival time
- `sts` — Generate, graph, list, and test the survivor and cumulative hazard functions
- `stset` — Declare data to be survival-time data
- `stvary` — Report variables that vary over time
Title

**stir — Report incidence-rate comparison**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Menu</th>
<th>Description</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remarks and examples</td>
<td>Stored results</td>
<td>Methods and formulas</td>
<td>Reference</td>
</tr>
<tr>
<td>Also see</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Syntax

```
stir exposedvar [if] [in] [, options]
```

#### options

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Main</strong></td>
</tr>
<tr>
<td><code>strata(varname)</code></td>
</tr>
<tr>
<td><code>noshow</code></td>
</tr>
<tr>
<td><strong>Options</strong></td>
</tr>
<tr>
<td><code>ird</code></td>
</tr>
<tr>
<td><code>esstandard</code></td>
</tr>
<tr>
<td><code>istandard</code></td>
</tr>
<tr>
<td><code>standard(varname)</code></td>
</tr>
<tr>
<td><code>pool</code></td>
</tr>
<tr>
<td><code>nocrude</code></td>
</tr>
<tr>
<td><code>nohom</code></td>
</tr>
<tr>
<td><code>tb</code></td>
</tr>
<tr>
<td><code>level( #)</code></td>
</tr>
</tbody>
</table>

Options except `noshow`, `tb`, and `level( #)` are relevant only if `strata()` is specified.

### Menu

Statistics > Survival analysis > Summary statistics, tests, and tables > Report incidence-rate comparison

### Description

`stir` reports point estimates and confidence intervals for the incidence-rate ratio and difference. `stir` is an interface to the `ir` command; see `[ST] epitab`.

By the logic of `ir`, `exposedvar` should be a 0/1 variable, with 0 meaning unexposed and 1 meaning exposed. `stir`, however, allows any two-valued coding and even allows `exposedvar` to be a string variable.

`stir` may not be used with `pweighted` data.

`stir` can be used with single- or multiple-record or single- or multiple-failure st data.
Options

\texttt{strata(\textit{varname})} specifies that the calculation be stratified on \textit{varname}, which may be a numeric or string variable. Within-stratum statistics are shown and then combined with Mantel–Haenszel weights.

\texttt{noshow} prevents \texttt{stir} from showing the key \texttt{st} variables. This option is seldom used because most people type \texttt{stset, show} or \texttt{stset, noshow} to set whether they want to see these variables mentioned at the top of the output of every \texttt{st} command; see \cite{ST:stset}.

\texttt{ird}, \texttt{estandard}, \texttt{istandard}, \texttt{standard(\textit{varname})}, \texttt{pool}, \texttt{nocrude}, and \texttt{nohom} are relevant only if \texttt{strata()} is specified; see \cite{ST:epitab}.

\texttt{tb} and \texttt{level(\#)} are relevant in all cases; see \cite{ST:epitab}.

Remarks and examples

\texttt{stir} examines the incidence rate and time at risk.

\begin{verbatim}
. use http://www.stata-press.com/data/r13/page2
. stir group, noshow

note: Exposed <-> group==2 and Unexposed <-> group==1

\begin{tabular}{l|ll|l}
   & Exposed & Unexposed & Total \\
---+---------+-----------+-------
Failure & 19 & 17 & 36 \\
Time & 5023 & 4095 & 9118 \\
---+---------+-----------+-------
Incidence rate & \texttt{.0037826} & \texttt{.0041514} & \texttt{.0039482} \\
Point estimate & & & \\
Inc. rate diff. & \texttt{-0.0003688} & & \texttt{-0.002974} \texttt{.0022364} \\
Inc. rate ratio & \texttt{.9111616} & & \texttt{.4484366} \texttt{1.866047 (exact)} \\
Prev. frac. ex. & \texttt{.0888384} & & \texttt{-0.8660469} \texttt{.5515634 (exact)} \\
Prev. frac. pop & & \texttt{.04894} & \\
\end{tabular}

(midp) $Pr(k \leq 19) = 0.3900$ (exact)
(midp) $2*Pr(k \leq 19) = 0.7799$ (exact)
\end{verbatim}
Stored results

`stir` stores the following in `r()`:

Scalars

- `r(p)`: one-sided \( p \)-value
- `r(ird)`: incidence-rate difference
- `r(lb_ird)`: lower bound of CI for `ird`
- `r(ub_ird)`: upper bound of CI for `ird`
- `r(irr)`: incidence-rate ratio
- `r(lb_irr)`: lower bound of CI for `irr`
- `r(ub_irr)`: upper bound of CI for `irr`
- `r(afe)`: attributable (prev.) fraction among exposed
- `r(lb_afe)`: lower bound of CI for `afe`
- `r(ub_afe)`: upper bound of CI for `afe`
- `r(afp)`: attributable fraction for the population
- `r(chi2_mh)`: Mantel–Haenszel homogeneity \( \chi^2 \)
- `r(chi2_p)`: pooled homogeneity \( \chi^2 \)
- `r(df)`: degrees of freedom

Methods and formulas

`stir` simply accumulates numbers of failures and time at risk by exposed and unexposed (by strata, if necessary) and passes the calculation to `ir`; see `[ST] epitab`.

Reference


Also see

- `[ST] epitab` — Tables for epidemiologists
- `[ST] stset` — Declare data to be survival-time data
- `[ST] stsum` — Summarize survival-time data
**Title**

*stpover — Sample size, power, and effect size for survival analysis*

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
<th>Remarks and examples</th>
<th>Methods and formulas</th>
<th>References</th>
<th>Also see</th>
</tr>
</thead>
</table>

**Syntax**

*Sample-size determination*

```stpower cox [...], [,...]
```

```stpower logrank [...], [,...]
```

```stpower exponential [...], [,...]
```

*Power determination*

```stpower cox [...], n(*numlist*) [...]
```

```stpower logrank [...], n(*numlist*) [...]
```

```stpower exponential [...], n(*numlist*) [...]
```

*Effect-size determination*

```stpower cox, n(*numlist*) {power(*numlist*) | beta(*numlist*)} [...]
```

```stpower logrank [...], n(*numlist*) {power(*numlist*) | beta(*numlist*)} [...]
```


**Description**

*stpover* computes sample size and power for survival analysis comparing two survivor functions using the log-rank test or the exponential test (to be defined later), as well as for more general survival analysis investigating the effect of a single covariate in a Cox proportional hazards regression model, possibly in the presence of other covariates. It provides the estimate of the number of events required to be observed (or the expected number of events) in a study. The minimal effect size (minimal detectable difference, expressed as the hazard ratio or the log hazard-ratio) may also be obtained for the log-rank test and for the Wald test on a single coefficient from the Cox model.

This entry provides an overview of the relevant terminology, theory, and a few examples. For more details, see the entries specific to each *stpover* subcommand.

Also see [PSS] *power* for power and sample-size analysis for other statistical methods.
Remarks and examples

Remarks are presented under the following headings:

- Theory and terminology
- Introduction to stpower subcommands
- Sample-size determination for survival studies
- Creating output tables
- Power curves

Theory and terminology

The prominent feature of survival data is that the outcome is the time from an origin to the occurrence of a given event (failure), often referred to as the analysis time. Analyses of such data use the information from all subjects in a study, both those who experience an event by the end of the study and those who do not. However, inference about the survival experience of subjects is based on the event times and therefore depends on the number of events observed in a study. Indeed, if none of the subjects fails in a study, then the survival rate cannot be estimated and survivor functions of subjects from different groups cannot be compared. Therefore, power depends on the number of events observed in a study and not directly on the number of subjects recruited to the study. As a result, to obtain the estimate of the required number of subjects, the probability that a subject experiences an event during the course of the study needs to be estimated in addition to the required number of events. This distinguishes sample-size determination for survival studies from that for other studies in which the endpoint is not measured as a time to failure.

All the above leads us to consider the following two types of survival studies. The first type (a type I study) is a study in which all subjects experience an event by the end of the study (no censoring), and the second type (a type II study) is a study that terminates after a fixed period regardless of whether all subjects experienced an event by that time. For a type II study, subjects who did not experience an event at the end of the study are known to be right-censored. For a type I study, when all subjects fail by the end of the study, the estimate of the probability of a failure in a study is one and the required number of subjects is equal to the required number of failures. For a type II study, the probability of a failure needs to be estimated and therefore various aspects that affect this probability (and usually do not come into play at the analysis stage) must be taken into account for the computation of the sample size.

Under the assumption of random censoring (Lachin 2011, 431; Lawless 2003, 52; Chow and Liu 2004, 388), the type of censoring pattern is irrelevant to the analysis of survival data in which the goal is to make inferences about the survival distribution of subjects. It becomes important, however, for sample-size determination because the probability that a subject experiences an event in a study depends on the censoring distribution. We consider the following two types of random censoring: administrative censoring and loss to follow-up.

Under administrative censoring, a subject is known to have experienced either of the two outcomes at the end of a study: survival or failure. The probability of a subject failing in a study depends on the duration of the study. Often in practice, subjects may withdraw from a study, say, because of severe side effects from a treatment or may be lost to follow-up because of moving to a different location. Here the information about the outcome that subject would have experienced at the end of the study had he completed the course of the study is unavailable, and the probability of experiencing an event by the end of the study is affected by the process governing withdrawal of subjects from the study. In the literature, this type of censoring is often referred to as subject loss to follow-up, subject withdrawal, or sometimes subject dropout (Freedman 1982, Machin and Campbell 2005). Generally, great care must be taken when using this terminology because it may have slightly different meanings in different contexts. stpower logrank and stpower cox apply a conservative adjustment to the
stpower — Sample size, power, and effect size for survival analysis

Another important component of sample-size and power determination that affects the estimate of the probability of a failure is the pattern of accrual of subjects into the study. The duration of a study is often divided into two phases: an accrual phase, during which subjects are recruited to the study, and a follow-up phase, during which subjects are followed up until the end of the study and no new subjects enter the study. For a fixed-duration study, fast accrual increases the average analysis time (average follow-up time) and increases the chance of a subject failing in a study, whereas slow accrual decreases the average analysis time and consequently decreases this probability. stpower logrank and stpower exponential provide facilities to take into account uniform accrual, and for stpower exponential only, truncated exponential accrual.

All sample-size formulas used by stpower rely on the proportional-hazards assumption, that is, the assumption that the hazard ratio does not depend on time. See the documentation entry of each subcommand for the additional assumptions imposed by the methods it uses. In the case when the proportional-hazards assumption is suspect, or in the presence of other complexities associated with the nature of the trial (for example, lagged effect of a treatment, more than two treatment groups, clustered data) and with the behavior of participants (for example, noncompliance of subjects with the assigned treatment, competing risks), one may consider obtaining required sample size or power by simulation. Feiveson (2002) demonstrates an example of such simulation for clustered survival data. Also see Royston (2012) and Crowther and Lambert (2012) for ways of simulating complicated survival data. Barthel et al. (2006); Barthel, Royston, and Babiker (2005); Royston and Babiker (2002); Barthel, Royston, and Parmar (2009); and Royston and Barthel (2010) present sample-size and power computation for multiarm trials under more flexible design conditions.

Introduction to stpower subcommands

stpower cox provides estimates of sample size, power, or the minimal detectable value of the coefficient when an effect of a single covariate on subject survival is to be explored using Cox proportional hazards regression. It is assumed that the effect is to be tested using the partial likelihood from the Cox model (for example, score or Wald test) on the coefficient of the covariate of interest.

stpower logrank reports estimates of sample size, power, or minimal detectable value of the hazard ratio in the case when the two survivor functions are to be compared using the log-rank test. The only requirement about the distribution of the survivor functions is that the two survivor functions must satisfy the proportional-hazards assumption.

stpower exponential reports estimates of sample size or power when the disparity in the two exponential survivor functions is to be tested using the exponential test, the parametric test comparing the two exponential hazard rates. In particular, we refer to (exponential) hazard-difference test as the exponential test for the difference between hazards and (exponential) log hazard-ratio test as the exponential test for the log of the hazard ratio or, equivalently, for the difference between log hazards.

All subcommands share a common syntax. Sample-size determination with a power of 80% or, equivalently, a probability of a type II error, a failure to reject the null hypothesis when the alternative hypothesis is true, of 20% is the default. Other values of power or type II error probability may be supplied via the power() or beta() options, respectively. If power determination is desired, sample size n() must be specified. If the minimal detectable difference is of interest, both sample size n() and power() (or type II error probability beta()) must be specified.

For sample-size and power computations, the default effect size corresponds to a value of the hazard ratio of 0.5 and may be changed by specifying the hratio() option. The hazard ratio is defined as a ratio of hazards of the experimental group to the control group (or the less favorable of
the two groups). Other ways of specifying the effect size are available, and these are particular to each subcommand.

The default probability of a type I error, a rejection of the null hypothesis when the null hypothesis is true, of a test is 0.05 but may be changed by using the `alpha()` option. Results for one-sided tests may be requested by using the `onesided` option. To change the default setting of equal-sized groups in `stpower logrank` and `stpower exponential`, one of the `p1()` or `nratio()` options must be specified.

By default, all subcommands assume a type I study, that is, perform computations for uncensored survival data. The censoring information may be taken into account by specifying the appropriate arguments or options. See `[ST] stpower cox`, `[ST] stpower logrank`, and `[ST] stpower exponential` for details.

All subcommands can report results in a table. Results may be tabulated for various values of input parameters. See Creating output tables for examples. An example of how to produce a power curve is given in Power curves.

Also see Cleves et al. (2010, chap. 16) for more details.

Sample-size determination for survival studies

Here we demonstrate using `stpower` to obtain an estimate of the sample size for three different survival studies.

Example 1: Sample size for the test of the effect of a covariate in the Cox model

Consider a hypothetical study for which the goal is to investigate the effect of the expression of one gene on subject survival with the Cox proportional hazards regression model. Suppose that the Wald test is to be used to test the coefficient on the gene after fitting the Cox model. Gene expression values measure the level of activity of the gene. Consider the scenario described in Simon, Radmacher, and Dobbin (2002) in which the hazard ratio of 3 associated with a one-unit change in the \( \log_2 \) intensity of a gene (or, respectively, with a twofold change in gene expression level) is desired to be detected with 95% power using a two-sided, 0.001-level test. The estimate of the standard deviation of the \( \log_2 \)-intensity level of the gene over the entire set of samples is assumed to be 0.75.

```
 . stpower cox, hratio(3) sd(0.75) power(0.95) alpha(0.001)
```

Estimated sample size for Cox PH regression
Wald test, log-hazard metric
Ho: \([b_1, b_2, ..., b_p] = [0, b_2, ..., b_p]\)

Input parameters:

- \( \alpha = 0.0010 \) (two sided)
- \( b_1 = 1.0986 \)
- \( sd = 0.7500 \)
- \( power = 0.9500 \)

Estimated number of events and sample size:

- \( E = 36 \)
- \( N = 36 \)

Provided that all subjects experience an event in this study, a total of 36 events is required to be observed in the study to ensure the specified power.

See `[ST] stpower cox` for more details.
Example 2: Sample size for the log-rank test

Consider an example from Machin and Campbell (2005) of a study comparing two forms of surgical resection for patients with gastric cancer. From a prestudy survey, the baseline 5-year survival rate was expected to be 20% and an anticipated increase in survival in the experimental group expressed as a hazard ratio of 0.6667 (corresponding to a 5-year survival rate of approximately 34%) was desired to be detected with 90% power using a two-sided, 0.05 level, log-rank test under 1:1 randomization. To obtain the estimate of the sample size for this study, we use stpower logrank with survival proportion in the control group 0.2 supplied as an argument, the hratio(0.6667) option to request a hazard ratio of 0.6667, and the power(0.9) option to request 90% power.

```
. stpower logrank 0.2, hratio(0.6667) power(0.9)
```

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
Ho: S₁(t) = S₂(t)
Input parameters:
  alpha = 0.0500 (two sided)
  s₁ = 0.2000
  s₂ = 0.3420
  hratio = 0.6667
  power = 0.9000
  p₁ = 0.5000

Estimated number of events and sample sizes:
  E = 264
  N = 362
  N₁ = 181
  N₂ = 181

From the output, 264 events (failures) are required to be observed in this study to ensure 90% power to detect a hazard ratio of 0.6667 by using the log-rank test. The respective estimate of the total number of subjects required to observe 264 events in a 5-year study is 362 with 181 subjects per surgical group. Our estimate, 181, of each group’s sample size is close to the manually computed estimate of 180 from Machin and Campbell (2005). This study is an example of a type II study as previously described, because 20% of subjects were expected to survive (be censored) by the end of the study.

See [ST] stpower logrank for more detailed examples and other available methods of sample-size computation for this type of analysis.

Example 3: Sample size for two-sample test of exponential survivor functions

Consider an example from Lachin (2011, 490) of a study comparing two therapies, the combination of a new therapy with the standard one versus the standard alone, in the treatment of lupus nephritis patients. From previous studies, the survivor function of the control group treated with the standard therapy was log linear with a constant yearly hazard rate of 0.3. The number of events (failures) required to ensure 90% power to detect a 50% risk reduction, \( \Delta = 0.5 \), (or, respectively, the log hazard-ratio of \( \ln(0.5) = -0.6931 \)) with a one-sided test at a 0.05 significance level was obtained to be 72 under equal-group allocation. In the absence of censoring, Lachin (2011) determined that a total of 72 subjects (36 per group) would have to be recruited to the study. To obtain this same estimate with stpower exponential, we supply the control hazard rate 0.3 as an argument and specify the power(0.9), onesided, and loghazard options to request 90% power, a one-sided test, and sample-size determination for the exponential log hazard-ratio test (or, test for the log-hazard difference), respectively.
Further, the study was planned to continue for 6 years with a recruitment period of 4 years. Subjects who did not experience an event by the end of 6 years were censored. For this fixed-duration study with uniform entry (recruitment), the estimate of the sample size increases from 72 to 128. We specify the length of the accrual and the follow-up periods in the \texttt{aperiod()} and \texttt{fperiod()} options, respectively. We also request to display the expected number of events by using the \texttt{detail} option.

\begin{verbatim}
. stpower exponential 0.3, power(0.9) onesided loghazard aperiod(4) fperiod(2) > detail
Note: input parameters are hazard rates.
Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, log-hazard difference, conditional
Ho: \( \ln(h_{2}/h_{1}) = 0 \)
Input parameters:
\hspace{1cm} alpha = 0.0500 (one sided)
\hspace{1cm} h1 = 0.3000
\hspace{1cm} h2 = 0.1500
\hspace{1cm} \ln(h_{2}/h_{1}) = -0.6931
\hspace{1cm} power = 0.9000
\hspace{1cm} p1 = 0.5000
Estimated sample sizes:
\hspace{1cm} N = 128
\hspace{1cm} N1 = 64
\hspace{1cm} N2 = 64
\end{verbatim}

Under the alternative hypothesis of \( H_{a} : \ln(\Delta) = -0.6931 \), we expect to observe 44 events in the control group and 28 events in the experimental group. A total of 128 subjects (64 per group) is required to be enrolled into the study to observe an expected total of 72 events under the alternative.

See \texttt{[ST] stpower exponential} for more examples.
Creating output tables

`stpower` subcommands offer the `table` and `columns()` options to display results in a table. All tables in the examples below are produced for a default screen width of 79 characters. You may need to resize your Results window if you wish to clearly reproduce these tables.

Example 4: Displaying results in a table with default columns

Continuing example 1, we display results in a table with the default columns.

```
. stpower cox, hratio(3) sd(0.75) power(0.95) alpha(0.001) table
```

Estimated sample size for Cox PH regression
Wald test, log-hazard metric
Ho: [b1, b2, ..., bp] = [0, b2, ..., bp]

<table>
<thead>
<tr>
<th>Power</th>
<th>N</th>
<th>E</th>
<th>B1</th>
<th>SD</th>
<th>Alpha*</th>
</tr>
</thead>
<tbody>
<tr>
<td>.95</td>
<td>36</td>
<td>36</td>
<td>1.09861</td>
<td>.75</td>
<td>.001</td>
</tr>
</tbody>
</table>

* two sided

Suppose we now believe that only 90% of subjects will experience an event by the end of the study. We account for this by using the `failprob(0.9)` option.

```
. stpower cox, hratio(3) sd(0.75) power(0.95) alpha(0.001) failprob(0.9) table
```

Estimated sample size for Cox PH regression
Wald test, log-hazard metric
Ho: [b1, b2, ..., bp] = [0, b2, ..., bp]

<table>
<thead>
<tr>
<th>Power</th>
<th>N</th>
<th>E</th>
<th>B1</th>
<th>SD</th>
<th>Alpha*</th>
<th>Pr(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.95</td>
<td>40</td>
<td>36</td>
<td>1.09861</td>
<td>.75</td>
<td>.001</td>
<td>.9</td>
</tr>
</tbody>
</table>

* two sided

The specified options determine what table columns are displayed by default. See the documentation entry of each command for the details on the default columns.

Example 5: Producing tables when options contain multiple values

Recall example 2. Suppose that we would like to tabulate values of power for sample-size values of 200, 250, and 300 and for three different values of the survival probability in the experimental group, 0.34, 0.5, and 0.65. To fit the table on a screen of width 79, we specify the `colwidth(7)` option, requesting a width of 7 for all table columns.
Estimated power for two-sample comparison of survivor functions  
Log-rank test, Freedman method  
Ho: S1(t) = S2(t)

<table>
<thead>
<tr>
<th>Power</th>
<th>N</th>
<th>N1</th>
<th>N2</th>
<th>E</th>
<th>S1</th>
<th>S2</th>
<th>HR</th>
<th>Alpha*</th>
</tr>
</thead>
<tbody>
<tr>
<td>.6646</td>
<td>200</td>
<td>100</td>
<td>100</td>
<td>146</td>
<td>.2</td>
<td>.34</td>
<td>.6703</td>
<td>.05</td>
</tr>
<tr>
<td>.7601</td>
<td>250</td>
<td>125</td>
<td>125</td>
<td>183</td>
<td>.2</td>
<td>.34</td>
<td>.6703</td>
<td>.05</td>
</tr>
<tr>
<td>.8318</td>
<td>300</td>
<td>150</td>
<td>150</td>
<td>219</td>
<td>.2</td>
<td>.34</td>
<td>.6703</td>
<td>.05</td>
</tr>
<tr>
<td>.995</td>
<td>200</td>
<td>100</td>
<td>100</td>
<td>130</td>
<td>.2</td>
<td>.5</td>
<td>.4307</td>
<td>.05</td>
</tr>
<tr>
<td>.9991</td>
<td>250</td>
<td>125</td>
<td>125</td>
<td>163</td>
<td>.2</td>
<td>.5</td>
<td>.4307</td>
<td>.05</td>
</tr>
<tr>
<td>.9998</td>
<td>300</td>
<td>150</td>
<td>150</td>
<td>195</td>
<td>.2</td>
<td>.5</td>
<td>.4307</td>
<td>.05</td>
</tr>
<tr>
<td>1</td>
<td>200</td>
<td>100</td>
<td>100</td>
<td>115</td>
<td>.2</td>
<td>.65</td>
<td>.2677</td>
<td>.05</td>
</tr>
<tr>
<td>1</td>
<td>250</td>
<td>125</td>
<td>125</td>
<td>144</td>
<td>.2</td>
<td>.65</td>
<td>.2677</td>
<td>.05</td>
</tr>
<tr>
<td>1</td>
<td>300</td>
<td>150</td>
<td>150</td>
<td>173</td>
<td>.2</td>
<td>.65</td>
<td>.2677</td>
<td>.05</td>
</tr>
</tbody>
</table>

* two sided

Optionally, the width of each column may be changed by specifying respective column widths in `colwidth()`, as we demonstrate in example 6. Using `colwidth(7)` is equivalent to `colwidth(7 7 7 7 7 7)` in the above.

By default, the results are displayed for all possible combinations of values of `n()` and the second argument list. If a table is desired instead with results for sequential pairs of values (0.34, 200), (0.5, 250), and (0.65, 300), one can specify the `parallel` option.

Example 6: Customized tables

In example 4, we used the `table` option to display the default columns. One can construct a customized table by specifying `colnames` within `columns()`. The columns will be displayed in the same order as they are specified in `columns()`. Continuing example 3, we display the total and per-group expected number of events under the null and under the alternative hypotheses for two values of the hazard ratio, 0.5 and 0.6. To obtain this table, we also specify the `hratio(0.5 0.6)` and `columns(power ea ea1 ea2 eo eo1 eo2 hr alpha)` options and omit the `detail` option in the earlier syntax. We request that the column widths of the first six columns be as specified in `colwidth(7 6 7 7 6 7)`. Remaining columns will be displayed with the width of 7 (the last specified column width). If the widths of the remaining columns are desired to be unchanged, a missing (.), denoting the default column width of 9, may be specified as the last column width.
Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, log-hazard difference, conditional
Ho: ln(h2/h1) = 0

| Power | E|Ha | E1|Ha | E2|Ha | E|Ho | E1|Ho | E2|Ho | HR | Alpha* |
|-------|----|----|----|----|----|----|----|----|----|----|----|----|-------|
| .9    | 72 | 44 | 28 | 74 | 37 | 37 | .5 | .05 |
| .9    | 132| 76 | 56 | 134| 67 | 67 | .6 | .05 |

* one sided

The displayed table values may be saved to a Stata data file by using the saving() option. Also table and columns() in conjunction with noheader and continue may be used to produce tables for various values in options that do not allow specifying a number list. This task may be done by issuing an stpower subcommand repeatedly within a forvalues loop. See example 5 in [ST] stpower exponential.

Power curves

Here we demonstrate how to produce a graph of a power curve as a function of sample size.

Example 7: Plotting a simple power curve

Continuing example 2, we plot power for sample-size values in a range from 200 to 400 for this study. We supply the integers in this range with a step size of 1 to the n() option and use the saving() option to save table values in a Stata dataset named mypower.dta.

. quietly stpower logrank 0.2, hratio(0.6667) n(200(1)400) saving(mypower)

We specify quietly to avoid displaying the resulting table. The values of columns of the table are saved in mypower.dta. We generate the power graph by plotting the values of power and sample size saved in variables power and n:

. use mypower
. line power n, title("Power vs sample size for the log-rank test")
   xtitle("Number of subjects")
   yline(.9, lpattern("-.")) xline(362, lpattern("-."))
   xlabel(200(20)400, grid) text(.915 345 "(.9, 362)"
   ylabel(.65(.05).95, grid)
   note("S1(5) = .2, S2(5) = .342, HR = .6667, alpha = .05 (two sided)"")
Power curves may also be plotted for combinations of values of different options. For an example of plotting two power curves, see example 7 in \[ST\] \texttt{stpower logrank}.

**Methods and formulas**

\texttt{stpower cox} adopts the method of Hsieh and Lavori (2000) to compute sample size and power for the test of a covariate obtained after the Cox model fit.

\texttt{stpower logrank} uses the approach of Freedman (1982) and Schoenfeld (1981) for sample-size and power computation. The approach of Schoenfeld (1983) is used to obtain the estimates in the presence of uniform accrual.

\texttt{stpower exponential} implements methods of Lachin (1981); Lachin and Foulkes (1986); George and Desu (1974); and Rubinstein, Gail, and Santner (1981) for the two-sample test of exponential survivor functions. The explicit sample-size formula for the last method was given in Lakatos and Lan (1992).

See Methods and formulas in \[ST\] \texttt{stpower cox}, \[ST\] \texttt{stpower logrank}, and \[ST\] \texttt{stpower exponential} for more details.

**References**


**Also see**

- [ST] *stpower cox* — Sample size, power, and effect size for the Cox proportional hazards model
- [ST] *stpower exponential* — Sample size and power for the exponential test
- [ST] *stpower logrank* — Sample size, power, and effect size for the log-rank test
- [ST] *Glossary*
- [PSS] *power* — Power and sample-size analysis for hypothesis tests
### Syntax

**Sample-size determination**

```stpower cox [ coef ] [ , options ]```

Power determination

```stpower cox [ coef ] , n(numlist) [ options ]```

**Effect-size determination**

```stpower cox , n(numlist) { power(numlist) | beta(numlist) } [ options ]```

where `coef` is the regression coefficient (effect size) of a covariate of interest, in a Cox proportional hazards model, desired to be detected by a test with a prespecified power. `coef` may be specified either as one number or as a list of values (see [U] 11.1.8 numlist) enclosed in parentheses.

<table>
<thead>
<tr>
<th>options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td></td>
</tr>
<tr>
<td>* <code>alpha(numlist)</code></td>
<td>significance level; default is <code>alpha(0.05)</code></td>
</tr>
<tr>
<td>* <code>power(numlist)</code></td>
<td>power; default is <code>power(0.8)</code></td>
</tr>
<tr>
<td>* <code>beta(numlist)</code></td>
<td>probability of type II error; default is <code>beta(0.2)</code></td>
</tr>
<tr>
<td>* <code>n(numlist)</code></td>
<td>sample size; required to compute power or effect size</td>
</tr>
<tr>
<td>* <code>hratio(numlist)</code></td>
<td>hazard ratio (effect size) associated with a one-unit increase in covariate of interest; default is <code>hratio(0.5)</code></td>
</tr>
<tr>
<td><code>onesided</code></td>
<td>one-sided test; default is two sided</td>
</tr>
<tr>
<td><code>sd(#)</code></td>
<td>standard deviation of covariate of interest; default is <code>sd(0.5)</code></td>
</tr>
<tr>
<td><code>r2(#)</code></td>
<td>squared coefficient of multiple correlation with other covariates; default is <code>r2(0)</code></td>
</tr>
<tr>
<td><code>failprob(#)</code></td>
<td>overall probability of an event (failure) of interest; default is <code>failprob(1)</code>, meaning no censoring</td>
</tr>
<tr>
<td><code>wdprob(#)</code></td>
<td>the proportion of subjects anticipated to withdraw from the study; default is <code>wdprob(0)</code></td>
</tr>
<tr>
<td><code>parallel</code></td>
<td>treat number lists in starred options as parallel (do not enumerate all possible combinations of values) when multiple values per option are specified</td>
</tr>
</tbody>
</table>

275
Reporting

hr
report hazard ratio, not coefficient

table
display results in a table with default columns

columns(colnames)
display results in a table with specified colnames columns

notitle
suppress table title

nolegend
suppress table legend

colwidth(#) [# ...]
column widths; default is colwidth(9)

separator(#)
draw a horizontal separator line every # lines; default is separator(0) meaning no separator lines

saving(filename [, replace])
save the table data to filename; use replace to overwrite existing filename

noheader
suppress table header; seldom used

continue
draw a continuation border in the table output; seldom used

*Starred options may be specified either as one number or as a list of values (see [U] 11.1.8 numlist).
noheader and continue are not shown in the dialog box.

<table>
<thead>
<tr>
<th>colnames</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>significance level</td>
</tr>
<tr>
<td>power</td>
<td>power</td>
</tr>
<tr>
<td>beta</td>
<td>type II error probability</td>
</tr>
<tr>
<td>n</td>
<td>total number of subjects</td>
</tr>
<tr>
<td>e</td>
<td>total number of events (failures)</td>
</tr>
<tr>
<td>hr</td>
<td>hazard ratio</td>
</tr>
<tr>
<td>coef</td>
<td>coefficient (log hazard-ratio)</td>
</tr>
<tr>
<td>sd</td>
<td>standard deviation</td>
</tr>
<tr>
<td>r2</td>
<td>squared multiple-correlation coefficient</td>
</tr>
<tr>
<td>pr</td>
<td>overall probability of an event (failure)</td>
</tr>
<tr>
<td>w</td>
<td>proportion of withdrawals</td>
</tr>
</tbody>
</table>

By default, the following colnames are displayed:
- power, n, e, sd, and alpha are always displayed;
- coef is displayed, unless the hr option is specified, in which case hr is displayed;
- pr if overall probability of an event (failprob()) is specified;
- r2 if squared multiple-correlation coefficient (r2()) is specified; and
- w if withdrawal proportion (wdprob()) is specified.

Menu

Statistics > Survival analysis > Power and sample size

Description

stpower cox estimates required sample size, power, and effect size for survival analyses that use Cox proportional hazards (PH) models. It also reports the number of events (failures) required to be observed in a study. The estimates of sample size or power are obtained for the test of the effect of
one covariate, \(x_1 \) (binary or continuous), on time to failure adjusted for other predictors, \(x_2, \ldots, x_p \), in a PH model. The command provides options to account for possible correlation between a covariate of interest and other predictors and for withdrawal of subjects from the study. Optionally, the minimal effect size (minimal detectable difference in a regression coefficient, \(\beta_1 \), or hazard ratio) may be obtained for given sample size and power.

You can use \texttt{stpower cox} to

- calculate required number of events and sample size when you know power and effect size expressed as a hazard ratio or a coefficient (log hazard-ratio),
- calculate power when you know sample size (number of events) and effect size expressed as a hazard ratio or a coefficient (log hazard-ratio), and
- calculate effect size and display it as a coefficient (log hazard-ratio) or a hazard ratio when you know sample size (number of events) and power.

\texttt{stpower cox}'s input parameter, \texttt{coef}, is the value \(\beta_{1a} \) of the regression coefficient, \(\beta_1 \), of a covariate of interest, \(x_1 \), from a Cox PH model, which is desired to be detected by a test with prespecified power.

Options

- \texttt{alpha(numlist)} sets the significance level of the test. The default is \texttt{alpha(0.05)}.
- \texttt{power(numlist)} sets the power of the test. The default is \texttt{power(0.8)}. If \texttt{beta()} is specified, this value is set to be \(1 - \texttt{beta()} \). Only one of \texttt{power()} or \texttt{beta()} may be specified.
- \texttt{beta(numlist)} sets the probability of a type II error of the test. The default is \texttt{beta(0.2)}. If \texttt{power()} is specified, this value is set to be \(1 - \texttt{power()} \). Only one of \texttt{beta()} or \texttt{power()} may be specified.
- \texttt{n(numlist)} specifies the number of subjects in the study to be used to compute the power of the test or the minimal effect size (minimal detectable value of the regression coefficient, \(\beta_1 \), or hazard ratio) if \texttt{power()} or \texttt{beta()} is also specified.
- \texttt{hratio(numlist)} specifies the hazard ratio associated with a one-unit increase in the covariate of interest, \(x_1 \), when other covariates are held constant. The default is \texttt{hratio(0.5)}. This value defines the minimal clinically significant effect of a covariate on the response to be detected by a test with a certain power, specified in \texttt{power()}, in a Cox PH model. If \texttt{coef} is specified, \texttt{hratio()} is not allowed and the hazard ratio is instead computed as \(\exp(\texttt{coef}) \).
- \texttt{onesided} indicates a one-sided test. The default is two sided.
- \texttt{sd(#)} specifies the standard deviation of the covariate of interest, \(x_1 \). The default is \texttt{sd(0.5)}.
- \texttt{r2(#)} specifies the squared multiple-correlation coefficient between \(x_1 \) and other predictors \(x_2, \ldots, x_p \) in a Cox PH model. The default is \texttt{r2(0)}, meaning that \(x_1 \) is independent of other covariates. This option defines the proportion of variance explained by the regression of \(x_1 \) on \(x_2, \ldots, x_p \) (see [R] \texttt{regress}).
- \texttt{failprob(#)} specifies the overall probability of a subject failing (or experiencing an event of interest, or not being censored) in the study. The default is \texttt{failprob(1)}, meaning that all subjects experience an event (or fail) in the study; that is, no censoring of subjects occurs.
- \texttt{wdprob(#)} specifies the proportion of subjects anticipated to withdraw from a study. The default is \texttt{wdprob(0)}. \texttt{wdprob()} may not be combined with \texttt{n()}.

\texttt{stpower cox} — Sample size, power, and effect size for the Cox proportional hazards model 277
parallel reports results sequentially (in parallel) over the list of numbers supplied to options allowing `numlist`. By default, results are computed over all combinations of the number lists in the following order of nesting: `alpha()`, `hratio()` or list of coefficients `coef`, `power()` or `beta()`, and `n()`.

This option requires that options with multiple values each contain the same number of elements.

<table>
<thead>
<tr>
<th>Reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>hr specifies that the hazard ratio be displayed rather than the regression coefficient. This option affects how results are displayed and not how they are estimated.</td>
</tr>
<tr>
<td>table displays results in a tabular format and is implied if any number list contains more than one element. This option is useful if you are producing results one case at a time and wish to construct your own custom table by using a <code>forvalues</code> loop.</td>
</tr>
<tr>
<td>columns(<code>colnames</code>) specifies results in a table with specified <code>colnames</code> columns. The order of columns in the output table is the same as the order of <code>colnames</code> specified in <code>columns()</code>. Column names in <code>columns()</code> must be space-separated.</td>
</tr>
<tr>
<td>notitle prevents the table title from displaying.</td>
</tr>
<tr>
<td>nolgend prevents the table legend from displaying and column headers from being marked.</td>
</tr>
<tr>
<td>colwidth(# <code>[# ...]</code>) specifies column widths. The default is 9 for all columns. The number of specified values may not exceed the number of columns in the table. A missing value (.) may be specified for any column to indicate the default width (9). If fewer widths are specified than the number of columns in the table, the last width specified is used for the remaining columns.</td>
</tr>
<tr>
<td>separator(#) specifies how often separator lines should be drawn between rows of the table. The default is separator(0), meaning that no separator lines should be displayed.</td>
</tr>
<tr>
<td>saving(<code>filename</code>, replace) creates a Stata data file (.dta file) containing the table values with variable names corresponding to the displayed <code>colnames</code>. <code>replace</code> specifies that <code>filename</code> be overwritten if it exists. <code>saving()</code> is appropriate only with tabular output.</td>
</tr>
</tbody>
</table>

The following options are available with `stpower cox` but are not shown in the dialog box:

<table>
<thead>
<tr>
<th>Remarks and examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remarks are presented under the following headings:</td>
</tr>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Computing sample size in the absence of censoring</td>
</tr>
<tr>
<td>Computing sample size in the presence of censoring</td>
</tr>
<tr>
<td>Link to the sample-size and power computation for the log-rank test</td>
</tr>
<tr>
<td>Power and effect-size determination</td>
</tr>
<tr>
<td>Performing the analysis with the Cox PH model</td>
</tr>
</tbody>
</table>
Introduction

Consider a survival study for which the goal is to investigate the effect of a covariate of interest, \(x_1 \), on time to failure, possibly adjusted for other predictors, \(x_2, \ldots, x_p \), using the Cox proportional hazards model (Cox 1972). For continuous \(x_1 \), the effect is measured as a hazard ratio, \(\Delta \), or a log hazard-ratio, \(\ln(\Delta) \), associated with a one-unit increase in \(x_1 \) when the other covariates, \(x_2, \ldots, x_p \), are held constant. For a binary predictor, the effect is a ratio of hazards or log hazards corresponding to the two categories of \(x_1 \) when other covariates are held constant. In both cases, to measure the effect of a covariate, a test of a hazard or a log hazard-ratio is performed.

In a Cox PH model, the hazard function is assumed to be

\[
h(t) = h_0(t) \exp(\beta_1 x_1 + \ldots + \beta_p x_p)
\]

where no distributional assumption is made about the baseline hazard, \(h_0(t) \). Under this assumption, the regression coefficient, \(\beta_1 \), is the log hazard-ratio, \(\ln(\Delta) \), associated with a one-unit increase in \(x_1 \) when the other predictors are held constant, and the exponentiated regression coefficient, \(\exp(\beta_1) \), is the hazard ratio, \(\Delta \). Therefore, the effect of \(x_1 \) on time to failure can be investigated by performing an appropriate test based on the partial likelihood (Hosmer, Lemeshow, and May 2008; Klein and Moeschberger 2003) for the regression coefficient, \(\beta_1 \), from a Cox model. Negative values of \(\beta_1 \) correspond to the reduction in hazard for a one-unit increase in \(x_1 \), and, conversely, positive values correspond to the increase in hazard for a one-unit increase in \(x_1 \).

\texttt{stpower cox} provides the estimates of sample size or power for a test of the regression coefficient, \(\beta_1 \), with the null hypothesis \(H_0: (\beta_1, \beta_2, \ldots, \beta_p) = (0, \beta_2, \ldots, \beta_p) \) against the alternative \(H_a: (\beta_1, \beta_2, \ldots, \beta_p) = (\beta_{1a}, \beta_2, \ldots, \beta_p) \). The methods used are derived for the score test of \(H_0 \) versus \(H_a \). In practice, however, the obtained results may be used in the context of the Wald test as well because the two tests usually lead to the same conclusions about the significance of the regression coefficient. Refer to The conditional versus unconditional approaches in [ST] \texttt{stpower exponential} for more details about the results based on conditional and unconditional tests. From now on, we will refer to \(H_a \) as \(H_a: \beta_1 = \beta_{1a} \) for simplicity.

\texttt{stpower cox} implements the method of Hsieh and Lavori (2000) for the sample-size and power computation, which reduces to the method of Schoenfeld (1983) for a binary covariate. The sample size is related to the power of a test through the number of events observed in the study; that is, for a fixed number of events, the power of a test is independent of the sample size. As a result, the sample size is estimated as the number of events divided by the overall probability of a subject failing in the study.

The argument \texttt{coef} or \texttt{hratio()} may be used to specify the effect size desired to be detected by a test. If argument \texttt{coef} is omitted, the value of the log of the hazard ratio specified in option \texttt{hratio()} or the log of the default hazard-ratio value of 0.5 is used to compute \(\beta_{1a} \). If argument \texttt{coef} is specified, then \texttt{hratio()} is not allowed and the hazard ratio is computed as \(\exp(\texttt{coef}) \).

If power determination is desired, then sample size \texttt{n()} must be specified. Otherwise, sample-size determination is assumed with \texttt{power(0.8)} (or, equivalently, \texttt{beta(0.2)}). The default setting for power or, alternatively, the probability of a type II error, a failure to reject the null hypothesis when the alternative hypothesis is true, may be changed by using \texttt{power()} or \texttt{beta()}, respectively. If both \texttt{n()} and \texttt{power()} (or \texttt{beta()}) are specified, then the value of the regression coefficient, \(\beta_{1a} \) (or hazard ratio if the \texttt{hr} option is specified), which can be detected by a test with requested \texttt{power()} for fixed sample size \texttt{n()}, is computed.

The default probability of a type I error, a rejection of the null hypothesis when the null hypothesis is true, of a test is 0.05 but may be changed by using the \texttt{alpha()} option. One-sided tests may be requested by using \texttt{onesided}. By default, no censoring, no correlation between \(x_1 \) and other predictors, and no withdrawal of subjects from the study are assumed. This may be changed by specifying \texttt{failprob()}, \texttt{r2()}, and \texttt{wdprob()}, respectively.
Optionally, the results may be displayed in a table by using \texttt{table} or \texttt{columns()}, as demonstrated in \texttt{[ST] stpower}. Refer to \texttt{[ST] stpower} and example 7 in \textit{Power and effect-size determination} of \texttt{[ST] stpower logrank} to see how to obtain a graph of a power curve.

Computing sample size in the absence of censoring

First, consider a type I study in which all subjects fail by the end of the study (no censoring). Then the required sample size is the same as the number of events required to be observed in a study.

\textbf{Example 1: Sample size for a model with a binary covariate of interest}

Consider a survival study for which the goal is to investigate the effect of a treatment on survival times of subjects. The covariate of interest is binary with levels defining whether a subject receives the treatment (the experimental group) or a placebo (the control or placebo group). Prior to conducting the study, investigators need an estimate of the sample size that ensures that a ratio of hazards of the experimental group to the control group of 0.5 ($\beta_1 = \ln(0.5) = -0.6931$) can be detected with a power of 80\% with a two-sided, 0.05-level test. Under 1:1 randomization, a subject has a 50\% chance of receiving the treatment. The corresponding binary covariate follows a Bernoulli distribution with the probability of a subject receiving a treatment, p, equal to 0.5. As such, the standard deviation of the covariate is $\sqrt{p(1-p)} = \sqrt{0.5}$. Because these study parameters correspond to default values of \texttt{stpower cox}, to obtain the sample size for the above study we simply type

\begin{verbatim}
. stpower cox
Estimated sample size for Cox PH regression
Wald test, log-hazard metric
Ho: [b1, b2, ..., bp] = [0, b2, ..., bp]
Input parameters:
 alpha = 0.0500 (two sided)
 b1 = -0.6931
 sd = 0.5000
 power = 0.8000
Estimated number of events and sample size:
 E = 66
 N = 66
\end{verbatim}

Recall that if argument \texttt{coef} is omitted, a default value of $\ln(0.5) = -0.6931$ is assumed. From the output, we see that 66 events (failures) are required to be observed in the study to ensure a power of 80\% to detect an alternative H_a: $\beta_1 = -0.6931$ using a two-sided test with a 0.05 significance level. Because we have no censoring, a total of 66 subjects is needed in the study to observe 66 events.

One can also request that the results be displayed in the hazard metric by specifying the \texttt{hr} option:

\begin{verbatim}
. stpower cox, hr
Estimated sample size for Cox PH regression
Wald test, hazard metric
Ho: [b1, b2, ..., bp] = [0, b2, ..., bp]
Input parameters:
 alpha = 0.0500 (two sided)
 hratio = 0.5000
 sd = 0.5000
 power = 0.8000
Estimated number of events and sample size:
 E = 66
 N = 66
\end{verbatim}
Suppose now that the covariate of interest, x_1, is continuous. Hsieh and Lavori (2000) extend the formula of Schoenfeld (1983) for the number of events to the case when a covariate is continuous. They also relax the assumption of Schoenfeld (1983) about the independence of x_1 of other covariates and provide an adjustment to the estimate of the number of events for possible correlation.

Example 2: Sample size for a model with a continuous covariate of interest

Consider an example from Hsieh and Lavori (2000) of a study of multiple-myeloma patients treated with alkylating agents (Krall, Uthoff, and Harley 1975). Although in the original study of multiple-myeloma patients, 17 of a total of 65 patients are censored; here we assume that all patients die by the end of the study (a type I study, no censoring). Suppose that the covariate of interest, x_1, is the log of the amount of blood urea nitrogen (BUN) measured in a patient. The sample size for a one-sided, 0.05-level test to detect a coefficient (log hazard-ratio) of 1 for a unit increase in x_1 with a power of 80% is required. The standard deviation of x_1 is 0.3126. To obtain an estimate of the sample size, we supply `coef(1)`, as an argument, the `sd(0.3126)` option, and the `onesided` option for a one-sided test.

```
. stpower cox 1, sd(0.3126) onesided
Estimated sample size for Cox PH regression
Wald test, log-hazard metric
Ho: [b1, b2, ..., bp] = [0, b2, ..., bp]
Input parameters:
   alpha = 0.0500 (one sided)
   b1 = 1.0000
   sd = 0.3126
   power = 0.8000
Estimated number of events and sample size:
   E = 64
   N = 64
```

The estimate of the required number of events and the sample size is 64.

Based on the derivation in Schoenfeld (1983) and Hsieh and Lavori (2000), sample-size estimates in the above examples may be used if other covariates are also present in the model as long as these covariates are independent of the covariate of interest. The independence assumption holds for randomized studies, but it is not true for nonrandomized studies, often encountered in practice. Also, in many studies, the main covariate of interest will often be correlated with other covariates. For example, age and gender will often be confounded with the covariate of interest, such as smoking. Below we investigate the effect of the confounding factor on the estimate of the required number of events.

Example 3: Sample size when covariates are not independent

Continuing example 2, the effect of a covariate BUN is desired to be adjusted for eight other covariates in the model. Hsieh and Lavori (2000) report the coefficient of determination of $R^2 = 0.1837$ from regression of the log of BUN, x_1, on the eight other covariates.
Computing sample size in the presence of censoring

In the previous section, we assumed that all subjects fail by the end of the study. In practice, the study often terminates after a fixed time, \(T \). As a result, some subjects may not experience an event by the end of the study (a type II study). These subjects are censored. To obtain an estimate of the sample size in the presence of censoring, an estimate of the overall probability of a subject not being censored is required. The investigator may already have such an estimate from previous studies, or this probability may be computed as suggested in the literature (Schoenfeld 1983; Lachin and Foulkes 1986; Barthel et al. 2006; Barthel, Royston, and Babiker 2005; also see [ST] \texttt{stpower logrank} and [ST] \texttt{stpower exponential}).

Example 4: Sample size in the presence of censoring

Consider the study from example 2. In reality, as mentioned earlier, 17 of a total of 65 patients survived until the end of the study. The overall death rate is estimated as \(1 - 17/65 = 0.738 \).

```
. stpower cox 1, sd(0.3126) onesided r2(0.1837)
Estimated sample size for Cox PH regression
Wald test, log-hazard metric
Ho: [b1, b2, ..., bp] = [0, b2, ..., bp]
Input parameters:
  alpha = 0.0500 (one sided)
  b1 = 1.0000
  sd = 0.3126
  power = 0.8000
  R2 = 0.1837

Estimated number of events and sample size:
  E = 78
  N = 78
```

The number of events required to be observed in a study and, respectively, the number of subjects increase from 64 to 78 after adjusting for the inflation of the variance of the estimate of \(\beta_1 \) because of the correlation with other covariates. The variance of \(x_1 \) decreases by the factor \(1 - R^2 \), so the estimate of the number of events must also be adjusted by a variance inflation factor \(VIF = 1/(1 - R^2) \).

```
. stpower cox 1, sd(0.3126) onesided r2(0.1837)
Estimated sample size for Cox PH regression
Wald test, log-hazard metric
Ho: [b1, b2, ..., bp] = [0, b2, ..., bp]
Input parameters:
  alpha = 0.0500 (one sided)
  b1 = 1.0000
  sd = 0.3126
  power = 0.8000
  Pr(event) = 0.7380

Estimated number of events and sample size:
  E = 64
  N = 86
```

In the presence of censoring, the number of subjects required in the study increases from 64 to 86. The number of events remains the same (64) because the only change in the study is the presence of censoring, and censoring is assumed to be independent of failure (event) times.
If we also adjust for the correlation between the log of BUN and other covariates, we obtain the estimate of the sample size to be 106:

```
. stpower cox, hratio(2.7182) sd(0.3126) onesided r2(0.1837) failprob(0.738)
```

Estimated sample size for Cox PH regression
Wald test, log-hazard metric
Ho: [b1, b2, ..., bp] = [0, b2, ..., bp]

Input parameters:
 alpha = 0.0500 (one sided)
 b1 = 1.0000
 sd = 0.3126
 power = 0.8000
 Pr(event) = 0.7380
 R2 = 0.1837

Estimated number of events and sample size:
 E = 78
 N = 106

In the above example, we also demonstrate the alternative syntax. Rather than supplying the coefficient (log hazard-ratio) of 1, we use the `hratio()` option to specify the size of the effect expressed as the hazard ratio $\exp(1) = 2.7182$.

Technical note

Supplying the coefficient (log hazard-ratio) of 1 or -1 (or, respectively, a hazard ratio of $\exp(1) = 2.7182$ or $\exp(-1) = 1/2.7182 = 0.36788$) is irrelevant for sample-size and power determination because it results in the same estimates of sample size and power. However, the sign of the coefficient (or the value of the hazard ratio being larger or smaller than one) is important at the analysis stage because it determines the direction of the effect associated with a one-unit increase of a covariate value.

Often, in practice, subjects may withdraw from a study before it terminates. As a result, the information about the subjects’ response is lost. The proportion of subjects anticipated to withdraw from a study may be specified by using `wdprob()`. Refer to [ST] stpower and Withdrawal of subjects from the study in [ST] stpower logrank for a more detailed description and an example.

Link to the sample-size and power computation for the log-rank test

When there are no other covariates in a Cox regression model, the score test of the regression coefficient of a binary covariate is the same as the log-rank test (in the absence of tied observations). Powers of the two tests are the same and therefore so are the formulas for the number of events. The formula for the total number of events for a test of a binary covariate in the context of a PH model in the presence of other covariates is derived in Schoenfeld (1983) under the assumption that the covariate of interest is independent of the other covariates. This formula is also the same as the formula for the number of events when the log-rank test is used to compare survivor functions of two groups without covariates (Schoenfeld 1981). Indeed, using `stpower logrank` for the study described in example 1,
Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Schoenfeld method
Ho: S1(t) = S2(t)

Input parameters:
alpha = 0.0500 (two sided)
ln(hratio) = -0.6931
power = 0.8000
p1 = 0.5000

Estimated number of events and sample sizes:
E = 66
N = 66
N1 = 33
N2 = 33

yields the same estimates of 66 for both the required number of events and the required sample size.

Schoenfeld (1983) notes that although the formulas for the number of events are the same for the two approaches (based on the log-rank test and based on the score test of a regression coefficient from a Cox regression model adjusting for other covariates), the powers are different. Suppose that the two groups defined by a binary covariate follow the PH model. Then, if covariates are ignored, the ratio of hazards will be nonproportional at every time \(t \) and the power of the log-rank test will be smaller than the power of the test based on a Cox PH model.

If a covariate of interest is binary, either \texttt{stpower cox} or \texttt{stpower logrank} with the \texttt{schoenfeld} option can be used to obtain the estimate of the sample size or power regardless of the presence of other covariates. However, if covariates are present, it is important to use the appropriate test that adjusts for other covariates when analyzing the data.

Væth and Skovlund (2004) demonstrate that for a continuous covariate, the sample-size formula for the log-rank test (assuming the equal-group allocation) may be used to obtain the sample size or power with the value of the hazard ratio equal to \(\exp(2\beta_1a\sigma) \). By typing this expression into the sample-size formula for the log-rank test, one obtains the formula derived in Hsieh and Lavori (2000).

For example, we obtain the same estimate of the total number of events as computed in example 2 using \texttt{stpower logrank} with the \texttt{schoenfeld} option and with the value of the hazard ratio equal to \(\exp(2\beta_1a\sigma) = \exp(2 \times 1 \times 0.3126) = 1.8686 \).

\texttt{. stpower log, hratio(1.8686) onesided schoenfeld}

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Schoenfeld method
Ho: S1(t) = S2(t)

Input parameters:
alpha = 0.0500 (one sided)
ln(hratio) = 0.6252
power = 0.8000
p1 = 0.5000

Estimated number of events and sample sizes:
E = 64
N = 64
N1 = 32
N2 = 32
Power and effect-size determination

Suppose that, for some reason, the number of subjects required to ensure a certain power of a test to detect a specified effect size is not achieved by the end of the recruitment phase of a study. Investigators may want to know by how much the power of a test is decreased for the obtained sample size. If the decrease is significant, then what is the minimal effect size that can be detected with an acceptable level of power for this sample size?

Example 5: Power determination

Consider the data of Krall, Uthoff, and Harley (1975) from the study described in example 2. Suppose that we want to test the effect of the log of BUN on patients’ survival times adjusted for eight other covariates. In example 4, the required number of patients is estimated to be 106 to ensure a power of 80% of a 0.05 one-sided test to detect a value of 1 in the regression coefficient. This study, however, had only 65 patients. How does this reduction in sample size affect the power of the test to detect the alternative $H_a: \beta_1 = 1$?

```
. stpower cox 1, sd(0.3126) onesided r2(0.1837) failprob(0.738) n(65)
```

Estimated power for Cox PH regression
Wald test, log-hazard metric
Ho: $[b_1, b_2, \ldots, b_p] = [0, b_2, \ldots, b_p]$

Input parameters:

- $\alpha = 0.0500$ (one sided)
- $b_1 = 1.0000$
- $sd = 0.3126$
- $N = 65$
- $Pr(event) = 0.7380$
- $R^2 = 0.1837$

Estimated number of events and power:

- $E = 48$
- $power = 0.6222$

When the sample size decreases from 106 to 65, power decreases from 80% to 62%.

Example 6: Effect-size determination

Continuing the above example: if a power of 62% is unacceptable to investigators, they may want to find out what is the smallest value of the regression coefficient that can be detected with a preserved power of 80%. To obtain this estimate, we specify both the n() and power() options.

```
. stpower cox, sd(0.3126) onesided r2(0.1837) failprob(0.738) n(65) power(0.8)
```

Estimated coefficient for Cox PH regression
Wald test, log-hazard metric
Ho: $[b_1, b_2, \ldots, b_p] = [0, b_2, \ldots, b_p]$

Input parameters:

- $\alpha = 0.0500$ (one sided)
- $sd = 0.3126$
- $N = 65$
- $power = 0.8000$
- $Pr(event) = 0.7380$
- $R^2 = 0.1837$

Estimated number of events and coefficient:

- $E = 48$
- $b_1 = -1.2711$
Stata reports the estimate of the regression coefficient of -1.2711. We can disregard the sign because, as mentioned earlier, it is irrelevant in the context of sample-size or power determination. Refer to *Methods and formulas* for details.

With only 65 subjects, the smallest change in log hazards for a one-unit increase in the log of BUN, which can be detected with a preserved 80% power, is roughly 1.27, corresponding to a 27% increase in the log hazard-ratio of 1 desired to be detected originally in example 4.

Performing the analysis with the Cox PH model

After the data are collected, one can use `stcox` and `test` to fit the Cox PH model and perform a Wald test, as we demonstrate below.

Example 7: Performing a Wald test

We demonstrate how to perform a Wald test for the regression coefficient of the log of BUN from a Cox model using the data from *Krall, Uthoff, and Harley (1975)* described in example 2. The dataset `myeloma.dta` consists of 11 variables, described below.

```
. use http://www.stata-press.com/data/r13/myeloma
  (Multiple myeloma patients)
. describe
```

Contains data from http://www.stata-press.com/data/r13/myeloma.dta

<table>
<thead>
<tr>
<th></th>
<th>storage</th>
<th>display</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>obs</td>
<td>65</td>
<td></td>
<td>Multiple myeloma patients</td>
</tr>
<tr>
<td>vars</td>
<td>11</td>
<td></td>
<td>11 Feb 2013 19:26</td>
</tr>
<tr>
<td>size</td>
<td>1,690</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>variable name</th>
<th>storage</th>
<th>type</th>
<th>format</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
<td>Survival time from diagnosis to nearest month + 1</td>
</tr>
<tr>
<td>died</td>
<td>byte</td>
<td>%9.0g</td>
<td></td>
<td>0 - Alive, 1 - Dead</td>
</tr>
<tr>
<td>lnbun</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
<td>log BUN at diagnosis</td>
</tr>
<tr>
<td>hemo</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
<td>Hemoglobin at diagnosis</td>
</tr>
<tr>
<td>platelet</td>
<td>byte</td>
<td>%9.0g</td>
<td>normal</td>
<td>Platelets at diagnosis</td>
</tr>
<tr>
<td>age</td>
<td>byte</td>
<td>%9.0g</td>
<td></td>
<td>Age (complete years)</td>
</tr>
<tr>
<td>lnwbc</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
<td>Log WBC at diagnosis</td>
</tr>
<tr>
<td>fracture</td>
<td>byte</td>
<td>%9.0g</td>
<td>present</td>
<td>Fractures at diagnosis</td>
</tr>
<tr>
<td>lnbm</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
<td>log % of plasma cells in bone marrow</td>
</tr>
<tr>
<td>protein</td>
<td>byte</td>
<td>%9.0g</td>
<td></td>
<td>Proteinuria at diagnosis</td>
</tr>
<tr>
<td>scalcium</td>
<td>byte</td>
<td>%9.0g</td>
<td></td>
<td>Serum calcium (mgm%)</td>
</tr>
</tbody>
</table>

Sorted by:

Prior to using `stcox` to fit a Cox model, we need to set up the data by using `stset` (see [ST] `stset`). The analysis-time variable is `time` and the failure variable is `died`.
. stset time, failure(died)
 failure event: died != 0 & died < .
ox. time interval: [0, time]
ex. on or before: failure

65 total observations
0 exclusions

65 observations remaining, representing
48 failures in single-record/single-failure data
1560.5 total analysis time at risk and under observation
at risk from t = 0
earliest observed entry t = 0
last observed exit t = 92

We include all nine covariates in the model and perform a fit by using `stcox`. Then we perform a Wald test of $H_0: \beta_1 = 1$ for the coefficient of `lnbun` using `test`.

. stcox lnbun hemo platelet age lnwbc fracture lnbm protein scalcium, nohr
 failure _d: died
 analysis time _t: time
Iteration 0: log likelihood = -154.85799
Iteration 1: log likelihood = -146.68114
Iteration 2: log likelihood = -146.29446
Iteration 3: log likelihood = -146.29404
Refining estimates:
Iteration 0: log likelihood = -146.29404
Cox regression -- Breslow method for ties
No. of subjects = 65 Number of obs = 65
No. of failures = 48
Time at risk = 1560.5
LR chi2(9) = 17.13
Log likelihood = -146.29404 Prob > chi2 = 0.0468

| _t | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|------------|---------------|--------|--------|---------------------------|
| lnbun | 1.798354 | .6483293 | 2.77 | 0.006 | .5276519 | 3.069056 |
| hemo | -.1263119 | .0718333 | -1.76 | 0.079 | -.2671026 | .0144789 |
| platelet | -.2505915 | .5074656 | -0.49 | 0.621 | -.1.245206 | .7440228 |
| age | -.0127949 | .019475 | -0.66 | 0.511 | -.0509653 | .0253755 |
| lnwbc | .3537259 | .7131935 | 0.50 | 0.620 | -.0.1044108 | 1.75156 |
| fracture | .3378767 | .4072774 | 0.83 | 0.407 | -.4.603722 | 1.136126 |
| lnbm | .3589346 | .4860298 | 0.74 | 0.460 | -.5.936663 | 1.311535 |
| protein | .0130672 | .0261696 | 0.50 | 0.618 | -.0.0382243 | .0643587 |
| scalcium | .1259479 | .1034015 | 1.22 | 0.223 | -.0.767153 | .3286112 |

. test lnbun = 1
(1) lnbun = 1
 chi2(1) = 1.52
 Prob > chi2 = 0.2182

By default, `stcox` reports estimates of hazard ratios and the two-sided tests of the equality of a coefficient to zero. We use the `nohr` option to request estimates of coefficients. From the output table, a one-sided test of $H_0: \beta_1 = 0$ versus $H_a: \beta_1 > 0$ is rejected at a 0.05 level (one-sided p-value is 0.006/2 = 0.003 < 0.05). The estimate of the log-hazard difference associated with a one-unit increase of `lnbun` is $\hat{\beta}_1 = 1.8$. From the `test` output, we cannot reject the hypothesis of $H_0: \beta_1 = 1$.

For these data, the observed effect size (coefficient) of 1.8 is large enough for the sample size of 65 to be sufficient to reject the null hypothesis of no effect of the BUN on the survival of subjects.
(H₀; β₁ = 0). However, if the goal of the study were to ensure that the test detects the effect size corresponding to the coefficient of at least 1 with 80% power, a sample of approximately 106 subjects would have been required.

Stored results

stp power cox stores the following in r():

Scalars
- r(N) total number of subjects
- r(E) total number of events (failures)
- r(power) power of test
- r(alpha) significance level of test
- r(hratio) hazard ratio
- r(onesided) 1 if one-sided test, 0 otherwise
- r(sd) standard deviation
- r(Pr_E) probability of an event (failure), if specified
- r(r2) squared multiple correlation, if specified
- r(w) proportion of withdrawals, if specified

Macros
- r(metric) displayed metric (log-hazard or hazard)

Methods and formulas

Let β₁ denote the regression coefficient of the covariate of interest, x₁, from a Cox PH model, possibly in the presence of other covariates, x₂, ..., xₚ; and let Δ denote the hazard ratio associated with a one-unit increase of x₁ when other covariates are held constant. Under the PH model, β₁ = ln(Δ), where ln(Δ) is the change in log hazards associated with a one-unit increase in x₁ when other covariates are held constant.

Define E and N to be the total number of events (failures) and the total number of subjects required in the study; σ to be the standard deviation of x₁; pₑ to be the overall probability of an event (failure); R² to be the proportion of variance explained by the regression of x₁ on x₂, ..., xₚ (or squared multiple-correlation coefficient); w to be the proportion of subjects withdrawn from a study (lost to follow-up); α to be the significance level; β to be the probability of a type II error; and z(1−α/k) and z(1−β) to be the (1−α/k)th and the (1−β)th quantiles of the standard normal distribution, with k = 1 for the one-sided test and k = 2 for the two-sided test.

The total number of events required to be observed in a study to ensure a power of 1 − β of a test to detect the regression coefficient, β₁, with a significance level α, according to Hsieh and Lavori (2000), is

\[E = \frac{(z_{1-\alpha/k} + z_{1-\beta})^2}{\sigma^2 \beta_1^2 (1 - R^2)} \]
For the case of randomized study and a binary covariate x_1, this formula was derived in Schoenfeld (1983). The formula is an approximation and relies on a set of assumptions such as distinct failure times, all subjects completing the course of the study (no withdrawal), and a local alternative under which $\ln(\Delta)$ is assumed to be of order $O(N^{-1/2})$. The formula is derived for the score test but may be applied to other tests (Wald, for example) that are based on the partial likelihood of a Cox model because all these tests are asymptotically equivalent (Schoenfeld 1983; Hosmer, Lemeshow, and May 2008; Klein and Moeschberger 2003).

The total sample size required to observe the total number of events, E, is given by

$$N = \frac{E}{pE}$$

The estimate of the sample size is rounded up to the nearest integer.

To account for a proportion of subjects, w, withdrawn from a study, a conservative adjustment to the total sample size suggested in the literature (Freedman 1982; Machin and Campbell 2005) is applied as follows:

$$N_w = \frac{N}{1-w}$$

Withdrawal is assumed to be independent of administrative censoring and failure (event) times.

Power is estimated using the formula

$$1 - \beta = \Phi \left[|\beta_1| \sigma \left\{ NpE(1 - R^2) \right\}^{1/2} - z_{1-\alpha/k} \right]$$

where $\Phi(\cdot)$ is the standard normal cumulative distribution function.

The estimate of the regression coefficient for a fixed power, $1 - \beta$, and a sample size, N, is computed as

$$\beta_1^2 = \frac{(z_{1-\alpha/k} + z_{1-\beta})^2}{\sigma^2 NpE(1 - R^2)}$$

Either of the two values $|\beta_1|$ and $-|\beta_1|$ satisfy the above equation. \texttt{stpower cox} reports the negative of the two values, which corresponds to the reduction in a hazard of a failure for a one-unit increase in x_1. Similarly, if the hr option is used, the corresponding value of the hazard ratio less than 1 is reported to reflect the reduction in hazard for a one-unit increase in x_1.

References

Also see [ST] stpower for more references.

Also see

[ST] stpower — Sample size, power, and effect size for survival analysis

[ST] stpower exponential — Sample size and power for the exponential test

[ST] stpower logrank — Sample size, power, and effect size for the log-rank test

[ST] stcox — Cox proportional hazards model

[ST] sts test — Test equality of survivor functions

[ST] Glossary

[PSS] power — Power and sample-size analysis for hypothesis tests

[R] test — Test linear hypotheses after estimation
\textbf{Syntax}

\textit{Sample-size determination}

\textbf{Specifying hazard rates}

\begin{verbatim}
stpower exponential \[h_1 \quad h_2 \] \[, \ options \]
\end{verbatim}

\textbf{Specifying survival probabilities}

\begin{verbatim}
stpower exponential \[s_1 \quad s_2 \] \[, \ t(\#) \ options \]
\end{verbatim}

\textbf{Power determination}

\textbf{Specifying hazard rates}

\begin{verbatim}
stpower exponential \[h_1 \quad h_2 \] \[, n(numlist) \ options \]
\end{verbatim}

\textbf{Specifying survival probabilities}

\begin{verbatim}
stpower exponential \[s_1 \quad s_2 \] \[, t(\#) \ n(numlist) \ options \]
\end{verbatim}

where

h_1 is the hazard rate in the control group;

h_2 is the hazard rate in the experimental group;

s_1 is the survival probability in the control group at reference (base) time t; and

s_2 is the survival probability in the experimental group at reference (base) time t. h_1, h_2 and s_1, s_2 may each be specified either as one number or as a list of values (see \texttt{[U 11.1.8 numlist]}) enclosed in parentheses.
<table>
<thead>
<tr>
<th>options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td></td>
</tr>
<tr>
<td><code>t(#)</code></td>
<td>reference time t for survival probabilities s_1 and s_2</td>
</tr>
<tr>
<td><code>alpha(numlist)</code></td>
<td>significance level; default is $\alpha(0.05)$</td>
</tr>
<tr>
<td><code>power(numlist)</code></td>
<td>power; default is $\text{power}(0.8)$</td>
</tr>
<tr>
<td><code>beta(numlist)</code></td>
<td>probability of type II error; default is $\beta(0.2)$</td>
</tr>
<tr>
<td><code>n(numlist)</code></td>
<td>sample size; required to compute power</td>
</tr>
<tr>
<td><code>hratio(numlist)</code></td>
<td>hazard ratio of the experimental group to the control group, h_2/h_1 or $\ln(s_2)/\ln(s_1)$; default is $\text{hratio}(0.5)$</td>
</tr>
<tr>
<td><code>onesided</code></td>
<td>one-sided test; default is two sided</td>
</tr>
<tr>
<td><code>p1(numlist)</code></td>
<td>the proportion of subjects in the control group; default is $p_1(0.5)$, meaning equal group sizes</td>
</tr>
<tr>
<td><code>nratio(numlist)</code></td>
<td>ratio of sample sizes, N_2/N_1; default is $\text{nratio}(1)$, meaning equal group sizes</td>
</tr>
<tr>
<td><code>loghazard</code></td>
<td>power or sample-size computation for the test of the difference between log hazards; default is the test of the difference between hazards</td>
</tr>
<tr>
<td><code>unconditional</code></td>
<td>power or sample-size computation using the unconditional approach</td>
</tr>
<tr>
<td><code>parallel</code></td>
<td>treat number lists in starred options as parallel (do not enumerate all possible combinations of values) when multiple values per option are specified</td>
</tr>
<tr>
<td>Accrual/Follow-up</td>
<td></td>
</tr>
<tr>
<td><code>fperiod(#)</code></td>
<td>length of the follow-up period; if not specified, the study is assumed to continue until all subjects experience an event (fail)</td>
</tr>
<tr>
<td><code>aperiod(#)</code></td>
<td>length of the accrual period; default is $\text{aperiod}(0)$, meaning no accrual</td>
</tr>
<tr>
<td><code>aprob(#)</code></td>
<td>proportion of subjects accrued by time t^* under truncated exponential accrual; default is $\text{aprob}(0.5)$</td>
</tr>
<tr>
<td><code>apt ime(#)</code></td>
<td>proportion of the accrual period, $t^*/\text{aperiod}()$, by which proportion of subjects in $\text{aprob}()$ is accrued; default is $\text{apt ime}(0.5)$</td>
</tr>
<tr>
<td><code>at ime(#)</code></td>
<td>reference accrual time t^* by which the proportion of subjects in $\text{aprob}()$ is accrued; default value is $0.5 \times \text{aperiod}()$</td>
</tr>
<tr>
<td><code>ashape(#)</code></td>
<td>shape of the truncated exponential accrual distribution; default is $\text{ashape}(0)$, meaning uniform accrual</td>
</tr>
<tr>
<td><code>lossprob(# #)</code></td>
<td>proportion of subjects lost to follow-up by time $\text{losstime}()$ in the control and the experimental groups; default is $\text{lossprob}(0 0)$, meaning no losses to follow-up</td>
</tr>
<tr>
<td><code>losstime(#)</code></td>
<td>(reference) time by which the proportion of subjects specified in $\text{lossprob}()$ is lost to follow-up; default is $\text{losstime}(1)$</td>
</tr>
<tr>
<td><code>losshaz(# #)</code></td>
<td>loss hazard rates in the control and the experimental groups; default is $\text{losshaz}(0 0)$, meaning no losses to follow-up</td>
</tr>
</tbody>
</table>
Reporting

detail

table

columns(colnames)

notitle

nolegend

colwidth(# [# ...])

separator(#)

saving(filename [, replace])

noheader

continue

*Starred options may be specified either as one number or as a list of values (see \[U\] 11.1.8 numlist).
noheader and continue are not shown in the dialog box.

colnames

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
</tr>
<tr>
<td>power</td>
</tr>
<tr>
<td>beta</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>n1</td>
</tr>
<tr>
<td>n2</td>
</tr>
<tr>
<td>hr</td>
</tr>
<tr>
<td>loghr</td>
</tr>
<tr>
<td>diff</td>
</tr>
<tr>
<td>h1</td>
</tr>
<tr>
<td>h2</td>
</tr>
<tr>
<td>s1</td>
</tr>
<tr>
<td>s2</td>
</tr>
<tr>
<td>t</td>
</tr>
<tr>
<td>p1</td>
</tr>
<tr>
<td>nratio</td>
</tr>
<tr>
<td>fperiod</td>
</tr>
<tr>
<td>aperiod</td>
</tr>
<tr>
<td>aprob</td>
</tr>
<tr>
<td>aptime</td>
</tr>
<tr>
<td>atime</td>
</tr>
<tr>
<td>ashape</td>
</tr>
<tr>
<td>lpr1</td>
</tr>
<tr>
<td>lpr2</td>
</tr>
<tr>
<td>losstime</td>
</tr>
</tbody>
</table>
stpower exponential — Sample size and power for the exponential test

lh1 loss hazard rate in the control group
lh2 loss hazard rate in the experimental group
eo total expected number of events (failures) under the null
eo1 number of events in the control group under the null
eo2 number of events in the experimental group under the null
ea total expected number of events (failures) under the alternative
ea1 number of events in the control group under the alternative
ea2 number of events in the experimental group under the alternative
lo total expected number of losses to follow-up under the null
lo1 number of losses in the control group under the null
lo2 number of losses in the experimental group under the null
la total expected number of losses to follow-up under the alternative
la1 number of losses in the control group under the alternative
la2 number of losses in the experimental group under the alternative

By default, the following colnames are displayed:

- power, n, n1, n2, and alpha are always displayed;
- h1 and h2 are displayed if hazard rates are specified, or s1 and s2 if survival probabilities are specified;
- diff if hazard difference test is specified, or loghr if log-hazard difference test is specified;
- aperiod if accrual period (aperiod()) is specified;
- fperiod if follow-up period (fperiod()) is specified; and
- lh1 and lh2 if losshaz() or lpr1 and lpr2 if lossprob() is specified.

Menu

Statistics > Survival analysis > Power and sample size

Description

stpower exponential estimates required sample size and power for survival analysis comparing two exponential survivor functions by using parametric tests for the difference between hazards or, optionally, for the difference between log hazards. It accommodates unequal allocation between the two groups, flexible accrual of subjects into the study, and group-specific losses to follow-up. The accrual distribution may be chosen to be uniform over the fixed accrual period, \(R \), or truncated exponential over the period \([0, R]\). Losses to follow-up are assumed to be exponentially distributed. Also the computations may be carried out using the conditional or the unconditional approach.

You can use stpower exponential to

- calculate expected number of events and required sample size when you know power and effect size (supplied as hazard rates, survival probabilities, or hazard ratio) for studies with or without follow-up and accrual periods allowing for different accrual patterns and in the presence of losses to follow-up and

- calculate power when you know sample size and effect size (supplied as hazard rates, survival probabilities, or hazard ratio) for studies with or without follow-up and accrual periods allowing for different accrual patterns and in the presence of losses to follow-up.

If the t() option is specified, the command’s input parameters are the values of survival probabilities in the control (or the less favorable) group, \(S_1(t) \), and in the experimental group, \(S_2(t) \), at a fixed time, \(t \) (reference survival time), specified in t(), given as \(s_1 \) and \(s_2 \), respectively. Otherwise, the
input parameters are assumed to be the values of the hazard rates in the control group, \(\lambda_1 \), and in the experimental group, \(\lambda_2 \), given as \(h_1 \) and \(h_2 \), respectively. If survival probabilities are specified, they are converted to hazard rates by using the formula for the exponential survivor function and the value of time \(t \) in \(t() \).

Options

Main

- **\(t(#) \)** specifies a fixed time \(t \) (reference survival time) such that the proportions of subjects in the control and experimental groups still alive past this time point are as specified in \(s_1 \) and \(s_2 \). If this option is specified, the input parameters, \(s_1 \) and \(s_2 \), are the survival probabilities \(S_1(t) \) and \(S_2(t) \). Otherwise, the input parameters are assumed to be hazard rates, \(\lambda_1 \) and \(\lambda_2 \), given as \(h_1 \) and \(h_2 \), respectively.

- **\(\alpha(numlist) \)** sets the significance level of the test. The default is \(\alpha(0.05) \).

- **\(\text{power}(numlist) \)** sets the power of the test. The default is \(\text{power}(0.8) \). If \(\beta() \) is specified, this value is set to be \(1 - \beta() \). Only one of \(\text{power}() \) or \(\beta() \) may be specified.

- **\(\beta(numlist) \)** sets the probability of a type II error of the test. The default is \(\beta(0.2) \). If \(\text{power}(() \) is specified, this value is set to be \(1 - \text{power}() \). Only one of \(\beta() \) or \(\text{power}() \) may be specified.

- **\(\text{n}(numlist) \)** specifies the number of subjects in the study to be used to compute the power of the test. By default, the sample-size calculation is assumed. This option may not be combined with \(\beta() \) or \(\text{power}() \).

- **\(\text{hratio}(numlist) \)** specifies the hazard ratio of the experimental group to the control group. The default is \(\text{hratio}(0.5) \). This value defines the clinically significant improvement of the experimental procedure over the control desired to be detected by a test, with a certain power specified in \(\text{power}() \). If \(h_1 \) and \(h_2 \) (or \(s_1 \) and \(s_2 \)) are given, \(\text{hratio}() \) is not allowed and the hazard ratio is computed as \(h_2/h_1 \) (or \(\ln(s_2)/\ln(s_1) \)).

- **\(\text{onesided} \)** indicates a one-sided test. The default is two sided.

- **\(\text{p1}(numlist) \)** specifies the proportion of subjects in the control group. The default is \(\text{p1}(0.5) \), meaning equal allocation of subjects to the control and the experimental groups. Only one of \(\text{p1}() \) or \(\text{nratio}() \) may be specified.

- **\(\text{nratio}(numlist) \)** specifies the sample-size ratio of the experimental group relative to the control group, \(N_2/N_1 \). The default is \(\text{nratio}(1) \), meaning equal allocation between the two groups. Only one of \(\text{nratio}() \) or \(\text{p1}() \) may be specified.

- **\(\text{loghazard} \)** requests sample-size or power computation for the test of the difference between log hazards (or the test of the log of the hazard ratio). This option implies uniform accrual. By default, the test of the difference between hazards is assumed.

- **\(\text{unconditional} \)** requests that the unconditional approach be used for sample-size or power computation; see *The conditional versus unconditional approaches* and *Methods and formulas* for details.

- **\(\text{parallel} \)** reports results sequentially (in parallel) over the list of numbers supplied to options allowing \(\text{numlist} \). By default, results are computed over all combinations of the number lists in the following order of nesting: \(\alpha() \); \(\text{p1}() \) or \(\text{nratio}() \); list of hazard rates \(h_1 \) and \(h_2 \) or survival probabilities \(s_1 \) and \(s_2 \); \(\text{hratio}() \); \(\text{power}() \) or \(\beta() \); and \(\text{n}() \). This option requires that options with multiple values each contain the same number of elements.
Accrual/Follow-up

fperiod(#) specifies the follow-up period of the study, \(f \). By default, it is assumed that subjects are followed up until the last subject experiences an event (fails). The (minimal) follow-up period is defined as the length of the period after the recruitment of the last subject to the study until the end of the study. If \(T \) is the duration of a study and \(R \) is the length of an accrual period, then the follow-up period is \(f = T - R \).

aperiod(#) specifies the accrual period, \(R \), during which subjects are to be recruited into the study. The default is aperiod(0), meaning no accrual.

aprob(#) specifies the proportion of subjects expected to be accrued by time \(t^* \) according to the truncated exponential distribution. The default is aprob(0.5). This option is useful when the shape parameter is unknown but the proportion of accrued subjects at a certain time is known. aprob() is often used in conjunction with atime() or aperiod(). This option may not be specified with ashape() or loghazard and requires specifying a nonzero accrual period in aperiod().

aptime(#) specifies the proportion of the accrual period, \(t^*/R \), by which the proportion of subjects specified in aprob() is expected to be accrued according to the truncated exponential distribution. The default is aprob(0.5). This option may not be combined with atime(), ashape(), or loghazard and requires specifying a nonzero accrual period in aperiod().

atime(#) specifies the time point \(t^* \), reference accrual time, by which the proportion of subjects specified in aprob() is expected to be accrued according to the truncated exponential distribution. The default value is \(0.5 \times R \). This option may not be combined with atime(), ashape(), or loghazard and requires specifying a nonzero accrual period in aperiod(). The value in atime() may not exceed the value in aperiod().

ashape(#) specifies the shape, \(\gamma \), of the truncated exponential accrual distribution. The default is ashape(0), meaning uniform accrual. This option is not allowed in conjunction with loghazard and requires specifying a nonzero accrual period in aperiod().

lossprob(# #) specifies the proportion of subjects lost to follow-up by time losstime() in the control and the experimental groups, respectively. The default is lossprob(0 0), meaning no losses to follow-up. This option requires specifying aperiod() or fperiod() and may not be combined with lossthaz().

losstime(#) specifies the time at which the proportion of subjects specified in lossprob() is lost to follow-up, also referred to as the reference loss to follow-up time. The default is losstime(1). This option requires specifying lossprob().

lossthaz(# #) specifies exponential hazard rates of losses to follow-up, \(\eta_1 \) and \(\eta_2 \), in the control and the experimental groups, respectively. The default is lossthaz(0 0), meaning no losses to follow-up. This option requires specifying aperiod() or fperiod() and may not be combined with lossthaz().

Reporting

detail displays more detailed output; the expected number of events (failures) and losses to follow-up under the null and alternative hypotheses are displayed. This option is not appropriate with tabular output.

table displays results in a tabular format and is implied if any number list contains more than one element. This option is useful if you are producing results one case at a time and wish to construct your own custom table by using a forvalues loop.
columns(*colnames*) specifies results in a table with specified *colnames* columns. The order of the columns in the output table is the same as the order of *colnames* specified in columns(). Column names in columns() must be space-separated.

`notitle` prevents the table title from displaying.

`nolegend` prevents the table legend from displaying and column headers from being marked.

`colwidth(# [# ...])` specifies column widths. The default is 9 for all columns. The number of specified values may not exceed the number of columns in the table. A missing value (.) may be specified for any column to indicate the default width (9). If fewer widths are specified than the number of columns in the table, the last width specified is used for the remaining columns.

`separator(#)` specifies how often separator lines should be drawn between rows of the table. The default is `separator(0)`, meaning that no separator lines should be displayed.

`saving(filename[, replace])` creates a Stata data file (.dta file) containing the table values with variable names corresponding to the displayed *colnames*. `replace` specifies that `filename` be overwritten if it exists. `saving()` is only appropriate with tabular output.

The following options are available with `stpower exponential` but are not shown in the dialog box:

`noheader` prevents the table header from displaying. This option is useful when the command is issued repeatedly, such as within a loop. `noheader` implies `notitle`.

`continue` draws a continuation border at the bottom of the table. This option is useful when the command is issued repeatedly within a loop.

Remarks and examples

Remarks are presented under the following headings:

- Introduction
- Other ways of specifying the effect size
- Sample-size determination by using different approximations
- Sample-size determination in the presence of censoring
- Nonuniform accrual and exponential losses to follow-up
- The conditional versus unconditional approaches
- Link to the sample-size and power computation for the log-rank test
- Power determination

Introduction

Let \(S_1(t) \) and \(S_2(t) \) be the exponential survivor functions with hazard rates \(\lambda_1 \) and \(\lambda_2 \) in the control and experimental groups, respectively. Define \(\psi \) to be the treatment effect that can be expressed as a difference, \(\delta = \lambda_2 - \lambda_1 \), between hazard rates or as the log of the hazard ratio (a difference between log hazard-rates), \(\ln(\Delta) = \ln(\frac{\lambda_2}{\lambda_1}) = \ln(\lambda_2) - \ln(\lambda_1) \). Negative values of the treatment effect \(\psi \) imply the superiority of the experimental treatment over the standard (control) treatment. Denote \(R \) and \(T \) to be the length of the accrual period and the total duration of the study, respectively. Then, the follow-up period \(f \) is \(f = T - R \).

Consider a study designed to compare the exponential survivor functions, \(S_1(t) = e^{-\lambda_1 t} \) and \(S_2(t) = e^{-\lambda_2 t} \), of the two treatment groups. The disparity in survivor functions may be tested using the hazards \(\lambda_1 \) and \(\lambda_2 \) for the exponential model. Depending on the definition of the treatment effect \(\psi \), two test statistics based on the difference and on the log ratio of the hazards may be used to conduct tests of the difference between survivor functions using respective null hypotheses, \(H_0: \delta = 0 \) and \(H_0: \ln(\Delta) = 0 \).
The basic formula for the sample-size and power calculations for the test of H_0: $\delta = 0$ is proposed by Lachin (1981). He also derives the equation relating the sample size and power allowing for uniform accrual of subjects into the study over the period from 0 to R. Lachin and Foulkes (1986) extend this formula to truncated exponential accrual over the interval 0 to R and exponential losses to follow-up over the interval 0 to T.

The simplest method for the sample-size and power calculations for the test of H_0: $\ln(\Delta) = 0$ is presented by George and Desu (1974). Rubinstein, Gail, and Santner (1981) extend their method to account for uniform accrual and exponential losses to follow-up and apply it to planning the duration of a survival study. The formula that relates the sample size and power for this test and takes into account the uniform accrual and exponential losses to follow-up is formulated by Lakatos and Lan (1992), based on the derivations of Rubinstein, Gail, and Santner (1981).

By default, $\text{stpower exponential}$ computes the sample size required to achieve a specified power to detect a difference between hazard rates, $\delta_a = \lambda_2 - \lambda_1$, using the method of Lachin (1981). If loghazard is specified, the sample size required to detect a log of the hazard ratio $\ln(\Delta_a) = \ln(\lambda_2/\lambda_1)$ with specified power is reported using the formula derived by George and Desu (1974). In the presence of an accrual period, the methods of Lachin and Foulkes (1986) or for uniform accrual only, Rubinstein, Gail, and Santner (1981) (if loghazard and unconditional are specified), are used.

If power determination is desired, sample size $n()$ must be specified. Otherwise, sample-size determination is assumed with $\text{power}(0.8)$ (or, equivalently, $\text{beta}(0.2)$). The default setting for power or the probability of a type II error, a failure to reject the null hypothesis when the alternative hypothesis is true, may be changed by using power() or beta(), respectively.

The default probability of a type I error, a rejection of the null hypothesis when the null hypothesis is true, of a test is 0.05 but may be changed by using the alpha() option. One-sided tests may be requested by using the onesided option. The default equal-group allocation may be changed by specifying either p1() or nratio().

By default, the estimates of sample sizes or power for the test of the difference between hazards are reported. This may be changed to the test versus the difference between log hazards by using the loghazard option. The default conditional approach may be replaced with the unconditional approach by using unconditional; see The conditional versus unconditional approaches.

If neither the length of a follow-up period, f, nor the length of an accrual period, R, is specified in fperiod() or aperiod(), respectively, the study is assumed to continue until all subjects experience an event (failure), regardless of how much time is required. If either of the two options is supplied, a study of length $T = R + f$ is assumed.

If an accrual period of length R is specified in the aperiod() option, uniform accrual over the period [0, R] is assumed. The accrual distribution may be changed to truncated exponential when the shape parameter is specified in ashape(). The combination of the aprob() and aptime() (or atime()) options may be used in place of the ashape() option to request the desired shape of the truncated exponential accrual. To take into account exponential losses to follow-up, the losshaz() or lossprob() and losstime() options may be used. For examples, see Nonuniform accrual and exponential losses to follow-up.

Optionally, results may be displayed in a table by using table or columns() as demonstrated in Sample-size determination in the presence of censoring below and in Creating output tables of $[\text{ST}] \text{stpower}$. Refer to example 7 in Power and effect-size determination of $[\text{ST}] \text{stpower logrank}$ and $[\text{ST}] \text{stpower}$ to see how to obtain a graph of a power curve.
Other ways of specifying the effect size

Here we demonstrate how to provide the information about the disparity in the two exponential survivor functions, also known as the effect size, to `stpower exponential`. We separately consider the two tests, based on the hazard difference and based on the log of the hazard ratio (or on the log-hazard difference).

Example 1: Effect size for the test on the difference between hazards

Consider a fictional study for which the goal is to compare the two exponential survivor functions of the control and the experimental groups, using the test based on the difference between hazard rates. The yearly hazard rate in the control group is known to be 0.4, corresponding to roughly 45% survival by 2 years. The effect size, expressed as the hazard ratio, of 0.5 corresponding to the reduction in hazard of the experimental group from 0.4 to 0.2 (or increase in survival to 67% by 2 years), is of interest. The investigators need an estimate of the required sample size to detect this effect size with 80% power with a two-sided, 0.05-level test, the default settings of `stpower exponential`. For simplicity, we also assume that there are enough resources to monitor the subjects until all of them fail (a type I study, as defined in the next section).

The hazard rate in the control group and the effect size are required in the computation. The value of the hazard rate in the control group may be supplied directly as argument h_1 (the first syntax) or computed using the supplied value of the survival probability, s_1, at the reference time specified in the `t()` option (the second syntax). The effect size may be supplied by using the `hratio()` option, or by directly supplying the hazard rate in the experimental group as argument h_2 or, if the `t()` option is specified, by supplying the survival probability in the experimental group as argument s_2 at reference time $t()$.

We demonstrate all the above by using our fictional example. To obtain the required sample size, we supply the hazard rate in the control group, 0.4, as argument h_1 and the hazard ratio of 0.5 in `hratio()`.

```
. stpower exponential 0.4, hratio(0.5)
```

Note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
Ho: $h_2 - h_1 = 0$

Input parameters:

- `alpha` = 0.0500 (two sided)
- `h1` = 0.4000
- `h2` = 0.2000
- `h2-h1` = -0.2000
- `power` = 0.8000
- `p1` = 0.5000

Estimated sample sizes:

```
N = 74
N1 = 37
N2 = 37
```

Instead of the hazard rate, we specify the survival probability of 0.45 in the control group as argument s_2 and a reference survival time 2 in option `t()`.
. stpower exponential 0.45, t(2) hratio(0.5)
Note: input parameters are survival probabilities.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
Ho: h2-h1 = 0
Input parameters:
 alpha = 0.0500 (two sided)
 s1 = 0.4500
 s2 = 0.6708
 t = 2.0000
 h2-h1 = -0.1996
 power = 0.8000
 p1 = 0.5000

Estimated sample sizes:
 N = 74
 N1 = 37
 N2 = 37

Because the hazard ratio of 0.5 is the default of hratio(), we could have omitted this option from the above syntaxes.

Now rather than specifying the effect size by using the hratio(0.5) option above, we supply the hazard rate in the experimental group, 0.2, as argument h2,

. stpower exponential 0.4 0.2
(output omitted)

or the survival probability in the experimental group, 0.67, as argument s2 and the reference survival time of 2 years in t(),

. stpower exponential 0.45 0.67, t(2)
(output omitted)

and obtain the same estimates as in the above output: 74 of the total sample and 37 of the group sample sizes.

Example 2: Effect size for the test on the log of the hazard ratio

Continuing with the above example, suppose that the two survivor functions are to be compared using the test based on the difference between the log hazards (or test based on the log of the hazard ratio). To request this test, the loghazard option must be specified.

Unlike the hazard-difference test, the log hazard-ratio test does not require the hazard rate in the control group for the computation when the study is continued until all subjects fail. The only required information is the size of the effect desired to be detected by this test.

To obtain the estimate of the sample size for the test based on the log of the hazard ratio, we specify the loghazard option and use the default value of the hazard ratio of 0.5:
Similar to the examples for the hazard-difference test, the effect size may also be supplied via hazard rates,

```
. stpower exponential 0.4 0.2, loghazard
```

or survival probabilities and reference survival time,

```
. stpower exponential 0.45 0.67, t(2) loghazard
```

For a fixed-duration study, when either \texttt{fperiod()} or \texttt{aperiod()} is specified (see \textit{Sample-size determination in the presence of censoring}), the sample-size computations for the log hazard-ratio test do require the value of the hazard rate in the control group.

Sample-size determination by using different approximations

Consider the following two types of survival studies: the first type, a type I study, is when investigators have enough resources to monitor the subjects until all of them experience an event (failure) and the second type, a type II study, is when the study terminates after a fixed period of time, regardless of whether all subjects experienced an event by that time.

Here we explore sample-size estimates using different approximations for a type I study. Examples of sample-size determination for a type II study are presented in the next section.

In survival studies, the requirement for the sample size is based on the requirement to observe a certain number of events (failures) to ensure a prespecified power of a test to detect a difference in survivor functions. For a type I study, the number of subjects required for the study is the same as the number of events required to be observed in the study because all subjects experience an event by the end of the study.

Example 3: Sample size using the Lachin method

Consider an example from Lachin (1981, 107). A clinical trial is to be conducted to compare the survivor functions in the control and the experimental groups with a one-sided exponential test, based on the difference between hazards, of the superiority of a new treatment ($H_0: \delta < 0$) for a disease with moderate levels of mortality. Subjects in the control group get a standard treatment and subjects in the experimental group receive a new treatment. From previous studies the yearly hazard rate for the standard treatment was found to be $\lambda_1 = 0.3$, corresponding to 50% survival after 2.3 years. The
investigators would like to know how many subjects are required to detect a reduction in hazard to $\lambda_2 = 0.2$ ($H_a: \delta = -0.1$), which corresponds to an increase in survival to 63% at 2.3 years, with 90% power, equal-sized groups, and a significance level, α, of 0.05.

To obtain the estimate of the sample size for the above study, we supply hazard rates 0.3 and 0.2 as arguments and specify the power(0.9) option for 90% power and the onesided option for a one-sided test.

```
. stpower exponential 0.3 0.2, power(0.9) onesided
Note: input parameters are hazard rates.
```

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
Ho: $h_2 - h_1 = 0$

Input parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>0.0500 (one sided)</td>
</tr>
<tr>
<td>h1</td>
<td>0.3000</td>
</tr>
<tr>
<td>h2</td>
<td>0.2000</td>
</tr>
<tr>
<td>$h_2 - h_1$</td>
<td>-0.1000</td>
</tr>
<tr>
<td>power</td>
<td>0.9000</td>
</tr>
<tr>
<td>p1</td>
<td>0.5000</td>
</tr>
</tbody>
</table>

Estimated sample sizes:

- $N = 218$
- $N_1 = 109$
- $N_2 = 109$

From the output, a total of 218 events (subjects) must be observed (recruited) in a study to ensure a power of 90% of a one-sided exponential test to detect a 13% increase in survival probability of subjects in the experimental group with $\alpha = 0.05$. Our estimate of 218 of the total number of subjects (109 per group) required for the study is the same as the one reported in Lachin (1981, 107).

Example 4: Sample size using the George–Desu method

The syntax above reports the sample size obtained using the approximation of Lachin (1981) for the test based on the hazard difference. To obtain the sample size using the approximation of George and Desu (1974), for the equivalent alternative $H_a: \ln(\Delta) = -0.4055$ (a test based on the log of the hazard ratio), we need to specify the loghazard option.

```
. stpower exponential 0.3 0.2, power(0.9) onesided loghazard
Note: input parameters are hazard rates.
```

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, log-hazard difference, conditional
Ho: $\ln(h_2/h_1) = 0$

Input parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>0.0500 (one sided)</td>
</tr>
<tr>
<td>h1</td>
<td>0.3000</td>
</tr>
<tr>
<td>h2</td>
<td>0.2000</td>
</tr>
<tr>
<td>$\ln(h_2/h_1)$</td>
<td>-0.4055</td>
</tr>
<tr>
<td>power</td>
<td>0.9000</td>
</tr>
<tr>
<td>p1</td>
<td>0.5000</td>
</tr>
</tbody>
</table>

Estimated sample sizes:

- $N = 210$
- $N_1 = 105$
- $N_2 = 105$
The George–Desu method yields a slightly smaller estimate, 210, of the total number of events (subjects). George and Desu (1974) studied the accuracy of the two approximations based on δ and ln(∆) and concluded that the former is slightly conservative; that is, it gives slightly larger sample-size estimates. The latter was found to be accurate to one or two units of the exact solution for equal-sized groups.

We could have also obtained the same results by using the hratio() option to specify the hazard ratio 0.2/0.3 = 0.66667 instead of supplying arguments 0.3 and 0.2:

```
. stpower exponential, hratio(0.66667) power(0.9) onesided loghazard
```

Technical note

The above approach may also be used to obtain an approximation to the sample size or power for the exact F test of equality of two exponential mean analysis (life) times (using the relation between a mean and a hazard rate of the exponential distribution, $\mu = 1/\lambda$).

For example, the sample size of 210 obtained above may be used as an approximation to the number of subjects required in a study of which the goal is to detect an increase in a mean analysis (life) time of the experimental group from 3.33 = $1/0.3$ to 5 = $1/0.2$ by using the exact, one-sided, 0.05-level F test with 90% power.

The test statistic of the F test is a ratio of two sample means from two exponential distributions that has an exact F distribution. The George–Desu method is based on the normal approximation of the distribution of the log of this test statistic. George and Desu (1974) studied this approximation for equal-sized groups and some common values of significance levels, powers, and hazard ratios and found it to be accurate to one or two units of the exact solution.

Technical note

We can obtain the same results from stpower exponential as in the examples above by using the respective survival probabilities 0.5 and 0.63 at $t = 2.3$ as arguments in place of hazard rates 0.3 and 0.2. For example,

```
. stpower exponential 0.5 0.63, t(2.3) power(0.9) onesided
```

Note: input parameters are survival probabilities.

(output omitted)

Other alternative syntaxes, using the hratio() option, are

```
. stpower exponential 0.3, hratio(0.6667) power(0.9) onesided
```

Note: input parameters are hazard rates.

(output omitted)

where 0.3 is interpreted as a hazard rate because t() is not specified, and

```
. stpower exponential 0.5, t(2.3) hratio(0.6667) power(0.9) onesided
```

Note: input parameters are survival probabilities.

(output omitted)
Sample-size determination in the presence of censoring

Often in practice, investigators may not have enough resources to continue a study until all subjects experience an event and therefore plan to terminate the study after a fixed period, T. Some subjects may not experience an event by the end of the study, in which case the (administrative) censoring of subjects occurs. In the presence of censoring, the number of subjects required in a study will be larger than the number of events required to be observed in the study.

We investigate how terminating the study after some fixed period, T, before all subjects experience an event, affects the requirements for the sample size. The duration of a study is divided into two phases: an accrual phase of a length R, during which subjects are recruited to the study, and a follow-up phase of a length f, during which subjects are followed up until the end of the study and no new subjects enter the study. The duration of a study, T, is the sum of the lengths of the two phases.

Consider the following study designs. In the first study design, A, each subject is followed up for a length of time T. Here the minimum follow-up time f is equal to T, and, consequently, $R = 0$. In practice, however, subjects will often enter the study at random times and will be followed up until the end of a study at time T, in which case the subjects who come under observation later in time will have a shorter follow-up than subjects who entered the study at the beginning. Therefore, the minimum follow-up time f will be less than T, and R will be equal to $T - f$. Here the length of the accrual period, R, must be taken into account in the computations. In the presence of an accrual period, subjects may be recruited continuously during a period of length T ($R = T$, $f = 0$), the second study design, B. Or subjects may be recruited for a fixed period, R, and then followed up for a period of time, f, during which no new subjects enter the trial, so that the total duration of study is $T = R + f$, the third design, C.

Example 5: Sample size in the presence of accrual and follow-up periods

Continuing example 3, assume that the investigators have resources to continue the study for only 5 years, $T = 5$. We tabulate sample-size values for different combinations of an accrual period, R, and a minimum follow-up period, f, such that $T = f + R = 5$. Because the aperiod() and fperiod() options allow specifying only one number, we can obtain the table by issuing stpower exponential repeatedly within a forvalues loop.

```
  . local cont continue
  . local columns columns(power n aperiod fperiod h1 h2 alpha)
  . local T = 5
  . forvalues R = 0/‘T’ { 2.
      if ‘R’ == ‘T’ { 3.
        local cont 4.
      } 5.
      stpower exponential 0.3 0.2, power(0.9) onesided
      > aperiod(‘R’) fperiod(‘f’) ‘header’ ‘cont’ ‘columns’ 7.
      local header noheader 8.
  }
Note: input parameters are hazard rates.
```
Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
Ho: h2-h1 = 0

<table>
<thead>
<tr>
<th>Power</th>
<th>N</th>
<th>AP*</th>
<th>FP</th>
<th>H1</th>
<th>H2</th>
<th>Alpha*</th>
</tr>
</thead>
<tbody>
<tr>
<td>.9</td>
<td>304</td>
<td>0</td>
<td>5</td>
<td>.3</td>
<td>.2</td>
<td>.05</td>
</tr>
<tr>
<td>.9</td>
<td>322</td>
<td>1</td>
<td>4</td>
<td>.3</td>
<td>.2</td>
<td>.05</td>
</tr>
<tr>
<td>.9</td>
<td>344</td>
<td>2</td>
<td>3</td>
<td>.3</td>
<td>.2</td>
<td>.05</td>
</tr>
<tr>
<td>.9</td>
<td>378</td>
<td>3</td>
<td>2</td>
<td>.3</td>
<td>.2</td>
<td>.05</td>
</tr>
<tr>
<td>.9</td>
<td>426</td>
<td>4</td>
<td>1</td>
<td>.3</td>
<td>.2</td>
<td>.05</td>
</tr>
<tr>
<td>.9</td>
<td>502</td>
<td>5</td>
<td>0</td>
<td>.3</td>
<td>.2</td>
<td>.05</td>
</tr>
</tbody>
</table>

* one sided
+ uniform accrual; 50.00% accrued by 50.00% of AP

For each iteration of the loop, the value of a follow-up period, f, stored in macro f (see \[P\] macro), is computed using the current value of an accrual period, R, and the fixed-time study T, defined by macros R and T, respectively. The values ‘R’ and ‘f’ are then passed to the aperiod() and fperiod() options, respectively. We use the columns() option to obtain a customized table with columns power, n, aperiod, fperiod, h1, h2, and alpha. We store this option in local columns simply to avoid specifying a long expression in stpower exponential. We specify noheader in the syntax of stpower exponential each time it is called in the loop except for the first time, and we specify continue each time except for the final one.

The first and the last entries of the above table correspond to the extreme cases of no accrual (design A) and no follow-up (design B), respectively.

For a design A, the estimate of the sample size, 304, is larger than the earlier estimate of 218 from example 3. That is, if the study in example 3 terminates after 5 years, the requirement for the sample size increases by 39% to ensure that the same number of 218 events is observed.

By trying different values of the follow-up period, we may find that a 30-year follow-up is required if the investigators can recruit no more than 218 subjects: 30 years is required to observe all subjects to fail in this study.

. stpower exponential 0.3 0.2, power(0.9) onesided fperiod(30)

Note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
Ho: h2-h1 = 0

Input parameters:

alpha = 0.0500 (one sided)
h1 = 0.3000
h2 = 0.2000
h2-h1 = -0.1000
power = 0.9000
p1 = 0.5000

Accrual and follow-up information:
duration = 30.0000
follow-up = 30.0000

Estimated sample sizes:
N = 218
N1 = 109
N2 = 109

For design B, instead of being monitored for 5 years, subjects are being continuously recruited during all of those 5 years; the total sample size increases from 304 to 502. The reason for such an
increase is that the average analysis time (the time when a subject is at risk of a failure) decreases from 5 to 2.5 and therefore reduces the probability of a subject failing by the end of the study.

In general, the estimates of the total sample size steadily increase as the length of the follow-up decreases. That is, the presence of a follow-up period reduces the requirement for the number of subjects in the study. For example, a clinical trial with a 3-year uniform accrual and a 2-year follow-up needs a total of 378 subjects (189 per group) compared with the total of 502 subjects required for a study with no follow-up and a 5-year accrual.

Nonuniform accrual and exponential losses to follow-up

In the presence of an accrual period, stpower exponential performs computations assuming uniform accrual over the period of time R, specified in aperiod(). The assumption of uniform accrual may be relaxed by requesting a truncated exponential accrual over the interval 0 to R with shape γ as specified in ashape(#). If the estimate of the shape parameter, γ, is unavailable, an alternative is to specify the proportion of subjects, $G(t^*)$, expected to be recruited by a fixed time, t^* (or by a proportion of the accrual period R, t^*/R), in the aprob() and atime() (or aptime()) options, respectively. This information is used to find the corresponding γ by using

$$G(t^*) = \frac{1 - \exp(-\gamma t^*)}{1 - \exp(-\gamma R)}$$

Also see Cleves et al. (2010, sec. 16.2) for more information and see Methods and formulas for technical details.

Example 6: Truncated exponential entry distribution

Continuing example 5, we investigate the influence of nonuniform accrual on the estimate of the sample size for a study with a 3-year accrual and a 2-year follow-up. Suppose that the recruitment of subjects to the study is slow for most of the accrual period and increases rapidly toward the end of the recruitment. Consider an extreme case of such an accrual corresponding to shape parameter -6. The graph of uniform and truncated exponential with shape -6 entry distributions over $[0, 3]$ is given below.
From the above graph, the accrual of subjects is extremely slow during most of the recruitment period, with 70% of subjects being recruited within the last few months of a 3-year accrual period. More precisely, according to the graph, 30% of subjects are expected to be recruited after 2.8 years.

To obtain the estimate of the sample size for this study, we type

```
. stpower exponential 0.3 0.2, power(0.9) onesided aperiod(3) fperiod(2)
> ashape(-6)
```

Note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
Ho: h2-h1 = 0

Input parameters:
- \(\alpha = 0.0500\) (one sided)
- \(h1 = 0.3000\)
- \(h2 = 0.2000\)
- \(h2-h1 = -0.1000\)
- \(\text{power} = 0.9000\)
- \(p1 = 0.5000\)

Accrual and follow-up information:
- \(\text{duration} = 5.0000\)
- \(\text{follow-up} = 2.0000\)
- \(\text{accrual} = 3.0000\) (exponential)
- \(\text{accrued(\%)} = 50.00\) (by time \(t^*\))
- \(t^* = 2.8845\) (96.15% of accrual)

Estimated sample sizes:
- \(N = 516\)
- \(N1 = 258\)
- \(N2 = 258\)

and conclude that 516 subjects have to be recruited to this study. This sample size ensures 90% power of a one-sided, 0.05-level test to detect a reduction in hazard from 0.3 to 0.2 when the accrual of subjects follows the considered truncated exponential distribution. For this extreme case of a negative truncated exponential entry distribution (the concave entry distribution), the estimate of the sample size increases significantly compared with an estimate of 378 for a uniform entry distribution. On the other hand, a truncated exponential distribution with positive values of the shape parameter (convex entry distribution) will reduce the requirement for the sample size when compared with uniform accrual.

Suppose that we do not know (or do not wish to guess) the value of the shape parameter. The only information available to us from the above graph is that 30% of subjects are expected to be recruited after 2.8 years (or, equivalently, 50% of subjects are expected to be recruited by 96.15% of the accrual period from the previous output). We submit this information in the `aprob()` and `atime()` or `aprob()` and `apt ime()` options, as shown below, and obtain the same estimate of the sample size 516.
. stpower exponential 0.3 0.2, power(0.9) onesided aperiod(3) fperiod(2)
> aprob(0.3) atime(2.8)
Note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
Ho: h2-h1 = 0

Input parameters:
\[
\begin{align*}
\alpha &= 0.0500 \quad \text{(one sided)} \\
\lambda_1 &= 0.3000 \\
\lambda_2 &= 0.2000 \\
\lambda_2 - \lambda_1 &= -0.1000 \\
\text{power} &= 0.9000 \\
p_1 &= 0.5000
\end{align*}
\]

Accrual and follow-up information:
\[
\begin{align*}
\text{duration} &= 5.0000 \\
\text{follow-up} &= 2.0000 \\
\text{accrual} &= 3.0000 \quad \text{(exponential)} \\
\text{accrued(\%)} &= 30.00 \quad \text{(by time t*)} \\
t^* &= 2.8000 \quad (93.33\% \text{ of accrual})
\end{align*}
\]

Estimated sample sizes:
\[
\begin{align*}
N &= 516 \\
N_1 &= 258 \\
N_2 &= 258
\end{align*}
\]

or, equivalently,
\[
. \text{stpower exponential 0.3 0.2, power(0.9) onesided aperiod(3) fperiod(2)}
> \text{aprob(0.9615)}
\]

(output omitted)

Because 50\% is the default value of \text{aprob()}, we omit this option in the above.

Apart from administrative censoring, subjects may not experience an event by the end of the study because of being lost to follow-up for various reasons. See \textit{Theory and terminology} in \textit{[ST] stpower} and \textit{[ST] Glossary} for a more detailed description. Rubinstein, Gail, and Santner (1981) and Lachin and Foulkes (1986) extend sample-size and power computations to take into account exponentially distributed losses to follow-up. In addition to being exponentially distributed, losses to follow-up are assumed to be independent of the survival times.

\textbf{Example 7: Exponential losses to follow-up}

Suppose that in example 5, in the study with a 3-year uniform accrual and a 2-year follow-up, yearly loss hazards in the control and the experimental groups are 0.2. Groups may have different loss hazards, which can be specified in \text{losshaz()}.
The sample size required for a one-sided, 0.05-level test to detect a reduction in hazard from 0.3 to 0.2 with 90% power increases from 378 (see example 5) to 500. We observe that for the extreme case of losses to follow-up, sample size increases significantly. A conservative adjustment commonly applied in practice is $N(1 + p_L)$, where p_L is the expected proportion of losses to follow-up in both groups combined. For this example, p_L may be computed as $0.5(0.369 + 0.324) \approx 0.35$ from table 2 of Lachin and Foulkes (1986). Then the conservative estimate of the sample size is $378(1 + 0.35) = 510$, which is slightly greater than 500, the actual required sample size.

We also requested that additional information about the expected number of events and losses to follow-up under the null and under the alternative hypothesis be displayed by using the `detail` option. From the above output, a total of 173 subjects (81 from the control and 92 from the experimental groups) are expected to be lost in the study with exponentially distributed losses with yearly rates of 0.2 in each group under the alternative hypothesis.

If the proportion of subjects lost to follow-up by a fixed period in each group is available rather than loss to follow-up rates, it can also be supplied by using the `lossprob()` and `losstime()` options. For example, in the above study approximately 33%, $1 - \exp(-0.2 \times 2) \approx 0.33$, of subjects in each group are lost at time 2 (years). We can obtain the same estimates of sample sizes with

```
. stpower exponential 0.3 0.2, power(0.9) onesided aperiod(3) fperiod(2)
> lossthaz(0.33 0.33) losstime(2)
(output omitted)
```
The conditional versus unconditional approaches

Denote ψ to be the effect size, and $\hat{\lambda}_1$ and $\hat{\lambda}_2$ to be the maximum likelihood estimates of the respective hazard-rate parameters. Consider the two effect-size estimators based on the difference between the hazard rates, $\hat{\lambda}_2 - \hat{\lambda}_1$, and based on the log of the hazard ratio, $\ln(\hat{\lambda}_2/\hat{\lambda}_1)$. Both estimators are asymptotically normal under the null and under the alternative hypothesis.

We adopt Chow, Shao, and Wang (2008, 173) terminology when referring to the conditional and unconditional tests. The conditional test is the test that uses the constraint $\lambda_2 = \lambda_1$ (conditional on H_0) when computing the variance of the effect-size estimator under the null. The unconditional test is the test that does not use the above constraint when computing the variance of the effect-size estimator under the null. The score and the Wald tests are each one of the examples of conditional and unconditional tests, respectively. Chow, Shao, and Wang (2008) note that neither of the two tests (conditional or unconditional) is always more powerful than the other under the alternative hypothesis. Therefore, there is no definite recommendation of which one is preferable to be used in practice.

The conditional approach relies on the following relationship between sample size and power (given in Lachin 1981) to compute estimates of required sample size or power,

$$|\psi| = z_{1-\alpha} \{\text{Var}(\psi, H_0)\}^{1/2} + z_{1-\beta} \{\text{Var}(\psi, H_a)\}^{1/2}$$

where $z_{1-\alpha}$ and $z_{1-\beta}$ are the $(1-\alpha)$th and the $(1-\beta)$th quantiles of the standard normal distribution, and $\text{Var}(\psi, H_0)$ and $\text{Var}(\psi, H_a)$ are the asymptotic variances under the null and under the alternative, respectively, of the effect-size estimator, $\hat{\psi}$. This approach uses the variance of the estimator conditional on the hypothesis type.

The unconditional approach replaces $\text{Var}(\psi, H_0)$ with $\text{Var}(\psi, H_a)$ in the above and uses the variance under the alternative to compute the estimates of sample size and power:

$$|\psi| = (z_{1-\alpha} + z_{1-\beta}) \{\text{Var}(\psi, H_a)\}^{1/2}$$

Therefore, the resulting formulas based on the two approaches are different.

Lakatos and Lan (1992) formulate the sample-size formula for the test of the log of the hazard ratio based on the method of Rubinstein, Gail, and Santner (1981). This formula is based on the unconditional approach. Lachin and Foulkes (1986) provide the sample-size formula for the test of the log of the hazard ratio that uses the conditional approach. They also present both conditional and unconditional versions of formulas for the test based on the difference between hazards. As noted by Lachin and Foulkes (1986), sample sizes estimated based on the unconditional approach will be larger than the estimates based on the conditional approach for equal-sized groups.

Both approaches are available with stpower exponential; the conditional is the default and the unconditional may be requested by specifying the unconditional option. Refer to Methods and formulas for the formulas underlying these approaches.

Example 8: Sample size using the Rubinstein–Gail–Santner method

Consider the following scenario in Lakatos and Lan (1992, table I). A 10-year survival study with a 1-year accrual period and a 9-year follow-up is conducted to compare the survivor functions of the two groups by using a two-sided, 0.05 exponential test based on the log of the hazard ratio. The probability of surviving to the end of a study for subjects in the control group is 0.8 ($S_1(t) = 0.8, t = 10$). Subjects are recruited uniformly over the interval $[0, 1]$. Lakatos and Lan (1992) report an estimate of 664 for the sample size required to detect a change in the hazard of the experimental group.
corresponding to the hazard ratio $\Delta = 0.5$ with 90\% power by using the Rubinstein–Gail–Santner method. To obtain the estimates according to this method, we need to specify both loghazard and unconditional.

```
. stpower exponential 0.8, t(10) power(0.9) aperiod(1) fperiod(9) loghazard > unconditional
Note: input parameters are survival probabilities.
Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, log-hazard difference, unconditional
Ho: ln(h2/h1) = 0
Input parameters:
   alpha = 0.0500 (two sided)
   s1 = 0.8000
   s2 = 0.8944
   t = 10.0000
   ln(h2/h1) = -0.6931
   power = 0.9000
   p1 = 0.5000
Accrual and follow-up information:
   duration = 10.0000
   follow-up = 9.0000
   accrual = 1.0000 (uniform)
Estimated sample sizes:
   N = 664
   N1 = 332
   N2 = 332
```

Because the default value of the hazard ratio is 0.5, we omit the hratio(0.5) option in the above. From the output, we obtain the same estimate of 664 of the sample size as reported in Lakatos and Lan (1992).

Technical note

In the absence of censoring, the estimates of the sample size or power based on the test of log of the hazard ratio are the same for the conditional and the unconditional approaches. For example, both

```
. stpower exponential 0.8, t(10) power(0.9) loghazard
(output omitted)
```

and

```
. stpower exponential 0.8, t(10) power(0.9) loghazard unconditional
(output omitted)
```

produce the same estimate of the sample size (88). The asymptotic variance of maximum likelihood estimates of the log of the hazard ratio does not depend on hazard rates when there is no censoring and therefore does not depend on the type of hypothesis, $\text{Var}(\hat{\psi}, H_0) = \text{Var}(\hat{\psi}, H_1) = 2/N$.

Although all the above examples demonstrated sample-size computation for equal-sized groups, unequal allocation may be taken into account by using the p1() or nratio() option.
Example 9: Sample size using the Freedman and the Schoenfeld methods

Continuing examples 3 and 4, Lachin (1981, 106) gives another approximation to obtain the estimate of the sample size under the equal-group allocation. This approximation coincides with the formula derived by Freedman (1982) for the number of events in the context of the log-rank test. We can obtain such an estimate by using `stpower logrank` and by specifying the hazard ratio computed earlier of 0.66667:

```
stpower logrank, hratio(0.66667) power(0.9) onesided
```

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
Ho: S1(t) = S2(t)

Input parameters:
- `alpha` = 0.0500 (one sided)
- `hratio` = 0.6667
- `power` = 0.9000
- `p1` = 0.5000

Estimated number of events and sample sizes:
- `E` = 216
- `N` = 216
- `N1` = 108
- `N2` = 108

The estimate, 216, of the sample size is the same as given in Lachin (1981, 107) and is slightly smaller than the estimate, 218, obtained in example 3, and larger than 210, obtained using the George–Desu method in example 4.

The approximation due to George and Desu (1974) is the same as the approximation to the number of events derived by Schoenfeld (1981) in application to the log-rank test. We can confirm that by using

```
stpower logrank, hratio(0.66667) power(0.9) onesided schoenfeld
```

and obtain the same estimate of 210 as using `stpower exponential` with the `loghazard` option in example 4.

Power determination

Power determination may be requested by specifying the `n()` option. We verify the power computation for the study from example 6. We expect the power estimate to be close to 0.9.

Example 10: Power determination

The only thing we change in the syntax of `stpower exponential` from example 6 is replacing the `power(0.9)` option with the `n(664)` option:
Example 11: Using streg to perform the log hazard-ratio test

In this example, we demonstrate the importance of sample-size computations to ensure a high power of a test to detect a difference between exponential survivor functions. We consider an asymptotic Wald (or normal z) test to test the equality of the log of the hazard ratio to zero.

Continuing example 8, suppose that the investigators have only 100 subjects available for the study. As we see below, the power to detect a 50% risk reduction (the hazard ratio of 0.5) of the experimental group reduces from 90% to 24%:

```stata
. stpower exponential 0.8, t(10) n(100) aperiod(1) fperiod(9) loghazard > unconditional
Note: input parameters are survival probabilities.
Estimated power for two-sample comparison of survivor functions
Exponential test, log-hazard difference, unconditional
Ho: $\ln(\text{h2}/\text{h1}) = 0$
Input parameters:
   alpha = 0.0500 (two sided)
   s1 = 0.8000
   s2 = 0.8944
   t = 10.0000
   $\ln(\text{h2}/\text{h1}) = -0.6931$
   N = 100
   p1 = 0.5000
Accrual and follow-up information:
   duration = 10.0000
   follow-up = 9.0000
   accrual = 1.0000 (uniform)
Estimated power:
   power = 0.2414
```

We obtain the estimate of power 0.9.

For examples of how such information may be used to construct power curves, see [ST] stpower and example 7 in Power and effect-size determination of [ST] stpower logrank.
To demonstrate the implication of this reduction, consider the following example. We generate the data according to the study from example 8 with the following code.

``` stata
program simdata
    args n h1 h2 R
    set obs `n'
    generate double entry = `R'*runiform()
    generate double u = runiform()
    /* random allocation to two groups of equal sizes */
    generate double u1 = runiform()
    generate double u2 = runiform()
    sort u1 u2, stable
    generate byte drug = (_n<=`n'/2)
    /* exponential failure times with rates h1 and h2 */
    generate double failtime = entry - ln(1-u)/`h1' if drug==0
    replace failtime = entry - ln(1-u)/`h2' if drug==1
end

.clear
.set seed 234
.quietly simdata 100 0.0223 0.0112 1
```

The entry times of subjects are generated from a uniform \([0, 1)\) distribution and stored in variable `entry`. The subjects are randomized to two groups of equal size of 50 subjects each. The survival times are generated from exponential distribution with the hazard rate of \(-\ln(0.8)/10 = 0.0223\) in the control group, \(\text{drug} = 0\), and the hazard rate of \(0.5 \times 0.0223 = 0.0112\) in the experimental group, \(\text{drug} = 1\), conditional on subjects’ entry times in `entry`.

Before analyzing these survival data, we need to set it up properly using `stset`. The failure-time variable is `failtime`. The study terminates at \(t = 10\), so we use `exit(time 10)` with `stset` to specify that all failure times past 10 are to be treated as censored. Because subjects enter the study at random times (`entry`) and become at risk of a failure upon entering the study, we also specify the `origin(entry)` option to ensure that the analysis time is adjusted for the entry times. For more details, see [ST] `stset`.

``` stata
.stset failtime, exit(time 10) origin(entry)
    failure event: (assumed to fail at time=failtime)
    obs. time interval: (origin, failtime]
    exit on or before: time 10
    t for analysis: (time-origin)
    origin: time entry
```

```
100  total observations
0   exclusions

100  observations remaining, representing
15   failures in single-record/single-failure data
891.5574  total analysis time at risk and under observation
at risk from t = 0
earliest observed entry t = 0
last observed exit t = 9.99908
```

To perform the log hazard-ratio test, we fit an exponential regression model on `drug` by using `streg` (see [ST] `streg`). We can express the log of the hazard ratio in terms of regression coefficients as follows: \(\ln(\Delta) = \ln(\lambda_2/\lambda_1) = \ln\{\exp(\beta_0 + \beta_1)/\exp(\beta_0)\}\) = \(\beta_1\), where \(\beta_0\) and \(\beta_1\) are the estimated coefficients for the constant and `drug` in the regression model. Then the test of \(H_0: \ln(\Delta) = 0\) may be rewritten in terms of a coefficient on `drug` as \(H_0: \beta_1 = 0\). This test is part of the standard output after `streg`.
. streg drug, distribution(exponential) nohr
 failure _d: 1 (meaning all fail)
 analysis time _t: (failtime-origin)
 exit on or before: time 10
Iteration 0: log likelihood = -54.114272
Iteration 1: log likelihood = -53.090859
Iteration 2: log likelihood = -53.053454
Iteration 3: log likelihood = -53.053406
Iteration 4: log likelihood = -53.053406
Exponential regression -- log relative-hazard form
No. of subjects = 100 Number of obs = 100
No. of failures = 15
Time at risk = 891.5574257
LR chi2(1) = 2.12
Log likelihood = -53.053406 Prob > chi2 = 0.1452

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|-------|-----------|------|------|----------------------|
| drug | -0.773 | .5477226 | -1.41| 0.158| -1.84644 .300593 |
| _cons | -3.757 | .3162278 | -11.88| 0.000| -4.376349 -3.136759 |

From the output table above, the p-value for a two-sided test of the coefficient for drug, 0.158, is greater than 0.05. On that basis, we do not have evidence to reject the null hypothesis of no difference between the two exponential survivor functions and therefore make an incorrect decision because we simulated the data with different group hazard rates. If we were to repeat this, say, 100 times, using different datasets simulated according to the alternative H_a: $\ln(\Delta) = \ln(0.5) = -0.6931$ (see [R] simulate), for roughly 76 of them we would have failed to reject the null hypothesis of no difference (a type II error). Therefore, more subjects are required to be able to detect the log of the hazard ratio of -0.4055 in this study.

Example 12: Using results from streg to perform the Wald test of hazard difference

We obtain the power of the test based on the difference between hazards for the study in the above example (omit the loghazard option from the previous syntax).

. stpower exponential 0.8, t(10) n(100) aperiod(1) fperiod(9) unconditional
Note: input parameters are survival probabilities.
Estimated power for two-sample comparison of survivor functions
Exponential test, hazard difference, unconditional
Ho: h2-h1 = 0
Input parameters:
alpha = 0.0500 (two sided)
s1 = 0.8000
s2 = 0.8944
t = 10.0000
h2-h1 = -0.0112
N = 100
p1 = 0.5000
Accrual and follow-up information:
duration = 10.0000
follow-up = 9.0000
accrual = 1.0000 (uniform)
Estimated power:
power = 0.2458
We obtain a power estimate of 0.2458, which is close to 0.2414 from example 9.

To test the difference between hazard rates by using the Wald test, we express this difference in terms of coefficients, \(\lambda_2 - \lambda_1 = \exp(\beta_0)\{\exp(\beta_1) - 1\} \), and use \texttt{testnl} ([R] \texttt{testnl}) after \texttt{streg} to perform the nonlinear hypothesis test of \(H_0: \exp(\beta_0)\{\exp(\beta_1) - 1\} = 0 \).

\begin{verbatim}
. testnl exp(_b[_cons])*(_b[drug])-1) = 0
 (1) exp(_b[_cons])*(_b[drug])-1) = 0
 chi2(1) = 2.03
 Prob > chi2 = 0.1540
\end{verbatim}

We obtain the same conclusions from the Wald test based on the difference between hazards as in example 9. That is, based on the \(p \)-value of 0.1540 we fail to reject the null hypothesis of no difference between hazards of two groups (or miss the alternative \(H_a: \delta = -0.0112 \) corresponding to reduction in hazard from roughly 0.02 to 0.01) for the data from example 9.

\section{Technical note}

Often in practice, to test the disparity in two exponential survivor functions, the log-rank test is used instead of the hazard-difference test. Also the Wald (or the score) test from the Cox model is used instead of the exponential log hazard-ratio test. Refer to \texttt{sts test} and \texttt{stcox} for examples on how to perform these tests (also see \texttt{stpower logrank} and \texttt{stpower cox}).

\section{Technical note}

Sometimes the estimates of sample size and power obtained under the assumption of the exponential model are used as an approximation to the results used in a more general context of the log-rank test or the Cox proportional hazards model. Refer to Lachin (2011, 483–484) for the rationale behind this. Also see Lakatos and Lan (1992) for a discussion of the circumstances under which sample-size estimates obtained assuming the exponential model may be inaccurate when used with more general proportional hazards models.

\section{Stored results}

\texttt{stpower exponential} stores the following in \(r() \):

<table>
<thead>
<tr>
<th>Scalars</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r(power))</td>
<td>power of test</td>
</tr>
<tr>
<td>(r(alpha))</td>
<td>significance level of test</td>
</tr>
<tr>
<td>(r(hratio))</td>
<td>hazard ratio</td>
</tr>
<tr>
<td>(r(onesided))</td>
<td>1 if one-sided test, 0 otherwise</td>
</tr>
<tr>
<td>(r(h1))</td>
<td>hazard in the control group (if specified)</td>
</tr>
<tr>
<td>(r(h2))</td>
<td>hazard in the experimental group</td>
</tr>
<tr>
<td>(r(t))</td>
<td>reference survival time (if (t()) is specified)</td>
</tr>
<tr>
<td>(r(p1))</td>
<td>proportion of subjects in the control group</td>
</tr>
<tr>
<td>(r(fperiod))</td>
<td>length of the follow-up period (if specified)</td>
</tr>
<tr>
<td>(r(aperiod))</td>
<td>length of the accrual period (if specified)</td>
</tr>
<tr>
<td>(r(ashape))</td>
<td>shape parameter (if (aperiod()) is specified)</td>
</tr>
<tr>
<td>(r(lh1))</td>
<td>loss hazard in the control group (if specified)</td>
</tr>
<tr>
<td>(r(lh2))</td>
<td>loss hazard in the experimental group (if specified)</td>
</tr>
<tr>
<td>(r(1t))</td>
<td>reference loss to follow-up time (if (losstime()) is specified)</td>
</tr>
</tbody>
</table>
Methods and formulas

In addition to the notation given in Introduction, denote \(N, N_1, \) and \(N_2 \) to be the total number of subjects required for the study, the number of subjects in the control group, and the number of subjects in the experimental group, respectively. Let \(p_1 = N_1/N \) and \(p_2 = N_2/N = 1 - p_1 \) be the proportions of subjects allocated to the control and the experimental groups; \(\gamma \) be the shape parameter of the truncated exponential distribution with p.d.f. \(g(z) = \gamma \exp(-\gamma z)/(1 - \exp(-\gamma R)), 0 \leq z \leq R, \gamma \neq 0; \) \(\eta_1 \) and \(\eta_2 \) be the loss hazards in the control and the experimental groups; and \(z_{(1-\alpha/k)} \) and \(z_{(1-\beta)} \) be the \((1-\alpha/k)\)th and the \((1-\beta)\)th quantiles of the standard normal distribution, with \(k = 1 \) for the one-sided test and \(k = 2 \) for the two-sided test. Denote \(\bar{\lambda} = p_1 \lambda_1 + p_2 \lambda_2 \). Recall that the difference between hazards is denoted by \(\delta = \lambda_2 - \lambda_1 \) and the hazard ratio is denoted by \(\Delta = \lambda_2/\lambda_1 \).

If survival probabilities \(S_i(t) \) at a fixed time \(t \) are specified rather than hazard rates, the hazard rates are computed as \(\lambda_i = -\ln\{S_i(t)/t\}, i = 1, 2 \). If loss to follow-up probabilities \(L_i(t) \) at a fixed time \(t \) are given instead of loss to follow-up hazard rates, the loss hazard rates are computed as \(\eta_i = -\ln\{1 - L_i(t)/t\}, i = 1, 2 \).

All formulas below are derived under the assumption of exponential survival distributions with hazard rates in the control and the experimental groups \(\lambda_1 \) and \(\lambda_2 \), respectively, and rely on large-sample properties of the maximum likelihood estimates of \(\lambda_1 \) and \(\lambda_2 \).

Denote \(\xi_o = \zeta(\bar{\lambda}, \gamma, \eta_1)p_1^{-1} + \zeta(\bar{\lambda}, \gamma, \eta_2)p_2^{-1} \) and \(\xi_a = \zeta(\lambda_1, \gamma, \eta_1)p_1^{-1} + \zeta(\lambda_2, \gamma, \eta_2)p_2^{-1} \).

The formula for the sample-size calculation using the conditional approach is

\[
N = \frac{(z_{1-\alpha/k}\xi_o^{1/2} + z_{1-\beta}\xi_a^{1/2})^2}{\psi^2}
\]

and using the unconditional approach is

\[
N = \frac{(z_{1-\alpha/k} + z_{1-\beta})^2\xi_a}{\psi^2}
\]

where \(\zeta(\lambda, \gamma, \eta) = \lambda^2/p_\text{E} \) if \(\psi = \delta, \zeta(\lambda, \gamma, \eta) = 1/p_\text{E} \) if \(\psi = \ln(\Delta) \), and \(p_\text{E} \) is to be defined later. \(\lambda \) and \(\eta \) denote a failure hazard rate and a loss to follow-up hazard rate.

In the absence of censoring, the overall probability of an event (failure), \(p_\text{E} \), is set to 1. Here the resulting formula for the sample size for the log hazard-ratio test depends only on the ratio of hazards and not on the individual group hazard rates. The resulting sample size formula for the test of the difference may also be rewritten as a function of the ratio of hazards only. Therefore, under no censoring, for a fixed value of the hazard ratio \(\Delta = \lambda_2/\lambda_1 \), the estimates of the sample size (or power) will be constant with respect to varying hazard rates \(\lambda_1 \) and \(\lambda_2 \).
In the presence of censoring, when each subject is followed up for a fixed period \(f = T \),

\[
p_E = p_E(\lambda, \eta) = \frac{\lambda}{\lambda + \eta} \left[1 - \exp \{-(\lambda + \eta)T\} \right]
\]

In the presence of an accrual period, the probability of an event is defined as

\[
p_E = p_E(\lambda, \eta) = \frac{\lambda}{(\lambda + \eta)} \left[1 - \exp \left\{ -(\lambda + \eta)(T - R) \right\} - \exp \{-(\lambda + \eta)T\} \right] \frac{1}{(\lambda + \eta)R}
\]
or

\[
p_E = p_E(\lambda, \gamma, \eta) = \frac{\lambda}{(\lambda + \eta)} \left[1 + \frac{\gamma \exp \{-(\lambda + \eta)T\} \left[1 - \exp \{(\lambda + \eta - \gamma)R\} \right]}{(\lambda + \eta - \gamma) \left[1 - \exp (-\gamma R) \right] } \right]
\]

under uniform or truncated exponential accrual with shape \(\gamma \) over \([0, R]\), respectively. Uniform accrual is assumed for \(|\gamma| < 10^{-6}\).

The formulas are obtained from Lachin (1981), Lachin and Foulkes (1986), and Lakatos and Lan (1992). To avoid division by 0 in the case \(\lambda + \eta = \gamma \), the probability of an event is taken to be the limit of the above expression,

\[
p_E = \lim_{\lambda + \eta \rightarrow \gamma} p_E(\lambda, \gamma, \eta).
\]

The final estimate of the sample size is rounded up to the nearest even integer under the equal-group allocation and rounded up to the nearest integer otherwise. The number of subjects required to be recruited in each group is obtained as \(N_1 = \pi_1 N \) and \(N_2 = N - N_1 \), where \(N_1 \) is rounded down to the nearest integer.

The expected number of events and losses to follow-up are computed as suggested by Lachin and Foulkes (1986). Under the null hypothesis,

\[
E_{H_0} = N_1 p_E(\bar{\lambda}, \gamma, \eta_1) + N_2 p_E(\bar{\lambda}, \gamma, \eta_2) \\
L_{H_0} = N_1 (\eta_1 / \bar{\lambda}) p_E(\bar{\lambda}, \gamma, \eta_1) + N_2 (\eta_2 / \bar{\lambda}) p_E(\bar{\lambda}, \gamma, \eta_2)
\]

and under the alternative hypothesis,

\[
E_{H_a} = N_1 p_E(\lambda_1, \gamma, \eta_1) + N_2 p_E(\lambda_2, \gamma, \eta_2) \\
L_{H_a} = N_1 (\eta_1 / \lambda_1) p_E(\lambda_1, \gamma, \eta_1) + N_2 (\eta_2 / \lambda_2) p_E(\lambda_2, \gamma, \eta_2)
\]

For unconditional tests, the expected number of events and losses to follow-up under the null is computed by setting \(\bar{\lambda} = \lambda_1 \). The estimates of the expected number of events and losses to follow-up in each group are rounded to the nearest integer.

To obtain the estimate of the power, \(1 - \beta \), the formulas for the sample size are solved for \(z_{(1-\beta)} \) and the normal cumulative distribution function is used to obtain the corresponding probability \(1 - \beta \).

To obtain the unknown shape parameter, \(\gamma \), of a truncated exponential entry distribution, an iterative procedure is used to solve the equation

\[
\pi = G(t^*) = \frac{1 - \exp (-\gamma t^*)}{1 - \exp (-\gamma R)}
\]

for a given proportion of subjects \(\pi \) recruited at a given time, \(t^* \), for \(t^* \in [0, R] \).
References

Also see [ST] stpower for more references.

Also see

[ST] stpower — Sample size, power, and effect size for survival analysis

[ST] stpower cox — Sample size, power, and effect size for the Cox proportional hazards model

[ST] stpower logrank — Sample size, power, and effect size for the log-rank test

[ST] streg — Parametric survival models

[ST] Glossary

[PSS] power — Power and sample-size analysis for hypothesis tests

[R] test — Test linear hypotheses after estimation
Syntax

Sample-size determination

```
stpower logrank [surv1 [surv2]] [ , options ]
```

Power determination

```
stpower logrank [surv1 [surv2]] , n(numlist) [options]
```

Effect-size determination

```
stpower logrank [surv1] , n(numlist) { power(numlist) | beta(numlist) } [options]
```

where

- `surv1` is the survival probability in the control group at the end of the study t^*;
- `surv2` is the survival probability in the experimental group at the end of the study t^*.

`surv1` and `surv2` may each be specified either as one number or as a list of values (see [U] 11.1.8 `numlist`) enclosed in parentheses.

options

<table>
<thead>
<tr>
<th>Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td>Main</td>
</tr>
<tr>
<td><code>alpha(numlist)</code></td>
<td>significance level; default is <code>alpha(0.05)</code></td>
</tr>
<tr>
<td><code>power(numlist)</code></td>
<td>power; default is <code>power(0.8)</code></td>
</tr>
<tr>
<td><code>beta(numlist)</code></td>
<td>probability of type II error; default is <code>beta(0.2)</code></td>
</tr>
<tr>
<td><code>n(numlist)</code></td>
<td>sample size; required to compute power or effect size</td>
</tr>
<tr>
<td><code>hratio(numlist)</code></td>
<td>hazard ratio (effect size) of the experimental to the control group; default is <code>hratio(0.5)</code></td>
</tr>
<tr>
<td><code>onesided</code></td>
<td>one-sided test; default is two sided</td>
</tr>
<tr>
<td><code>p1(numlist)</code></td>
<td>proportion of subjects in the control group; default is <code>p1(0.5)</code>, meaning equal group sizes</td>
</tr>
<tr>
<td><code>nratio(numlist)</code></td>
<td>ratio of sample sizes, N_2/N_1; default is <code>nratio(1)</code>, meaning equal group sizes</td>
</tr>
<tr>
<td><code>schoenfeld</code></td>
<td>use the formula based on the log hazard-ratio in calculations; default is to use the formula based on the hazard ratio</td>
</tr>
<tr>
<td><code>parallel</code></td>
<td>treat number lists in starred options as parallel (do not enumerate all possible combinations of values) when multiple values per option are specified</td>
</tr>
</tbody>
</table>
Censoring

\texttt{simpson(# # | matname)} survival probabilities in the control group at three specific time points to compute the probability of an event (failure), using Simpson’s rule under uniform accrual.

\texttt{st1(varname_s, varname_t)} variables \texttt{varname_s}, containing survival probabilities in the control group, and \texttt{varname_t}, containing respective time points, to compute the probability of an event (failure), using numerical integration under uniform accrual.

\texttt{wdprob(#)} the proportion of subjects anticipated to withdraw from the study; default is \texttt{wdprob(0)}.

Reporting

display results in a table with default columns

\texttt{table} display results in a table with specified \texttt{colnames} columns

\texttt{columns(colnames)} suppress table title

\texttt{notitle} suppress table legend

\texttt{nolegend} column widths; default is \texttt{colwidth(9)}

\texttt{colwidth(# [# ...])} draw a horizontal separator line every \# lines; default is \texttt{separator(0)}, meaning no separator lines

\texttt{separator(#)} save the table data to \texttt{filename}; use \texttt{replace} to overwrite existing \texttt{filename}

\texttt{saving(filename [, replace])} suppress table header; seldom used

\texttt{noheader} draw a continuation border in the table output; seldom used

\texttt{continue} *Starred options may be specified either as one number or as a list of values (see \cite{[U] 11.1.8 numlist}). noheader and continue are not shown in the dialog box.

\texttt{colnames} Description

\texttt{alpha}	significance level
\texttt{power}	power
\texttt{beta}	type II error probability
\texttt{n}	total number of subjects
\texttt{n1}	number of subjects in the control group
\texttt{n2}	number of subjects in the experimental group
\texttt{e}	total number of events (failures)
\texttt{hr}	hazard ratio
\texttt{loghr}	log of the hazard ratio
\texttt{s1}	survival probability in the control group
\texttt{s2}	survival probability in the experimental group
\texttt{p1}	proportion of subjects in the control group
\texttt{nratio}	ratio of sample sizes, experimental to control
\texttt{w}	proportion of withdrawals
By default, the following **colnames** are displayed:

- **power**, **n**, **n1**, **n2**, **e**, and **alpha** are always displayed;
- **hr** is displayed, unless the **schoenfeld** option is specified, in which case **loghr** is displayed;
- **s1** and **s2** is displayed if survival probabilities are specified; and
- **w** is displayed if withdrawal proportion (**wdprob()** option) is specified.

Menu

Statistics > Survival analysis > Power and sample size

Description

stpower logrank estimates required sample size, power, and effect size for survival analysis comparing survivor functions in two groups by using the log-rank test. It also reports the number of events (failures) required to be observed in a study. This command supports two methods to obtain the estimates, those according to Freedman (1982) and Schoenfeld (1981). The command provides options to take into account unequal allocation of subjects between the two groups and possible withdrawal of subjects from the study (loss to follow-up). Optionally, the estimates can be adjusted for uniform accrual of subjects into the study. Also the minimal effect size (minimal detectable value of the hazard ratio or the log hazard-ratio) may be obtained for given power and sample size.

You can use *stpower logrank* to

- calculate required number of events and sample size when you know power and effect size (expressed as a hazard ratio) for uncensored and censored survival data,
- calculate power when you know sample size (number of events) and effect size (expressed as a hazard ratio) for uncensored and censored survival data, and
- calculate effect size (hazard ratio or log hazard-ratio if the **schoenfeld** option is specified) when you know sample size (number of events) and power for uncensored and censored survival data.

stpower logrank’s input parameters, **surv1** and **surv2**, are the values of survival probabilities in the control group (or the less favorable of the two groups), **s1**, and in the experimental group, **s2**, at the end of the study **t***.

Options

Main

- **alpha**(numlist) sets the significance level of the test. The default is **alpha**(0.05).
- **power**(numlist) sets the power of the test. The default is **power**(0.8). If **beta()** is specified, this value is set to be 1−**beta()**. Only one of **power()** or **beta()** may be specified.
- **beta**(numlist) sets the probability of a type II error of the test. The default is **beta**(0.2). If **power()** is specified, this value is set to be 1−**power()**. Only one of **beta()** or **power()** may be specified.
- **n**(numlist) specifies the number of subjects in the study to be used to compute the power of the test or the minimal effect size (minimal detectable value of the hazard ratio or log hazard-ratio) if **power()** or **beta()** is also specified.
hratio(numlist) specifies the hazard ratio (effect size) of the experimental group to the control group. The default is hratio(0.5). This value defines the clinically significant improvement of the experimental procedure over the control desired to be detected by the log-rank test, with a certain power specified in power(). If both arguments surv1 and surv2 are specified, hratio() is not allowed and the hazard ratio is instead computed as $\ln(surv_2) / \ln(surv_1)$.

onesided indicates a one-sided test. The default is two sided.

p1(numlist) specifies the proportion of subjects in the control group. The default is p1(0.5), meaning equal allocation of subjects to the control and the experimental groups. Only one of p1() or nratio() may be specified.

nratio(numlist) specifies the sample-size ratio of the experimental group relative to the control group, N_2/N_1. The default is nratio(1), meaning equal allocation between the two groups. Only one of nratio() or p1() may be specified.

schoenfeld requests calculations using the formula based on the log hazard-ratio, according to Schoenfeld (1981). The default is to use the formula based on the hazard ratio, according to Freedman (1982).

parallel reports results sequentially (in parallel) over the list of numbers supplied to options allowing numlist. By default, results are computed over all combinations of the number lists in the following order of nesting: alpha(); p1() or nratio(); list of arguments surv1 and surv2; hratio(); power() or beta(); and n(). This option requires that options with multiple values each contain the same number of elements.

Censoring

simpson(#) # | matname) specifies survival probabilities in the control group at three specific time points, to compute the probability of an event (failure) using Simpson’s rule, under the assumption of uniform accrual. Either the actual values or a 1×3 matrix, matname, containing these values can be specified. By default, the probability of an event is approximated as an average of the failure probabilities $1-s_1$ and $1-s_2$; see Methods and formulas. simpson() may not be combined with st1() and may not be used if arguments surv1 or surv2 are specified.

st1(varname_s varname_t) specifies variables varname_s, containing survival probabilities in the control group, and varname_t, containing respective time points, to compute the probability of an event (failure) using numerical integration, under the assumption of uniform accrual; see [R] dydx. The minimum and the maximum values of varname_t must be the length of the follow-up period and the duration of the study, respectively. By default, the probability of an event is approximated as an average of the failure probabilities $1-s_1$ and $1-s_2$; see Methods and formulas. st1() may not be combined with simpson() and may not be used if arguments surv1 or surv2 are specified.

wdprob(#) specifies the proportion of subjects anticipated to withdraw from the study. The default is wdprob(0). wdprob() may not be combined with n().

Reporting

table displays results in a tabular format and is implied if any number list contains more than one element. This option is useful if you are producing results one case at a time and wish to construct your own custom table using a forvalues loop.

columns(colnames) specifies results in a table with specified colnames columns. The order of the columns in the output table is the same as the order of colnames specified in columns(). Column names in columns() must be space-separated.

notitle prevents the table title from displaying.
noregenda prevents the table legend from displaying and column headers from being marked.
colwidth(# [# ...]) specifies column widths. The default is 9 for all columns. The number of
specified values may not exceed the number of columns in the table. A missing value (.) may be
specified for any column to indicate the default width (9). If fewer widths are specified than the
number of columns in the table, the last width specified is used for the remaining columns.
separator(#) specifies how often separator lines should be drawn between rows of the table. The
default is separator(0), meaning that no separator lines should be displayed.
saving(filename [, replace]) creates a Stata data file (.dta file) containing the table values
with variable names corresponding to the displayed colnames. replace specifies that filename be
overwritten if it exists. saving() is only appropriate with tabular output.

The following options are available with stpower logrank but are not shown in the dialog box:
noheader prevents the table header from displaying. This option is useful when the command is
issued repeatedly, such as within a loop. noheader implies notitle.
continue draws a continuation border at the bottom of the table. This option is useful when the
command is issued repeatedly within a loop.

Remarks and examples

Remarks are presented under the following headings:

Introduction
Computing sample size in the absence of censoring
Computing sample size in the presence of censoring
Withdrawal of subjects from the study
Including information about subject accrual
Power and effect-size determination
Performing the analysis using the log-rank test

Introduction

Consider a survival study comparing the survivor functions in two groups using the log-rank
test. Let \(S_1(t) \) and \(S_2(t) \) denote the survivor functions of the control and the experimental groups,
respectively. The key assumption of the log-rank test is that the hazard functions are proportional.
That is, \(h_2(t) = \Delta h_1(t) \) for any \(t \) or, equivalently, \(S_2(t) = \{ S_1(t) \}^\Delta \), where \(\Delta \) is the hazard ratio.
If \(\Delta < 1 \), the survival in the experimental group is higher relative to the survival in the control
group; the new treatment is superior to the standard treatment. If \(\Delta > 1 \), then the standard treatment
is superior to the new treatment. Under the proportional-hazards assumption, the test of the equality
of the two survivor functions \(H_0: S_1(t) = S_2(t) \) versus \(H_a: S_1(t) \neq S_2(t) \) is equivalent to the test
\(H_0: \Delta = 1 \) versus \(H_a: \Delta \neq 1 \) or \(H_0: \ln(\Delta) = 0 \) versus \(H_a: \ln(\Delta) \neq 0 \).

The methods implemented in stpower logrank for sample-size or power determination relate
the power of the log-rank test directly to the number of events observed in the study. Depending on
whether censoring occurs in a study, the required number of subjects is either equal to the number of
events or is computed using the estimates of the number of events and the combined probability
of an event (failure). Thus, in the presence of censoring, in addition to the number of events, the
probability of a subject not being censored (failing) needs to be estimated to obtain the final estimate
of the required number of subjects in the study.
To determine the required number of events, the investigator must specify the size or significance level, α, and the clinically significant difference between the two treatments (effect size) to be detected by the log-rank test, $H_a: \Delta = \Delta_a$, with prespecified power $1 - \beta$. The significance level, α, represents the probability of a type I error, a rejection of the null hypothesis when it is true. β represents the probability of a type II error, a failure to reject the null hypothesis when the alternative hypothesis is true. The significance level is often set to 0.05, and values for power() usually vary from 0.8 to 0.95. By default, stpower logrank uses $\text{power}(0.8)$ (or, equivalently, $\text{beta}(0.2)$) and $\text{alpha}(0.05)$. The effect size, Δ_a, is usually expressed as a hazard ratio, using the hratio() option. Under an unequal allocation of subjects between the two groups, the proportion of subjects in the control group may be specified in p1(), or the ratio of sample sizes may be supplied to nratio(). Optionally, results for the one-sided log-rank test may be requested by using onesided.

When all subjects fail by the end of the study (no censoring), a type I study, the information above is sufficient to obtain the number of subjects required in the study. Often, in practice, not all subjects fail by the end of the study, in which case censoring of subjects occurs (a type II study). Here the estimates of the survival probabilities in the control and experimental groups are necessary to estimate the probability of an event and, then, the required sample size.

By default, stpower logrank performs computations for the uncensored data (a type I study). It uses the hazard ratio specified in hratio() or the default hazard ratio of 0.5 to obtain required sample size or power. For censored data (a type II study), under administrative censoring, the value of the survival probability in the control group (supplied as argument surv1 or, in the presence of an accrual period, in the simpson() or st1() option) must be specified. If the value of the survival probability in the experimental group, surv2, is omitted, surv1 and the value of the hazard ratio in hratio() are used to compute the survival probability in the experimental group, s_2. If both arguments surv1 and surv2 are specified, the hazard ratio, Δ_a, is computed using these values and the hratio() option is not allowed.

If power determination is desired, sample size $n()$ must be specified. If both $n()$ and power() (or beta()) are specified, the minimal effect size (minimal value of the hazard ratio or log hazard-ratio) that can be detected by the log-rank test with requested power and fixed sample size is computed.

stpower logrank supports two methods, those of Freedman (1982) and Schoenfeld (1981), to obtain the estimates of the number of events or power (see also Marubini and Valsecchi [1997, 127, 134] and Collett [2003b, 301, 306]). The latter is used if option schoenfeld is specified. The final estimates of the sample size are based on the approximation of the probability of an event due to Freedman (1982), the default, or, for uniform accrual, due to Schoenfeld (1983) (see also Collett 2003b) if option simpson() is specified.

Optionally, the results may be displayed in a table by using table or columns(), as demonstrated in [ST] stpower. Refer to [ST] stpower and to example 7 in Power and effect-size determination to see how to obtain a graph of a power curve.

Computing sample size in the absence of censoring

We demonstrate several examples of how to use stpower logrank to obtain the estimates of sample size and number of events using Freedman (1982) and Schoenfeld (1981) methods for uncensored data, a type I study (when no censoring of subjects occurs).

Example 1: Number of events (failures)

Consider a survival study to be conducted to compare the survivor function of subjects receiving a treatment (the experimental group) to the survivor function of those receiving a placebo or no treatment
(the control group) using the log-rank test. Suppose that the study continues until all subjects fail (no censoring). The investigator wants to know how many events need to be observed in the study to achieve a power of 80% of a two-sided log-rank test with $\alpha = 0.05$, to detect a 50% reduction in the hazard of the experimental group ($\Delta_a = 0.5$). Because the default settings of \texttt{stpower logrank} are \texttt{power(0.8), alpha(0.05), and hratio(0.5)}, to obtain the estimate of the required number of events for the above study using the Freedman method (the default), we simply type

\begin{verbatim}
. stpower logrank
Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
Ho: S1(t) = S2(t)
Input parameters:
 alpha = 0.0500 (two sided)
 hratio = 0.5000
 power = 0.8000
 p1 = 0.5000
Estimated number of events and sample sizes:
 E = 72
 N = 72
 N1 = 36
 N2 = 36
\end{verbatim}

From the output, a total of 72 events (failures) must be observed to achieve the required power of 80%. Because all subjects experience an event by the end of the study, the number of subjects required to be recruited to the study is equal to the number of events. That is, the investigator needs to recruit a total of 72 subjects (36 per group) to the study.

We can request the Schoenfeld method by specifying the \texttt{schoenfeld} option:

\begin{verbatim}
. stpower logrank, schoenfeld
Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Schoenfeld method
Ho: S1(t) = S2(t)
Input parameters:
 alpha = 0.0500 (two sided)
 ln(hratio) = -0.6931
 power = 0.8000
 p1 = 0.5000
Estimated number of events and sample sizes:
 E = 66
 N = 66
 N1 = 33
 N2 = 33
\end{verbatim}

We obtain a slightly smaller estimate, 66, of the total number of events.

\section*{Technical note}

\textcite{Freedman} and \textcite{Schoenfeld} derive the formulas for the number of events based on the asymptotic distribution of the log-rank test statistic. \textcite{Freedman} uses the asymptotic mean and variance of the log-rank test statistic expressed as a function of the true hazard ratio, Δ, whereas \textcite{Schoenfeld} (see also \textcite{Collett}) bases the derivation on the asymptotic mean of the log-rank test statistic as a function of the true log hazard-ratio, $\ln(\Delta)$. We label the corresponding approaches as “Freedman method” and “Schoenfeld method” in the output.
For values of the hazard ratio close to one, the two methods tend to give similar results. In general, the Freedman method gives higher estimates than the Schoenfeld method. The performance of the Freedman method was studied by Lakatos and Lan (1992) and was found to slightly overestimate the sample size under the assumption of proportional hazards. Hsieh (1992) investigates the performance of the two methods under the unequal allocation and concludes that Freedman’s formula predicts the highest power for the log-rank test when the sample-size ratio of the two groups equals the reciprocal of the hazard ratio. Schoenfeld’s formula predicts highest powers when sample sizes in the two groups are equal.

Computing sample size in the presence of censoring

Because of limited costs and time, it is often infeasible to continue the study until all subjects experience an event. Instead, the study terminates at some prespecified point in time. As a result, some subjects may not experience an event by the end of the study; that is, administrative censoring of subjects occurs. This increases the requirement on the number of subjects in the study to ensure that a certain number of events is observed.

In the presence of censoring (for a type II study), Freedman (1982) assumes the following. The analysis occurs at a fixed time, \(t^* \), after the last patient was accrued, and all information about subject follow-up beyond time, \(t^* \), is excluded. To minimize an overestimation of the sample size because of neglecting this information, the author suggests choosing \(t^* \) as the minimum follow-up time, \(f \), beyond which the frequency of occurrence of events is low (the time at which, say, 85% of the total events expected are observed). Under this assumption, the number of required subjects does not depend on the rates of accrual and occurrence of events but only on the proportions of patients in the two treatment groups, \(s_1 \) and \(s_2 \), surviving after the minimum follow-up time, \(f \). See Including information about subject accrual about how to compute the sample size in the presence of a long accrual.

If censoring of subjects occurs, the probability of a subject not being censored needs to be estimated to obtain an accurate estimate of the required sample size. The assumption above justifies a simple procedure, suggested by Freedman (1982) and used by default by stpower logrank, to compute this probability using the estimates of survival probabilities at the end of the study in the control and the experimental groups. Therefore, for a type II study (under administrative censoring), these probabilities must be supplied to stpower logrank.

There are three ways of providing the information about survival of subjects in two groups. The first way is to supply both survival probabilities as arguments \(surv_1 \) and \(surv_2 \). The second way is to specify the survival probability in the control group as \(surv_1 \) and a hazard ratio in \(hratio() \). Finally, the third way is to supply survival in the control group \(surv_1 \) only and rely on the default \(hratio(0.5) \). Below we demonstrate the first way.

Example 2: Sample size in the presence of censoring

Consider an example from Machin et al. (2009, 91) of a study of patients with resectable colon cancer. The goal of the study was to compare the efficacy of the drug levamisole against a placebo with respect to relapse-free survival, using a one-sided log-rank test with a significance level of 5%. The investigators anticipated a 10% increase (from 50% to 60%, with a respective hazard ratio of 0.737) in the survival of the experimental group with respect to the survival of the control (placebo) group at the end of the study. They wanted to detect this increase with a power of 80%. To obtain the required sample size, we enter the survival probabilities 0.5 and 0.6 as arguments and specify the onesided option to request a one-sided test.
. stpower logrank 0.5 0.6, onesided

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
Ho: S1(t) = S2(t)

Input parameters:
alpha = 0.0500 (one sided)
s1 = 0.5000
s2 = 0.6000
hratio = 0.7370
power = 0.8000
p1 = 0.5000

Estimated number of events and sample sizes:
E = 270
N = 600
N1 = 300
N2 = 300

From the above output, the investigators would have to observe a total of 270 events (relapses) to detect a 26% decrease in the hazard ($\Delta_a = 0.737$) of the experimental group relative to the hazard of the control group with a power of 80% using a one-sided log-rank test with $\alpha = 0.05$. They would have to recruit a total of 600 patients (300 per group) to observe that many events. In the absence of censoring, only 270 subjects would have been required to detect a decrease in hazard corresponding to $\Delta_a = 0.737$:

. stpower logrank, hratio(0.737) onesided

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
Ho: S1(t) = S2(t)

Input parameters:
alpha = 0.0500 (one sided)
hratio = 0.7370
power = 0.8000
p1 = 0.5000

Estimated number of events and sample sizes:
E = 270
N = 270
N1 = 135
N2 = 135

Similarly, using the Schoenfeld method,

. stpower logrank 0.5 0.6, onesided schoenfeld
(output omitted)

we find that 590 subjects are required in the study to observe a total of 266 events to ensure a power of a test of 80%.

Although all examples demonstrated above assume equal group sizes, the information about the unequal allocation of subjects between the two groups may be provided by using $p1()$ or $nratio()$.
Withdrawal of subjects from the study

Under administrative censoring, the subject is known to have experienced either of the two outcomes by the end of the study: survival or failure. Often, in practice, subjects may withdraw from the study before it terminates and therefore may not experience an event by the end of the study (or be censored), but for reasons other than administrative. Withdrawal of subjects from a study may greatly affect the estimate of the sample size and must be accounted for in the computations. Refer to [ST] stpower and [ST] Glossary for a formal definition of withdrawal.

Freedman (1982) suggests a conservative adjustment for the estimate of the sample size in the presence of withdrawal. Withdrawal is assumed to be independent of failure (event) times and administrative censoring.

The proportion of subjects anticipated to withdraw from a study may be specified by using \texttt{wdprob()}.

\begin{verbatim}
Example 3: Withdrawal of subjects from the study

Continuing example 2, suppose that a withdrawal rate of 10\% is expected in the study of colon cancer patients. To account for this, we also specify \texttt{wdprob(0.1)}:

\begin{verbatim}
. stpower logrank 0.5 0.6, onesided wdprob(0.1)
Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
Ho: S1(t) = S2(t)
Input parameters:
alpha = 0.0500 (one sided)
s1 = 0.5000
s2 = 0.6000
hratio = 0.7370
power = 0.8000
p1 = 0.5000
withdrawal = 10.00%
Estimated number of events and sample sizes:
E = 270
N = 666
N1 = 333
N2 = 333
\end{verbatim}
\end{verbatim}

The estimate of the total sample size using the Freedman method increases from 600 to 666 when the withdrawal rate is assumed to be 10\%. The adjustment of the estimate of the sample size for the withdrawal of subjects is conservative. It assumes equal withdrawals from each group; that is, 10\% of subjects are lost by the end of the study in each group. This adjustment affects only the estimates of the sample sizes but not the number of events. The reasons for this are the following: withdrawal is assumed to be independent of event times, and the ratio of subjects surviving until the end of the study in the two groups does not change under equal withdrawals.

We could use the alternative syntax and specify the survival probability in the control group, 0.5, with the value of the hazard ratio 0.737 in \texttt{hratio()} instead of supplying the two survival probabilities:

\begin{verbatim}
. stpower logrank 0.5, hratio(0.737) onesided wdprob(0.1)
(output omitted)
\end{verbatim}
Including information about subject accrual

Many clinical studies have an accrual period of R, during which the subjects are recruited to the study, and a follow-up period of $f = T - R$, during which the subjects are followed up until the end of the study, T, and no new subjects enter the study. The information about the duration of an accrual and a follow-up period affects the probability of a subject failing during the study.

Freedman (1982) suggests approximating the combined event-free probability as an average of the survival probabilities in the control and the experimental groups at the minimum follow-up time, $t^* = f$ (the default approach used in \texttt{stpower logrank}). However, for a long accrual of subjects, this approach may overestimate the required number of subjects, often seriously, because it does not take into account the information about subject follow-up beyond time f. Here Freedman (1982) proposes to use the survival probabilities at the average follow-up time, defined as $t^* = (f + T)/2 = f + 0.5R$, instead of the minimum follow-up time, f.

Alternatively, Schoenfeld (1983) (see also Collett [2003b, 306]) presents a formula for the required number of subjects allowing for uniform entry (accrual, recruitment) over $[0, R]$ and a follow-up period, f. This information is incorporated into the formula for the probability of a failure. The formula involves the integrals of the survivor functions of the control and the experimental groups. Schoenfeld (1983) suggests approximating the integral by using Simpson’s rule, which requires the estimates of the survivor function at three specific time points, f, $0.5R + f$, and $T = R + f$. It is sufficient to provide the estimates of these three survival probabilities, $S_1(f)$, $S_1(0.5R + f)$, and $S_1(T)$, for the control group only. The corresponding survival probabilities of the experimental group are automatically computed using the value of the hazard ratio in \texttt{hratio()} and the proportional-hazards assumption.

The three estimates of the survival probabilities of the control group may be supplied by using the \texttt{simpson()} option to adjust the estimates of the sample size or power for uniform entry and a follow-up period. If the estimate of the survivor function over an array of values in the range $[f, T]$ is available from a previous study, it can be supplied using the \texttt{st1()} option to form a more accurate approximation of the probability of an event using numerical integration (see \texttt{R dydx}). Here the value of the length of the accrual period is needed for the computation. It is computed as the difference between the maximum and the minimum values of the time variable \texttt{varname}, supplied using \texttt{st1()}, that is, $R = T - f = \max(\text{varname}) - \min(\text{varname})$.

For more information, see Cleves et al. (2010, sec. 16.2).

Example 4: Sample size in the presence of accrual and follow-up periods

Consider an example described in Collett (2003b, 309) of a survival study of chronic active hepatitis. A new treatment is to be compared with a standard treatment with respect to the survival times of the patients with this disease. The investigators desire to detect a change in a hazard ratio of 0.57 with 90% power and a 5% two-sided significance level. Also subjects are to be entered into the study uniformly over a period of 18 months and then followed up for 24 months. From the Kaplan–Meier estimate of the survivor function available for the control group, the survival probabilities at $f = 24$, $0.5R + f = 33$, and $T = 42$ months are 0.70, 0.57, and 0.45, respectively.
. stpower logrank, hratio(0.57) power(0.9) schoenfeld simpson(0.7 0.57 0.45)

Note: probability of an event is computed using Simpson’s rule with
S1(f) = 0.70, S1(f+R/2) = 0.57, S1(T) = 0.45
S2(f) = 0.82, S2(f+R/2) = 0.73, S2(T) = 0.63

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Schoenfeld method
Ho: S1(t) = S2(t)

Input parameters:
alpha = 0.0500 (two sided)
ln(hratio) = -0.5621
power = 0.9000
p1 = 0.5000

Estimated number of events and sample sizes:
E = 134
N = 380
N1 = 190
N2 = 190

Collett (2003b, 305) reports the required number of events to be 133, which, apart from roundoff errors, agrees with our estimate of 134. In a later example, Collett (2003, 309) uses the number of events, rounded to 140, to compute the required sample size as 140/0.35 = 400, where 0.35 is the estimate of the combined probability of an event. By hand, without rounding the number of events, we compute the required sample size as 133/0.35 = 380 and obtain the same estimate of the total sample size as in the output.

Using the average follow-up time suggested by Freedman (1982), we obtain the following:

. stpower logrank 0.57, hratio(0.57) power(0.9) schoenfeld

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Schoenfeld method
Ho: S1(t) = S2(t)

Input parameters:
alpha = 0.0500 (two sided)
s1 = 0.5700
s2 = 0.7259
ln(hratio) = -0.5621
power = 0.9000
p1 = 0.5000

Estimated number of events and sample sizes:
E = 134
N = 378
N1 = 189
N2 = 189

We specify the survival probability in the control group at \(t^* = 0.5R + f = 0.5 \times 18 + 24 = 33 \) as \(S_1(33) = 0.57 \) and the hazard ratio of 0.57 (coincidentally). The respective survival probability in the experimental group is \(S_2(33) = S_1(33)^{0.57} = 0.726 \). Here we obtain the estimate, 378, of the sample size, which is close to the estimate of 380 computed using the more complicated approximation. In this example, the two approximations produce similar results, but this may not always be the case.
Technical note

The approximation suggested by Schoenfeld (1983) and Collett (2003b) is considered to be more accurate because it takes into account information about the patient survival beyond the average follow-up time. In general, the Freedman and Schoenfeld approximations will tend to give similar results when \(\frac{\tilde{S}(f) + \tilde{S}(T)}{2} \approx \tilde{S}(0.5R + f) \); see Methods and formulas for a formal definition of \(\tilde{S}(\cdot) \).

If we use the survival probability in the control group, \(S_1(24) = 0.7 \), at a follow-up time \(t^* = f = 24 \) instead of the average follow-up time \(t^* = 33 \) in the presence of an accrual period,

\[
\text{. stpower logrank 0.7, hratio(0.57) power(0.9) schoenfeld (output omitted)}
\]

we obtain the estimate of the total sample size of 550, which is significantly greater than the previously estimated sample sizes of 380 and 378.

Power and effect-size determination

Sometimes the number of subjects available for the enrollment into the study is limited. In such cases, the researchers may want to investigate with what power they can detect a desired treatment effect for a given sample size.

Example 5: Using stpower logrank to compute power

Recall the colon cancer study described in example 2. Suppose that only 100 subjects are available to be recruited to the study. We find out how this affects the power to detect a hazard ratio of 0.737.

\[
\text{. stpower logrank 0.5, hratio(0.737) onesided n(100)}
\]

Estimated power for two-sample comparison of survivor functions
Log-rank test, Freedman method
Ho: \(S_1(t) = S_2(t) \)
Input parameters:
\[
\begin{align*}
\alpha & = 0.0500 \quad \text{(one sided)} \\
\text{s1} & = 0.5000 \\
\text{s2} & = 0.6000 \\
\text{hratio} & = 0.7370 \\
\text{N} & = 100 \\
\text{p1} & = 0.5000 \\
\end{align*}
\]
Estimated number of events and power:
\[
\begin{align*}
\text{E} & = 46 \\
\text{power} & = 0.2646 \\
\end{align*}
\]

The power to detect an alternative \(H_a: \Delta = 0.737 \) decreased from 0.8 to 0.2646 when the sample size decreased from 600 to 100 (the number of events decreased from 270 to 46).

Example 6: Using stpower logrank to compute effect size

Continuing the above example, we can find that the value of the hazard ratio that can be detected for a fixed sample size of 100 with 80% power is approximately 0.42, corresponding to an increase in survival probability from 0.5 to roughly 0.75.
. stpower logrank 0.5, n(100) power(0.8) onesided

Estimated hazard ratio for two-sample comparison of survivor functions
Log-rank test, Freedman method
Ho: S1(t) = S2(t)

Input parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>0.0500 (one sided)</td>
</tr>
<tr>
<td>s1</td>
<td>0.5000</td>
</tr>
<tr>
<td>s2</td>
<td>0.7455</td>
</tr>
<tr>
<td>N</td>
<td>100</td>
</tr>
<tr>
<td>power</td>
<td>0.8000</td>
</tr>
<tr>
<td>p1</td>
<td>0.5000</td>
</tr>
</tbody>
</table>

Estimated number of events and hazard ratio:

<table>
<thead>
<tr>
<th>E</th>
<th>38</th>
</tr>
</thead>
<tbody>
<tr>
<td>hratio</td>
<td>0.4237</td>
</tr>
</tbody>
</table>

Example 7: Plotting power curves

Here we demonstrate how to produce a graph of power curves over a range of hazard-ratio values. Continuing example 5, we visualize the effect of reducing the sample size from 600 to 100 on a power of the log-rank test to detect a hazard ratio of 0.737 by plotting two power curves for the sample sizes $N = 100$ and $N = 600$.

First, we generate a dataset named mypower containing the table values by using the saving() option. We request to compute the power for each of the two sample sizes over 100 values of the hazard ratio from 0.01 to 0.99 with 0.01 step size by supplying number lists 100, 600, and 0.01(0.01)0.99 to the n() and hratio() options, respectively. The values of hazard ratios, sample sizes, and powers are saved in variables hr, n, and power, respectively.

. quietly stpower logrank 0.5, hratio(0.01(0.01)0.99) n(100 600) onesided
> saving(mypower)
Next we generate the graph:

```
. use mypower
. twoway (line power hr if n==100) (line power hr if n==600),
    yline(.8, lstyle(foreground) lwidth(vvthin))
    xline(.42, lstyle(foreground) lwidth(vvthin))
    yline(.26, lstyle(foreground) lwidth(vvthin))
    xline(.74, lstyle(foreground) lwidth(vvthin))
    legend(label(1 "N = 100") label(2 "N = 600"))
    text(.85 .5 "(.42, .8)" .3 .81 "(.74, .26)" .85 .81 "(.74, .8)"
    title("Power curves") note("s1 = .5, alpha = .05 (one sided)"
    xtitle("Hazard ratio") ytitle("Power")
```

![Power curves](image)

Technical note

The decrease in sample size reduces the number of events observed in the study and therefore changes the estimates of the power. If the number of events were fixed, power would have been independent of the sample size, provided that all other parameters were held constant, because the formulas relate power directly to the number of events and not the number of subjects.

Examples 5 and 7 demonstrate that a significant reduction in a sample size (a number of events) greatly reduces the power of the log-rank test to detect a desired change in survival of the two groups. Indeed, we examine this further in the next section.

Performing the analysis using the log-rank test

- Example 8: Using the log-rank test to detect a change in survival for a fixed sample size

Continuing example 5, consider the generated dataset `drug.dta`, consisting of variables `drug`, a drug type, and `failtime`, a time to failure.
Failure times of the control group (Placebo) were generated from the Weibull distribution with $\lambda_w = 0.693$ and $p = 2$ (see [ST] streg); failure times of the two experimental groups, Drug A and Drug B, were generated from Weibull distributions with hazard functions proportional to the hazard of the control group in ratios 0.737 and 0.42, respectively. The Weibull family of survival distributions is chosen arbitrarily, and the Weibull parameter, λ_w, is chosen such that the survival at 1 year, $t = 1$, is roughly equal to 0.5. Subjects are randomly allocated to one of the three groups in equal proportions. Subjects with failure times greater than $t = 1$ will be censored at $t = 1$.

Before analyzing these survival data, we need to set it up using stset. After that, we can use sts test, logrank to test the survivor functions separately for Drug A against Placebo and Drug B against Placebo by using the log-rank test. See [ST] stset and [ST] sts test for more information about these two commands.

```
. use http://www.stata-press.com/data/r13/drug
(Patient Survival in Drug Trial)
. tabulate drug

<table>
<thead>
<tr>
<th>Treatment type</th>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>50</td>
<td>33.33</td>
<td>33.33</td>
</tr>
<tr>
<td>Drug A</td>
<td>50</td>
<td>33.33</td>
<td>66.67</td>
</tr>
<tr>
<td>Drug B</td>
<td>50</td>
<td>33.33</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

. by drug, sort: summarize failtime

-> drug = Placebo

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>failtime</td>
<td>50</td>
<td>1.03876</td>
<td>.5535538</td>
<td>.1687701</td>
<td>2.382302</td>
</tr>
</tbody>
</table>

-> drug = Drug A

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>failtime</td>
<td>50</td>
<td>1.191802</td>
<td>.5927507</td>
<td>.2366922</td>
<td>2.277536</td>
</tr>
</tbody>
</table>

-> drug = Drug B

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>failtime</td>
<td>50</td>
<td>1.717314</td>
<td>.8350659</td>
<td>.5511715</td>
<td>3.796102</td>
</tr>
</tbody>
</table>
```
. sttest drug if drug!=2, logrank
 failure _d: 1 (meaning all fail)
 analysis time _t: failtime
 exit on or before: time 1

Log-rank test for equality of survivor functions

<table>
<thead>
<tr>
<th>drug</th>
<th>Events observed</th>
<th>Events expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>25</td>
<td>22.17</td>
</tr>
<tr>
<td>Drug A</td>
<td>21</td>
<td>23.83</td>
</tr>
<tr>
<td>Total</td>
<td>46</td>
<td>46.00</td>
</tr>
</tbody>
</table>

\[
\chi^2(1) = 0.70
\]
\[
\text{Pr}>\chi^2 = 0.4028
\]

. sttest drug if drug!=1, logrank
 failure _d: 1 (meaning all fail)
 analysis time _t: failtime
 exit on or before: time 1

Log-rank test for equality of survivor functions

<table>
<thead>
<tr>
<th>drug</th>
<th>Events observed</th>
<th>Events expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>25</td>
<td>16.61</td>
</tr>
<tr>
<td>Drug B</td>
<td>13</td>
<td>21.39</td>
</tr>
<tr>
<td>Total</td>
<td>38</td>
<td>38.00</td>
</tr>
</tbody>
</table>

\[
\chi^2(1) = 7.55
\]
\[
\text{Pr}>\chi^2 = 0.0060
\]

From the results from `sttest` for the Drug A group, we fail to reject the null hypothesis of no difference between the survivor functions in the two groups; the test made a type II error. On the other hand, for the Drug B group the one-sided \(p \)-value of 0.003, computed as \(0.006/2 = 0.003 \), suggests that the null hypothesis of nonsuperiority of the experimental treatment be rejected at the 0.005 significance level. We correctly conclude that the data provide the evidence that Drug B is superior to the Placebo.

Results from `sttest`, `logrank` for the two experimental groups agree with findings from examples 5 and 7. For the sample size of 100, the power of the log-rank test to detect the hazard ratio of 0.737 (10% increase in survival) is low (26%), whereas this sample size is sufficient for the test to detect a change in a hazard of 0.42 (25% increase in survival) with approximately 80% power.

Here we simulated our data from the alternative hypothesis and therefore can determine whether the correct decision or a type II error was made by the test. In practice, however, there is no way of determining the accuracy of the decision from the test. All we know is that in a long series of trials, there is a 5% chance that a particular test will incorrectly reject the null hypothesis and a 74% and a 20% chance that the test will miss the alternatives \(H_a: \Delta = 0.737 \) and \(H_a: \Delta = 0.42 \), respectively.
Methods and formulas

Let $S_1(t)$ and $S_2(t)$ denote the survivor functions of the control and the experimental groups and $\Delta(t) = \ln\{S_2(t)\}/\ln\{S_1(t)\}$ denote the hazard ratio at time t of the experimental to the control groups. Thus, for a given constant hazard ratio Δ, the survivor function of the experimental group at any time $t > 0$ may be computed as $S_2(t) = \{S_1(t)\}^{\Delta}$ under the assumption of proportional hazards. Define E and N to be the total number of events and the total number of subjects required for the study; w to be the proportion of subjects withdrawn from the study (lost to follow-up); $z_{(1 - \alpha/k)}$ and $z_{(1 - \beta)}$ to be the $(1 - \alpha/k)$th and the $(1 - \beta)$th quantiles of the standard normal distribution, with $k = 1$ for the one-sided test and $k = 2$ for the two-sided test. Let λ be the allocation ratio to the experimental group with respect to the control group, that is, $N_2 = \lambda N_1$. If π_1 is the proportion of subjects allocated to the control group, then $\lambda = (1 - \pi_1)/\pi_1$.

The total number of events required to be observed in a study to ensure a power of $1 - \beta$ of the log-rank test to detect the hazard ratio Δ with significance level α, according to Freedman (1982), is

$$E = \frac{1}{\lambda}(z_{1 - \alpha/k} + z_{1 - \beta})^2 \left(\frac{\lambda\Delta + 1}{\Delta - 1}\right)^2$$

and, according to Schoenfeld (1983) and Collett (2003a, 301), is

$$E = \frac{(z_{1 - \alpha/k} + z_{1 - \beta})^2}{\pi_1(1 - \pi_1) \ln^2(\Delta)} = \frac{1}{\lambda}(z_{1 - \alpha/k} + z_{1 - \beta})^2 \left\{\frac{1 + \lambda}{\ln(\Delta)}\right\}^2$$

Both formulas are approximations and rely on a set of assumptions such as distinct failure times, all subjects completing the course of the study (no withdrawal), and a constant ratio, λ, of subjects at risk in two groups at each failure time.

The total sample size required to observe the total number of events, E, is given by

$$N = \frac{E}{PE}$$
The estimate of the sample size is rounded up to the nearest even integer, for an equal allocation, or rounded up to the nearest integer otherwise. The number of subjects required to be recruited in each group is obtained as \(N_1 = \pi_1 N \) and \(N_2 = N - N_1 \), where \(N_1 \) is rounded down to the nearest integer.

By default, the probability of an event (failure), \(p_E \), is approximated as suggested by Freedman (1982):

\[
p_E = 1 - \frac{S_1(t^*) + \lambda S_2(t^*)}{1 + \lambda}
\]

where \(t^* \) is the minimum follow-up time, \(f \), or, in the presence of an accrual period, the average follow-up time, \((f + T)/2 = f + 0.5R \).

If \texttt{simpson()} is specified, the probability of an event is approximated using Simpson’s rule as suggested by Schoenfeld (1983):

\[
p_E = 1 - \frac{1}{6} \left\{ \tilde{S}(f) + 4\tilde{S}(0.5R + f) + \tilde{S}(T) \right\}
\]

where \(\tilde{S}(t) = \{S_1(t) + \lambda S_2(t)\}/(1 + \lambda) \) and \(f, R, \) and \(T = f + R \) are the follow-up period, the accrual period, and the total duration of the study, respectively.

The methods do not incorporate time explicitly but rather use it to determine values of the survival probabilities \(S_1(t) \) and \(S_2(t) \) used in the computations.

If \texttt{st1()} is used, the integral in the expression for the probability of an event

\[
p_E = 1 - \frac{1}{R} \int_f^T \tilde{S}(t)dt
\]

is computed numerically using cubic splines ([R] \texttt{dydx}). The value of \(R \) is computed as the difference between the maximum and the minimum values of \texttt{varname}_t in \texttt{st1()}, \(R = T - f = \max(\texttt{varname}_t) - \min(\texttt{varname}_t) \).

To account for the proportion of subjects, \(w \), withdrawn from the study (lost to follow-up), a conservative adjustment to the total sample size is applied as follows:

\[
N_w = \frac{N}{1 - w}
\]

Equal withdrawal rates are assumed in the adjustment of the group sample sizes for the withdrawal of subjects. Equal withdrawals do not affect the estimates of the number of events, provided that withdrawal is independent of event times and the ratio of subjects at risk in two groups remains constant at each failure time.

The power for each method is estimated using the formula

\[
1 - \beta = \Phi\{|\psi|^{-1}(\lambda N p_E)^{1/2} - z_{1-\alpha/k}\}
\]

where \(\Phi(\cdot) \) is the standard normal cumulative distribution function; \(\psi = (\lambda \Delta + 1)/(\Delta - 1) \) or \(\psi = (1 + \lambda)/\ln(\Delta) \) if the \texttt{schoenfeld} option is specified.
The estimate of the hazard ratio (or log hazard-ratio) for fixed power and sample size is computed (iteratively for censoring) using the formulas for the sample size given above. The value of the hazard ratio (log hazard-ratio) corresponding to the reduction in a hazard of the experimental group relative to the control group is reported.

References

Also see [ST] stpower for more references.

Also see

[ST] stpower — Sample size, power, and effect size for survival analysis

[ST] stpower cox — Sample size, power, and effect size for the Cox proportional hazards model

[ST] stpower exponential — Sample size and power for the exponential test

[ST] stcox — Cox proportional hazards model

[ST] sts test — Test equality of survivor functions

[ST] Glossary

[PSS] power — Power and sample-size analysis for hypothesis tests

[R] test — Test linear hypotheses after estimation
Syntax

```
stptime [if] [, options]
```

options

Main

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>at(numlist)</code></td>
<td>compute person-time at specified intervals; default is to compute overall person-time and incidence rates</td>
</tr>
<tr>
<td><code>trim</code></td>
<td>exclude observations ≤ minimum or > maximum of <code>at()</code></td>
</tr>
<tr>
<td><code>by(varname)</code></td>
<td>compute incidence rates or SMRs by <code>varname</code></td>
</tr>
</tbody>
</table>

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>per(#)</code></td>
<td>units to be used in reported rates</td>
</tr>
<tr>
<td><code>dd(#)</code></td>
<td>number of decimal digits to be displayed</td>
</tr>
<tr>
<td><code>smr(groupvar ratevar)</code></td>
<td>use <code>groupvar</code> and <code>ratevar</code> in <code>using()</code> dataset to calculate SMRs</td>
</tr>
<tr>
<td><code>using(filename)</code></td>
<td>specify filename to merge that contains <code>smr()</code> variables</td>
</tr>
<tr>
<td><code>level(#)</code></td>
<td>set confidence level; default is <code>level(95)</code></td>
</tr>
<tr>
<td><code>nosh</code></td>
<td>do not show st setting information</td>
</tr>
</tbody>
</table>

Advanced

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>jackknife</code></td>
<td>jackknife confidence intervals</td>
</tr>
<tr>
<td><code>title(string)</code></td>
<td>label output table with <code>string</code></td>
</tr>
<tr>
<td><code>output(filename[, replace])</code></td>
<td>save summary dataset as <code>filename</code>; use <code>replace</code> to overwrite existing <code>filename</code></td>
</tr>
</tbody>
</table>

You must **stset** your data before using **stptime**; see [ST] **stset**.

by is allowed; see [D] **by**.

fweights, iweights, and pweights may be specified using **stset**; see [ST] **stset**.

Menu

Statistics > Survival analysis > Summary statistics, tests, and tables > Person-time, incidence rates, and SMR

Description

stptime calculates person-time and incidence rates. **stptime** computes standardized mortality/morbidity ratios (SMRs) after merging the data with a suitable file of standard rates specified with the `using()` option.
Options

Main

\texttt{at(numlist)} specifies intervals at which person-time is to be computed. The intervals are specified in analysis time t units. If \texttt{at()} is not specified, overall person-time and incidence rates are computed.

If, for example, you specify \texttt{at(5(5)20)} and the \texttt{trim} option is not specified, person-time is reported for the intervals $t = (0 - 5]$, $t = (5 - 10]$, $t = (10 - 15]$, and $t = (15 - 20]$.

\texttt{trim} specifies that observations less than or equal to the minimum or greater than the maximum value listed in \texttt{at()} be excluded from the computations.

\texttt{by(varname)} specifies a categorical variable by which incidence rates or SMRs are to be computed.

Options

\texttt{per(#)} specifies the units to be used in reported rates. For example, if the analysis time is in years, specifying \texttt{per(1000)} results in rates per 1,000 person-years.

\texttt{dd(#)} specifies the maximum number of decimal digits to be reported for rates, ratios, and confidence intervals. This option affects only how values are displayed, not how they are calculated.

\texttt{smr(groupvar ratevar)} specifies two variables in the \texttt{using()} dataset. The \texttt{groupvar} identifies the age-group or calendar-period variable used to match the data in memory and the \texttt{using()} dataset. The \texttt{ratevar} variable contains the appropriate reference rates. \texttt{stptime} then calculates SMRs rather than incidence rates.

\texttt{using(filename)} specifies the filename that contains a file of standard rates that is to be merged with the data so that SMRs can be calculated.

\texttt{level(#)} specifies the confidence level, as a percentage, for confidence intervals. The default is \texttt{level(95)} or as set by \texttt{set level}; see [U] 20.7 Specifying the width of confidence intervals.

\texttt{noshow} prevents \texttt{stptime} from showing the key st variables. This option is seldom used because most people type \texttt{stset}, \texttt{show} or \texttt{stset}, \texttt{noshow} to set whether they want to see these variables mentioned at the top of the output of every st command; see [ST] \texttt{stset}.

Advanced

\texttt{jackknife} specifies that jackknife confidence intervals be produced. This is the default if \texttt{pweights} or \texttt{iweights} were specified when the dataset was \texttt{stset}.

\texttt{title(string)} replaces the default “person-time” label on the output table with \texttt{string}.

\texttt{output(filename [, replace])} saves a summary dataset in \texttt{filename}. The file contains counts of failures and person-time, incidence rates (or SMRs), confidence limits, and categorical variables identifying the time intervals. This dataset could be used for further calculations or simply as input to the \texttt{table} command.

\texttt{replace} specifies that \texttt{filename} be overwritten if it exists. This option is not shown in the dialog box.

Remarks and examples

\texttt{stptime} computes and tabulates the person-time and incidence rate (formed from the number of failures divided by the person-time). If you use the \texttt{by()} option, this will be calculated by different levels of one or more categorical explanatory variables specified by \texttt{varname}. Confidence intervals
for the rate are also given. By default, the confidence intervals are calculated using the quadratic approximation to the Poisson log likelihood for the log-rate parameter. However, whenever the Poisson assumption is questionable, such as when pweights or iweights are used, jackknife confidence intervals can also be calculated.

stptime can also calculate and report SMRs if the data have been merged with a suitable file of reference rates.

If pweights or iweights were specified when the dataset was _stset_, _stptime_ calculates jackknife confidence intervals by default.

The summary dataset can be saved to a file specified with the output() option for further analysis or a more elaborate graphical display.

Example 1

We begin with a simple fictitious example from Clayton and Hills (1993, 42). Thirty subjects were monitored until the development of a particular disease. Here are the data for the first five subjects:

```stata
  . use http://www.stata-press.com/data/r13/stptime
  . list in 1/5

<table>
<thead>
<tr>
<th>id</th>
<th>year</th>
<th>fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.6</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>10.8</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>14.1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3.5</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>4.8</td>
<td>1</td>
</tr>
</tbody>
</table>
```

The _id_ variable identifies the subject, _year_ records the time to failure in years, and _fail_ is the failure indicator, which is one for all 30 subjects in the data. To use _stptime_, we must first _stset_ the data.

```stata
  . stset year, fail(fail) id(id)

  id: id
  failure event: fail != 0 & fail < .
  obs. time interval: (year[_n-1], year]
  exit on or before: failure

  30  total observations
  0   exclusions
  30  observations remaining, representing
  30  subjects
  30  failures in single-failure-per-subject data
  261.9 total analysis time at risk and under observation
  at risk from t = 0
  earliest observed entry t = 0
  last observed exit t = 36.5
```
We can use `stptime` to obtain the overall person-time of observation and disease incidence rate.

```stata
. stptime, title(person-years)
  
  failure _d: fail
  analysis time _t: year
  id: id

  Cohort | person-years   failures  rate    [95% Conf. Interval]
  -------|----------------|-------------|---------|----------------------
  total  | 261.9         30        0.11454754  .08009 .1638299
```

The total 261.9 person-years reported by `stptime` matches what `stset` reported as total analysis time at risk. `stptime` computed an incidence rate of 0.11454754 per person-year. In epidemiology, incidence rates are often presented per 1,000 person-years. We can do this by specifying `per(1000)`.

```stata
. stptime, title(person-years) per(1000)
  
  failure _d: fail
  analysis time _t: year
  id: id

  Cohort | person-years   failures  rate    [95% Conf. Interval]
  -------|----------------|-------------|---------|----------------------
  total  | 261.9         30        114.54754   80.09001 163.8299
```

More interesting would be to compare incidence rates at 10-year intervals. We will specify `dd(4)` to display rates to four decimal places.

```stata
. stptime, per(1000) at(0(10)40) dd(4)
  
  failure _d: fail
  analysis time _t: year
  id: id

  Cohort | person-time   failures  rate    [95% Conf. Interval]
  -------|--------------|-------------|---------|----------------------
  (0 - 10] | 188.8000    18         95.3390   60.0676 151.3215
  (10 - 20] | 55.1000     10         181.4882  97.6506 337.3044
  (20 - 30] | 11.5000     1          86.9565  12.2490 617.3106
  > 30     | 6.5000      1          153.8462  21.6713 1092.1648

  total  | 261.9000    30        114.5475   80.0900 163.8299
```

Example 2

Using the diet data (Clayton and Hills 1993) described in example 1 of `[ST] stsplit`, we will use `stptime` to tabulate age-specific person-years and coronary heart disease (CHD) incidence rates. In this dataset, CHD has been coded as `fail = 1, 3, or 13`.

We first `stset` the data: failure codes for CHD are specified; origin is set to date of birth, making age the analysis time; and the scale is set to 365.25, so analysis time is measured in years.
. use http://www.stata-press.com/data/r13/diet
(Diet data with dates)
. stset dox, origin(time dob) enter(time doe) id(id) scale(365.25)
 > fail(fail==1 3 13)
 id: id
 failure event: fail == 1 3 13
 obs. time interval: (dox[_n-1], dox]
 enter on or after: time doe
 exit on or before: failure
 t for analysis: (time-origin)/365.25
 origin: time dob

337 total observations
 0 exclusions

337 observations remaining, representing
337 subjects
 46 failures in single-failure-per-subject data
4603.669 total analysis time at risk and under observation
at risk from t = 0
earliest observed entry t = 30.07529
last observed exit t = 69.99863

The incidence of CHD per 1,000 person-years can be tabulated in 10-year intervals.

. stptime, per(1000) at(40(10)70) trim
 failure _d: fail == 1 3 13
 analysis time _t: (dox-origin)/365.25
 origin: time dob
 enter on or after: time doe
 id: id
 note: _group<=40 trimmed

<table>
<thead>
<tr>
<th>Cohort</th>
<th>person-time</th>
<th>failures</th>
<th>rate</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(40 - 50]</td>
<td>907.00616</td>
<td>6</td>
<td>6.6151701</td>
<td>2.971936 14.72457</td>
</tr>
<tr>
<td>(50 - 60]</td>
<td>2107.0418</td>
<td>18</td>
<td>8.5427828</td>
<td>5.382317 13.55906</td>
</tr>
<tr>
<td>(60 - 70]</td>
<td>1493.2923</td>
<td>22</td>
<td>14.732548</td>
<td>9.700656 22.37457</td>
</tr>
<tr>
<td>total</td>
<td>4507.3402</td>
<td>46</td>
<td>10.205575</td>
<td>7.644246 13.62512</td>
</tr>
</tbody>
</table>

The SMR for a cohort is the ratio of the total number of observed deaths to the number expected from age-specific reference rates. This expected number can be found by multiplying the person-time in each cohort by the reference rate for that cohort. Using the smr option to define the cohort variable and reference rate variable in the using() dataset, stptime calculates SMRs and confidence intervals. You must specify the per() option. For example, if the reference rates were per 100,000, you would specify per(100000).

Example 3

In smrchd.dta, we have age-specific CHD rates per 1,000 person-years for a reference population. We can merge these data with our current data and use stptime to obtain SMRs and confidence intervals.
. stptime, smr(ageband rate) using(http://www.stata-press.com/data/r13/smrchd)
> per(1000) at(40(10)70) trim
 failure _d: fail == 1 3 13
 analysis time _t: (dox-origin)/365.25
 origin: time dob
 enter on or after: time doe
 id: id
 note: _group<=40 trimmed

<table>
<thead>
<tr>
<th>Cohort</th>
<th>observed person-time</th>
<th>failures</th>
<th>failures</th>
<th>SMR [95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(40 - 50]</td>
<td>907.00616</td>
<td>6</td>
<td>5.62344</td>
<td>1.067 .4793445 2.374931</td>
</tr>
<tr>
<td>(50 - 60]</td>
<td>2107.0418</td>
<td>18</td>
<td>18.7527</td>
<td>.95986 .6047547 1.52349</td>
</tr>
<tr>
<td>(60 - 70]</td>
<td>1493.2923</td>
<td>22</td>
<td>22.8474</td>
<td>.96291 .6340298 1.46239</td>
</tr>
</tbody>
</table>

| | total | 46 | 47.2235 | .97409 .7296205 1.300477 |

The stptime command can also calculate person-time and incidence rates or SMRs by categories of the explanatory variable. In our diet data, the variable hienergy is coded 1 if the total energy consumption is more than 2.75 Mcal and 0 otherwise. We want to compute the person-years and incidence rates for these two levels of hienergy.

. stptime, by(hienergy) per(1000)
 failure _d: fail == 1 3 13
 analysis time _t: (dox-origin)/365.25
 origin: time dob
 enter on or after: time doe
 id: id

<table>
<thead>
<tr>
<th>hienergy</th>
<th>observed person-time</th>
<th>failures</th>
<th>rate [95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2059.4305</td>
<td>28</td>
<td>13.595992 9.387478 19.69123</td>
</tr>
<tr>
<td>1</td>
<td>2544.2382</td>
<td>18</td>
<td>7.0748093 4.457431 11.2291</td>
</tr>
</tbody>
</table>

| | total | 46 | 9.9920309 7.484296 13.34002 |

We can also compute the incidence rate for the two levels of hienergy and the three previously defined age cohorts:

. stptime, by(hienergy) per(1000) at(40(10)70) trim
 failure _d: fail == 1 3 13
 analysis time _t: (dox-origin)/365.25
 origin: time dob
 enter on or after: time doe
 id: id

<table>
<thead>
<tr>
<th>hienergy</th>
<th>observed person-time</th>
<th>failures</th>
<th>rate [95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (40 - 50]</td>
<td>346.87474</td>
<td>2</td>
<td>5.76577 1.442006 23.05407</td>
</tr>
<tr>
<td>(50 - 60]</td>
<td>979.34018</td>
<td>12</td>
<td>12.253148 6.958681 21.57587</td>
</tr>
<tr>
<td>> 60</td>
<td>699.13758</td>
<td>14</td>
<td>20.024671 11.85966 33.81104</td>
</tr>
</tbody>
</table>

1 (40 - 50]	560.13142	4	7.1411813 2.680213 19.02702
(50 - 60]	1127.7016	6	5.3205566 2.390317 11.84292
> 60	794.15469	8	10.073604 5.037786 20.14327

| | total | 46 | 10.205575 7.644246 13.62512 |
Or we can compute the corresponding SMR:

```stata
. stptime, smr(ageband rate) using(http://www.stata-press.com/data/r13/smrchd)
> by(hienergy) per(1000) at(40(10)70) trim

failure _d: fail == 1 3 13
analysis time _t: (dox-origin)/365.25
origin: time dob
enter on or after: time doe
id: id

<table>
<thead>
<tr>
<th>hienergy</th>
<th>person-time</th>
<th>observed failures</th>
<th>failures</th>
<th>SMR</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>346.87474</td>
<td>2</td>
<td>2.15062</td>
<td>.9299629</td>
<td>.2325815 3.718399</td>
</tr>
<tr>
<td>(40 - 50]</td>
<td>979.34018</td>
<td>12</td>
<td>8.71613</td>
<td>1.376758</td>
<td>.7818743 2.424256</td>
</tr>
<tr>
<td>(50 - 60]</td>
<td>699.13758</td>
<td>14</td>
<td>10.6968</td>
<td>1.308802</td>
<td>.7751411 2.209872</td>
</tr>
<tr>
<td>&gt; 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>560.13142</td>
<td>4</td>
<td>3.47281</td>
<td>1.151803</td>
<td>.4322924 3.068875</td>
</tr>
<tr>
<td>(40 - 50]</td>
<td>1127.7016</td>
<td>6</td>
<td>10.0365</td>
<td>.5978154</td>
<td>.2685749 1.330665</td>
</tr>
<tr>
<td>(50 - 60]</td>
<td>794.15469</td>
<td>8</td>
<td>12.1506</td>
<td>.6584055</td>
<td>.329267 1.316554</td>
</tr>
<tr>
<td>&gt; 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>4507.3402</td>
<td>46</td>
<td>47.2235</td>
<td>.9740917</td>
<td>.7296205 1.300477</td>
</tr>
</tbody>
</table>
```

Stored results

`stptime` stores the following in `r()`:

Scalars

- `r(ptime)` = person-time
- `r(failures)` = observed failures
- `r(rate)` = failure rate
- `r(expected)` = expected number of failures
- `r(smr)` = standardized mortality ratio
- `r(lb)` = lower bound for SMR
- `r(ub)` = upper bound for SMR

References

Also see

- `[ST] epitab` — Tables for epidemiologists
- `[ST] stci` — Confidence intervals for means and percentiles of survival time
- `[ST] stir` — Report incidence-rate comparison
- `[ST] strate` — Tabulate failure rates and rate ratios
- `[ST] stset` — Declare data to be survival-time data
- `[ST] stsplit` — Split and join time-span records
strate — Tabulate failure rates and rate ratios

Syntax

Tabulate failure rates

strate [varlist] [if] [in] [, strate_options]

Calculate rate ratios with the Mantel–Haenszel method

stmh varname [varlist] [if] [in] [, options]

Calculate rate ratios with the Mantel–Cox method

stmc varname [varlist] [if] [in] [, options]

strate_options

Description

Main

per(#) units to be used in reported rates

smr(varname) use varname as reference-rate variable to calculate SMRs

cluster(varname) cluster variable to be used by the jackknife

jackknife report jackknife confidence intervals

missing include missing values as extra categories

level(#) set confidence level; default is level(95)

output(filename[, replace]) save summary dataset as filename; use replace to overwrite existing filename

nolist suppress listed output

graph graph rates against exposure category

nowhisker omit confidence intervals from the graph

Plot

marker_options change look of markers (color, size, etc.)

marker_label_options add marker labels; change look or position

cline_options affect rendition of the plotted points

CI plot

cioptr(rpike_options) affect rendition of the confidence intervals (whiskers)

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway_options any options other than by() documented in [G-3] twoway_options
strate — Tabulate failure rates and rate ratios

<table>
<thead>
<tr>
<th>options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>by(varlist)</td>
<td>tabulate rate ratio on varlist</td>
</tr>
<tr>
<td>compare(num1,den2)</td>
<td>compare categories of exposure variable</td>
</tr>
<tr>
<td>missing</td>
<td>include missing values as extra categories</td>
</tr>
<tr>
<td>level(#)</td>
<td>set confidence level; default is level(95)</td>
</tr>
</tbody>
</table>

You must **stset** your data before using **strate**, **stmh**, and **stmc**; see [ST] **stset**.

by is allowed with **stmh** and **stmc**; see [D] **by**.

fweight, iweight, and pweight may be specified using **stset**; see [ST] **stset**.

Menu

strate

Statistics > Survival analysis > Summary statistics, tests, and tables > Tabulate failure rates and rate ratios

stmh

Statistics > Survival analysis > Summary statistics, tests, and tables > Tabulate Mantel-Haenszel rate ratios

stmc

Statistics > Survival analysis > Summary statistics, tests, and tables > Tabulate Mantel-Cox rate ratios

Description

strate tabulates rates by one or more categorical variables declared in **varlist**. You can also save an optional summary dataset, which includes event counts and rate denominators, for further analysis or display. The combination of the commands **stsplit** and **strate** implements most of, if not all, the functions of the special-purpose person-years programs in widespread use in epidemiology. See Clayton and Hills (1993) and [ST] **stsplit**. If your interest is solely in calculating person-years, see [ST] **stptime**.

stmh calculates stratified rate ratios and significance tests by using a Mantel–Haenszel-type method.

stmc calculates rate ratios that are stratified finely by time by using the Mantel–Cox method. The corresponding significance test (the log-rank test) is also calculated.

Both **stmh** and **stmc** can estimate the failure-rate ratio for two categories of the explanatory variable specified by the first argument of **varlist**. You can define categories to be compared by specifying them with the **compare()** option. The remaining variables in **varlist** before the comma are categorical variables, which are to be “controlled for” using stratification. Strata are defined by cross-classification of these variables.

You can also use **stmh** and **stmc** to carry out trend tests for a metric explanatory variable. Here a one-step Newton approximation to the log-linear Poisson regression coefficient is computed.
Options for \texttt{strate}

\texttt{per(#)} specifies the units to be used in reported rates. For example, if the analysis time is in years, specifying \texttt{per(1000)} results in rates per 1,000 person-years.

\texttt{smr(varname)} specifies a reference-rate variable. \texttt{strate} then calculates SMRs rather than rates. This option will usually follow \texttt{stsplit} to separate the follow-up records by age bands and possibly calendar periods.

\texttt{cluster(varname)} defines a categorical variable that indicates clusters of data to be used by the jackknife. If the \texttt{jackknife} option is selected and this option is not specified, the cluster variable is taken as the \texttt{id} variable defined in the \texttt{st} data. Specifying \texttt{cluster()} implies \texttt{jackknife}.

\texttt{jackknife} specifies that jackknife confidence intervals be produced. This is the default if weights were specified when the dataset was \texttt{stset}.

\texttt{missing} specifies that missing values of the explanatory variables be treated as extra categories. The default is to exclude such observations.

\texttt{level(#)} specifies the confidence level, as a percentage, for confidence intervals. The default is \texttt{level(95)} or as set by \texttt{set level}; see \cite{U20.7} \texttt{Specifying the width of confidence intervals}.

\texttt{output(filename [, replace])} saves a summary dataset in \texttt{filename}. The file contains counts of failures and person-time, rates (or SMRs), confidence limits, and all the categorical variables in the \texttt{varlist}. This dataset could be used for further calculations or simply as input to the \texttt{table} command; see \cite{Rtable}.

\texttt{replace} specifies that \texttt{filename} be overwritten if it exists. This option is not shown in the dialog box.

\texttt{nolist} suppresses the output. This is used only when saving results to a file specified by \texttt{output()}.\n
\texttt{graph} produces a graph of the rate against the numerical code used for the categories of \texttt{varname}.\n
\texttt{nowhisker} omits the confidence intervals from the graph.

\texttt{marker_options} affect the rendition of markers drawn at the plotted points, including their shape, size, color, and outline; see \cite{G3} \texttt{marker_options}.

\texttt{marker_label_options} specify if and how the markers are to be labeled; see \cite{G3} \texttt{marker_label_options}.

\texttt{cline_options} affect whether lines connect the plotted points and the rendition of those lines; see \cite{G3} \texttt{cline_options}.

\texttt{ciplot} \texttt{(r spike_options)} affects the rendition of the confidence intervals (whiskers); see \cite{G3} \texttt{r spike_options}.

\texttt{addplot(plot)} provides a way to add other plots to the generated graph; see \cite{G3} \texttt{addplot_option}.

\texttt{twoway_options} are any of the options documented in \cite{G3} \texttt{twoway_options}, excluding \texttt{by()}. These include options for titling the graph (see \cite{G3} \texttt{title_options}) and for saving the graph to disk (see \cite{G3} \texttt{saving_option}).
Options for stmh and stmc

by(varlist) specifies categorical variables by which the rate ratio is to be tabulated.

A separate rate ratio is produced for each category or combination of categories of varlist, and a test for unequal rate ratios (effect modification) is displayed.

compare(num1,den2) specifies the categories of the exposure variable to be compared. The first code defines the numerator categories, and the second code defines the denominator categories.

When compare is absent and there are only two categories, the larger is compared with the smaller; when there are more than two categories, compare analyzes log-linear trend.

missing specifies that missing values of the explanatory variables be treated as extra categories. The default is to exclude such observations.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

Remarks and examples

Remarks are presented under the following headings:

- Tabulation of rates by using strate
- Stratified rate ratios using stmh
- Log-linear trend test for metric explanatory variables using stmh
- Controlling for age with fine strata by using stmc

Tabulation of rates by using strate

strate tabulates the rate, formed from the number of failures divided by the person-time, by different levels of one or more categorical explanatory variables specified by varlist. Confidence intervals for the rate are also given. By default, the confidence intervals are calculated using the quadratic approximation to the Poisson log likelihood for the log-rate parameter. However, whenever the Poisson assumption is questionable, jackknife confidence intervals can also be calculated. The jackknife option also allows for multiple records for the same cluster (usually subject).

strate can also calculate and report SMRs if the data have been merged with a suitable file of reference rates.

The summary dataset can be saved to a file specified with the output() option for further analysis or more elaborate graphical display.

If weights were specified when the dataset was stset, strate calculates jackknife confidence intervals by default.

Example 1

Using the diet data (Clayton and Hills 1993) described in example 1 of [ST] stsplit, we will use strate to tabulate age-specific coronary heart disease (CHD). In this dataset, CHD has been coded as fail = 1, 3, or 13.

We first stset the data: failure codes for CHD are specified; origin is set to date of birth, making age analysis time; and the scale is set to 365.25, so analysis time is measured in years.
. use http://www.stata-press.com/data/r13/diet
 (Diet data with dates)
. stset dox, origin(time doe) id(id) scale(365.25) fail(fail==1 3 13)
 id: id
 failure event: fail == 1 3 13
 obs. time interval: (dox[_n-1], dox]
 exit on or before: failure
 t for analysis: (time-origin)/365.25
 origin: time doe

337 total observations
 0 exclusions

337 observations remaining, representing
337 subjects
 46 failures in single-failure-per-subject data
4603.669 total analysis time at risk and under observation
 at risk from t = 0
 26 + 0 obs. trimmed due to lower and upper bounds
(418 observations (episodes) created)

 stsplit added 418 observations to the dataset in memory and generated a new variable, ageband, which identifies each observation’s age group.

Now we stsplit the data into 10-year age bands.

. stsplit ageband, at(40(10)70) after(time=dob) trim
 (26 + 0 obs. trimmed due to lower and upper bounds)
(418 observations (episodes) created)

stsplit added 418 observations to the dataset in memory and generated a new variable, ageband, which identifies each observation’s age group.

The CHD rate per 1,000 person-years can now be tabulated for categories of ageband:

. strate ageband, per(1000) graph
 failure _d: fail == 1 3 13
 analysis time _t: (dox-origin)/365.25
 origin: time doe
 id: id
 note: ageband<=40 trimmed

Estimated rates (per 1000) and lower/upper bounds of 95% confidence intervals
(729 records included in the analysis)

<table>
<thead>
<tr>
<th>ageband</th>
<th>D</th>
<th>Y</th>
<th>Rate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>6</td>
<td>0.9070</td>
<td>6.6152</td>
<td>2.9719</td>
<td>14.7246</td>
</tr>
<tr>
<td>50</td>
<td>18</td>
<td>2.1070</td>
<td>8.5428</td>
<td>5.3823</td>
<td>13.5591</td>
</tr>
<tr>
<td>60</td>
<td>22</td>
<td>1.4933</td>
<td>14.7325</td>
<td>9.7007</td>
<td>22.3746</td>
</tr>
</tbody>
</table>
Because we specified the `graph` option, `strate` also generated a plot of the estimated rates and confidence intervals.

The SMR for a cohort is the ratio of the total number of observed deaths to the number expected from age-specific reference rates. This expected number can be found by first expanding on age, using `stsplit`, and then multiplying the person-years in each age band by the reference rate for that band. `merge` (see [D] merge) can be used to add the reference rates to the dataset. Using the `smr` option to define the variable containing the reference rates, `strate` calculates SMRs and confidence intervals. You must specify the `per()` option. For example, if the reference rates were per 100,000, you would specify `per(100000)`. When reference rates are available by age and calendar period, you must call `stsplit` twice to expand on both time scales before merging the data with the reference-rate file.

Example 2

In `smrchd.dta`, we have age-specific CHD rates per 1,000 person-years for a reference population. We can merge these data with our current data and use `strate` to obtain SMRs and confidence intervals.
Stratified rate ratios using stmh

The stmh command is used for estimating rate ratios, controlled for confounding, using stratification. You can use it to estimate the ratio of the rates of failure for two categories of the explanatory variable. Categories to be compared may be defined by specifying the codes of the levels with compare().

The first variable listed on the command line after stmh is the explanatory variable used in comparing rates, and any remaining variables, if any, are categorical variables, which are to be controlled for by using stratification.

Example 3

To illustrate this command, let’s return to the diet data. The variable hienergy is coded 1 if the total energy consumption is more than 2.75 Mcal and 0 otherwise. We want to compare the rate for hienergy level 1 with the rate for level 0, controlled for ageband.

To do this, we first stset and stsplit the data into age bands as before, and then we use stmh:

```
. use http://www.stata-press.com/data/r13/diet, clear
(Diet data with dates)
. stset dox, origin(time dob) enter(time doe) id(id) scale(365.25)
> fail(fail==1 3 13)
(output omitted)
. stsplit ageband, at(40(10)70) after(time=dob) trim
(26 + 0 obs. trimmed due to lower and upper bounds)
(418 observations (episodes) created)
```

```
. strate ageband, per(1000) smr(rate)
. sort ageband
. merge m:1 ageband using http://www.stata-press.com/data/r13/smrchd
  ageband was byte now float
```

<table>
<thead>
<tr>
<th>Result</th>
<th># of obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>not matched</td>
<td>26</td>
</tr>
<tr>
<td>from master</td>
<td>26 (_merge==1)</td>
</tr>
<tr>
<td>from using</td>
<td>0 (_merge==2)</td>
</tr>
<tr>
<td>matched</td>
<td>729 (_merge==3)</td>
</tr>
</tbody>
</table>

```
. strate ageband, per(1000) smr(rate)
  failure _d: fail == 1 3 13
  analysis time _t: (dox-origin)/365.25
  origin: time doe
  id: id
  note: ageband<=40 trimmed
```

Estimated SMRs and lower/upper bounds of 95% confidence intervals
(729 records included in the analysis)

<table>
<thead>
<tr>
<th>ageband</th>
<th>D</th>
<th>E</th>
<th>SMR</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>6</td>
<td>5.62</td>
<td>1.0670</td>
<td>0.4793</td>
<td>2.3749</td>
</tr>
<tr>
<td>50</td>
<td>18</td>
<td>18.75</td>
<td>0.9599</td>
<td>0.6048</td>
<td>1.5235</td>
</tr>
<tr>
<td>60</td>
<td>22</td>
<td>22.85</td>
<td>0.9629</td>
<td>0.6340</td>
<td>1.4624</td>
</tr>
</tbody>
</table>
. stmh hienergy, by(ageband)
 failure _d: fail == 1 3 13
analysis time _t: (dox-origin)/365.25
origin: time dob
enter on or after: time doe
id: id
note: ageband<=40 trimmed
Maximum likelihood estimate of the rate ratio
comparing hienergy==1 vs. hienergy==0
by ageband
RR estimate, and lower and upper 95% confidence limits

<table>
<thead>
<tr>
<th>ageband</th>
<th>RR</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>1.24</td>
<td>0.23</td>
<td>6.76</td>
</tr>
<tr>
<td>50</td>
<td>0.43</td>
<td>0.16</td>
<td>1.16</td>
</tr>
<tr>
<td>60</td>
<td>0.50</td>
<td>0.21</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Overall estimate controlling for ageband

<table>
<thead>
<tr>
<th></th>
<th>RR</th>
<th>chi2</th>
<th>P>chi2</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.534</td>
<td>4.36</td>
<td>0.0369</td>
<td>0.293</td>
<td>0.972</td>
</tr>
</tbody>
</table>

Approx test for unequal RRs (effect modification): chi2(2) = 1.19
Pr>chi2 = 0.5514

Because the RR estimates are approximate, the test for unequal rate ratios is also approximate.

We can also compare the effect of hienergy between jobs, controlling for ageband.

. stmh hienergy ageband, by(job)
 failure _d: fail == 1 3 13
analysis time _t: (dox-origin)/365.25
origin: time dob
enter on or after: time doe
id: id
note: ageband<=40 trimmed
Mantel-Haenszel estimate of the rate ratio
comparing hienergy==1 vs. hienergy==0
controlling for ageband by job
RR estimate, and lower and upper 95% confidence limits

<table>
<thead>
<tr>
<th>job</th>
<th>RR</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.42</td>
<td>0.13</td>
<td>1.33</td>
</tr>
<tr>
<td>1</td>
<td>0.64</td>
<td>0.22</td>
<td>1.87</td>
</tr>
<tr>
<td>2</td>
<td>0.51</td>
<td>0.21</td>
<td>1.26</td>
</tr>
</tbody>
</table>

Overall estimate controlling for ageband job

<table>
<thead>
<tr>
<th></th>
<th>RR</th>
<th>chi2</th>
<th>P>chi2</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.521</td>
<td>4.88</td>
<td>0.0271</td>
<td>0.289</td>
<td>0.939</td>
</tr>
</tbody>
</table>

Approx test for unequal RRs (effect modification): chi2(2) = 0.28
Pr>chi2 = 0.8695
Log-linear trend test for metric explanatory variables using stmh

stmh may also be used to carry out trend tests for a metric explanatory variable. A one-step Newton approximation to the log-linear Poisson regression coefficient is also computed.

The diet dataset contains the height for each patient recorded in the variable height. We can test for a trend of heart disease rates with height controlling for ageband by typing

```
         . stmh height ageband
         failure _d: fail == 1 3 13
         analysis time _t: (dox-origin)/365.25
          origin: time dob
          enter on or after: time doe
                id: id
             note: ageband<=40 trimmed
```

Score test for trend of rates with height
with an approximate estimate of the
rate ratio for a one unit increase in height
controlling for ageband

RR estimate, and lower and upper 95% confidence limits

<table>
<thead>
<tr>
<th>RR</th>
<th>chi2</th>
<th>P>chi2</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.906</td>
<td>18.60</td>
<td>0.0000</td>
<td>0.866 0.948</td>
</tr>
</tbody>
</table>

stmh tested for trend of heart disease rates with height within age bands and provided a rough estimate of the rate ratio for a 1-cm increase in height — this estimate is a one-step Newton approximation to the maximum likelihood estimate. It is not consistent, but it does provide a useful indication of the size of the effect.

The rate ratio is significantly less than 1, so there is clear evidence for a decreasing rate with increasing height (about 9% decrease in rate per centimeter increase in height).

Controlling for age with fine strata by using stmc

The stmc (Mantel–Cox) command is used to control for variation of rates on a time scale by breaking up time into short intervals, or clicks.

Usually this approach is used only to calculate significance tests, but the rate ratio estimated remains just as useful as in the coarsely stratified analysis from stmh. The method may be viewed as an approximate form of Cox regression.

The rate ratio produced by stmc is controlled for analysis time separately for each level of the variables specified with by() and then combined to give a rate ratio controlled for both time and the by() variables.

Example 4

For example, to obtain the effect of high energy controlled for age by stratifying finely, we first stset the data specifying the date of birth, dob, as the origin (so analysis time is age), and then we use stmc:

```
         . stset dox, origin(time dob) enter(time doe) id(id) scale(365.25)
         > fail(fail==1 3 13)
         (output omitted)
```
. stmc hienergy
 failure _d: fail == 1 3 13
 analysis time _t: (dox-origin)/365.25
 origin: time dob
 enter on or after: time doe
 id: id

Mantel-Cox comparisons
Mantel-Haenszel estimates of the rate ratio
 comparing hienergy==1 vs. hienergy==0
 controlling for time (by clicks)
Overall Mantel-Haenszel estimate, controlling for time from dob

<table>
<thead>
<tr>
<th>RR</th>
<th>chi2</th>
<th>P>chi2</th>
<th>95% Conf. Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.537</td>
<td>4.20</td>
<td>0.0403</td>
<td>0.293 0.982</td>
</tr>
</tbody>
</table>

The rate ratio of 0.537 is close to that obtained with stmh when controlling for age by using 10-year age bands.

Stored results

stmh and stmc store the following in r():

Scalars
 r(RR) overall rate ratio

Nathan Mantel (1919–2002) was an American biostatistician who grew up in New York. He worked at the National Cancer Institute from 1947 to 1974 on a wide range of medical problems and was also later affiliated with George Washington University and the American University in Washington.

William M. Haenszel (1910–1998) was an American biostatistician and epidemiologist who graduated from the University of Buffalo. He also worked at the National Cancer Institute and later at the University of Illinois.

Acknowledgments

The original versions of strate, stmh, and stmc were written by David Clayton of the Cambridge Institute for Medical Research and Michael Hills (retired) of the London School of Hygiene and Tropical Medicine.

References

Also see

[ST] stci — Confidence intervals for means and percentiles of survival time

[ST] stir — Report incidence-rate comparison

[ST] stptime — Calculate person-time, incidence rates, and SMR

[ST] stset — Declare data to be survival-time data
Syntax

```plaintext
streg [varlist] [if] [in] [, options]
```

options

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>noconstant</td>
<td>suppress constant term</td>
</tr>
<tr>
<td>distribution(exponential)</td>
<td>exponential survival distribution</td>
</tr>
<tr>
<td>distribution(gompertz)</td>
<td>Gompertz survival distribution</td>
</tr>
<tr>
<td>distribution(loglogistic)</td>
<td>loglogistic survival distribution</td>
</tr>
<tr>
<td>distribution(lllogistic)</td>
<td>synonym for distribution(loglogistic)</td>
</tr>
<tr>
<td>distribution(weibull)</td>
<td>Weibull survival distribution</td>
</tr>
<tr>
<td>distribution(lognormal)</td>
<td>lognormal survival distribution</td>
</tr>
<tr>
<td>distribution(lnormal)</td>
<td>synonym for distribution(lognormal)</td>
</tr>
<tr>
<td>frailty(gamma)</td>
<td>gamma frailty distribution</td>
</tr>
<tr>
<td>frailty(invgaussian)</td>
<td>inverse-Gaussian distribution</td>
</tr>
<tr>
<td>time</td>
<td>use accelerated failure-time metric</td>
</tr>
</tbody>
</table>

Model 2

<table>
<thead>
<tr>
<th>strata(varname)</th>
<th>strata ID variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>offset(varname)</td>
<td>include varname in model with coefficient constrained to 1</td>
</tr>
<tr>
<td>shared(varname)</td>
<td>shared frailty ID variable</td>
</tr>
<tr>
<td>ancillary(varlist)</td>
<td>use varlist to model the first ancillary parameter</td>
</tr>
<tr>
<td>anc2(varlist)</td>
<td>use varlist to model the second ancillary parameter</td>
</tr>
<tr>
<td>constraints(constraints)</td>
<td>apply specified linear constraints</td>
</tr>
<tr>
<td>collinear</td>
<td>keep collinear variables</td>
</tr>
</tbody>
</table>

SE/Robust

| vce(vcetype) | vcetype may be oim, robust, cluster clustvar, opg, bootstrap, or jackknife |

358
streg — Parametric survival models

Reporting

- `level(#)`
 - set confidence level; default is `level(95)`
- `nohr`
 - do not report hazard ratios
- `tr`
 - report time ratios
- `noshow`
 - do not show st setting information
- `noheader`
 - suppress header from coefficient table
- `nolrtest`
 - do not perform likelihood-ratio test
- `nocnsr`
 - do not display constraints
- `display_options`
 - control column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling

Maximization

- `maximize_options`
 - control the maximization process; seldom used
- `coeflegend`
 - display legend instead of statistics

You must `stset` your data before using `streg`; see `[ST] stset`.

Options

- `varlist`
 - may contain factor variables; see `[U] 11.4.3 Factor variables`.
- `bootstrap`, `by`, `fp`, `jackknife`, `mfp`, `mi estimate`, `nestreg`, `statsby`, `stepwise`, and `svy` are allowed; see `[U] 11.1.10 Prefix commands`.
- `vce(bootstrap)` and `vce(jackknife)` are not allowed with the `mi estimate` prefix; see `[MI] mi estimate`.
- `shared()`, `vce()`, and `noheader` are not allowed with the `svy` prefix; see `[SVY] svy`.
- `fweight`, `iweight`, and `pweight` may be specified using `stset`; see `[ST] stset`. However, weights may not be specified if you are using the `bootstrap` prefix with the `streg` command.
- `coeflegend` does not appear in the dialog box.

See `[U] 20 Estimation and postestimation commands` for more capabilities of estimation commands.

Menu

Statistics > Survival analysis > Regression models > Parametric survival models

Description

`streg` performs maximum likelihood estimation for parametric regression survival-time models. `streg` can be used with single- or multiple-record or single- or multiple-failure st data. Survival models currently supported are exponential, Weibull, Gompertz, lognormal, loglogistic, and generalized gamma. Parametric frailty models and shared-frailty models are also fit using `streg`.

Also see `[ST] stcox` for proportional hazards models.

Options

- `noconstant`; see `[R] estimation options`.
- `distribution(distname)` specifies the survival model to be fit. A specified `distribution()` is remembered from one estimation to the next when `distribution()` is not specified.
 - For instance, typing `streg x1 x2, distribution(weibull)` fits a Weibull model. Subsequently, you do not need to specify `distribution(weibull)` to fit other Weibull regression models.
All Stata estimation commands, including `streg`, redisplay results when you type the command name without arguments. To fit a model with no explanatory variables, type `streg, distribution(distname)`...

`frailty(gamma|invgaussian)` specifies the assumed distribution of the frailty, or heterogeneity. The estimation results, in addition to the standard parameter estimates, will contain an estimate of the variance of the frailties and a likelihood-ratio test of the null hypothesis that this variance is zero. When this null hypothesis is true, the model reduces to the model with `frailty(distname)` not specified.

A specified `frailty()` is remembered from one estimation to the next when `distribution()` is not specified. When you specify `distribution()`, the previously remembered specification of `frailty()` is forgotten.

`time` specifies that the model be fit in the accelerated failure-time metric rather than in the log relative-hazard metric. This option is valid only for the exponential and Weibull models because these are the only models that have both a proportional hazards and an accelerated failure-time parameterization. Regardless of metric, the likelihood function is the same, and models are equally appropriate viewed in either metric; it is just a matter of changing the interpretation.

`time` must be specified at estimation.

Model 2

`strata(varname)` specifies the stratification ID variable. Observations with equal values of the variable are assumed to be in the same stratum. Stratified estimates (with equal coefficients across strata but intercepts and ancillary parameters unique to each stratum) are then obtained. This option is not available if `frailty(distname)` is specified.

`offset(varname)`; see [R] estimation options.

`shared(varname)` is valid with `frailty()` and specifies a variable defining those groups over which the frailty is shared, analogous to a random-effects model for panel data where `varname` defines the panels. `frailty()` specified without `shared()` treats the frailties as occurring at the observation level.

A specified `shared()` is remembered from one estimation to the next when `distribution()` is not specified. When you specify `distribution()`, the previously remembered specification of `shared()` is forgotten.

`shared()` may not be used with `distribution(gamma)`, `vce(robust)`, `vce(cluster clustvar)`, `vce(opg)`, the `svy` prefix, or in the presence of delayed entries or gaps.

If `shared()` is specified without `frailty()` and there is no remembered `frailty()` from the previous estimation, `frailty(gamma)` is assumed to provide behavior analogous to `stcox`; see [ST] `stcox`.

`ancillary(varlist)` specifies that the ancillary parameter for the Weibull, lognormal, Gompertz, and loglogistic distributions and that the first ancillary parameter (sigma) of the generalized log-gamma distribution be estimated as a linear combination of `varlist`. This option may not be used with `frailty(distname)`.

When an ancillary parameter is constrained to be strictly positive, the logarithm of the ancillary parameter is modeled as a linear combination of `varlist`.
anc2(varlist) specifies that the second ancillary parameter (kappa) for the generalized log-gamma distribution be estimated as a linear combination of varlist. This option may not be used with frailty(distname).

constraints(constraints), collinear; see [R] estimation options.

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce_option.

level(#); see [R] estimation options.

nohr, which may be specified at estimation or upon redisplaying results, specifies that coefficients rather than exponentiated coefficients be displayed, that is, that coefficients rather than hazard ratios be displayed. This option affects only how coefficients are displayed, not how they are estimated.

This option is valid only for models with a natural proportional-hazards parameterization: exponential, Weibull, and Gompertz. These three models, by default, report hazard ratios (exponentiated coefficients).

tr specifies that exponentiated coefficients, which are interpreted as time ratios, be displayed. tr is appropriate only for the loglogistic, lognormal, and gamma models, or for the exponential and Weibull models when fit in the accelerated failure-time metric.

tr may be specified at estimation or upon replay.

noshow prevents streg from showing the key st variables. This option is rarely used because most people type stset, show or stset, noshow to set once and for all whether they want to see these variables mentioned at the top of the output of every st command; see [ST] stset.

noheader suppresses the output header, either at estimation or upon replay.

nolrtest is valid only with frailty models, in which case it suppresses the likelihood-ratio test for significant frailty.

nocnsreport; see [R] estimation options.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch; see [R] estimation options.

maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. These options are seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with streg but is not shown in the dialog box:

coefflegend; see [R] estimation options.
Remarks and examples

Remarks are presented under the following headings:

- Introduction
- Distributions
 - Weibull and exponential models
 - Gompertz model
 - Lognormal and loglogistic models
 - Generalized gamma model
- Examples
 - Parameterization of ancillary parameters
 - Stratified estimation
 - (Unshared-) frailty models
 - Shared-frailty models

Introduction

What follows is a brief summary of what you can do with \texttt{streg}. For a complete tutorial, see Cleves et al. (2010), which devotes four chapters to this topic.

Two often-used models for adjusting survivor functions for the effects of covariates are the accelerated failure-time (AFT) model and the multiplicative or proportional hazards (PH) model. In the AFT model, the natural logarithm of the survival time, $\log t$, is expressed as a linear function of the covariates, yielding the linear model

$$\log t_j = x_j \beta + z_j$$

where x_j is a vector of covariates, β is a vector of regression coefficients, and z_j is the error with density $f()$. The distributional form of the error term determines the regression model. If we let $f()$ be the normal density, the lognormal regression model is obtained. Similarly, by letting $f()$ be the logistic density, the loglogistic regression is obtained. Setting $f()$ equal to the extreme-value density yields the exponential and the Weibull regression models.

The effect of the AFT model is to change the time scale by a factor of $\exp(-x_j \beta)$. Depending on whether this factor is greater or less than 1, time is either accelerated or decelerated (degraded). That is, if a subject at baseline experiences a probability of survival past time t equal to $S(t)$, then a subject with covariates x_j would have probability of survival past time t equal to $S(t)$ evaluated at the point $\exp(-x_j \beta)t$, instead. Thus accelerated failure time does not imply a positive acceleration of time with the increase of a covariate but instead implies a deceleration of time or, equivalently, an increase in the expected waiting time for failure.

In the PH model, the concomitant covariates have a multiplicative effect on the hazard function

$$h(t_j) = h_0(t)g(x_j)$$

for some $h_0(t)$, and for $g(x_j)$, a nonnegative function of the covariates. A popular choice, and the one adopted here, is to let $g(x_j) = \exp(x_j \beta)$. The function $h_0(t)$ may either be left unspecified, yielding the Cox proportional hazards model (see \texttt{[ST] stcox}), or take a specific parametric form. For the \texttt{streg} command, $h_0(t)$ is assumed to be parametric. Three regression models are currently implemented as PH models: the exponential, Weibull, and Gompertz models. The exponential and Weibull models are implemented as both AFT and PH models, and the Gompertz model is implemented only in the PH metric.
The above model allows for the presence of an intercept term, β_0, within $x_j \beta$. Thus what is commonly referred to as the baseline hazard function—the hazard when all covariates are zero—is actually equal to $h_0(t) \exp(\beta_0)$. That is, the intercept term serves to scale the baseline hazard. Of course, specifying `noconstant` suppresses the intercept or equivalently constrains β_0 to equal zero.

`streg` is suitable only for data that have been `stset`. By `stsetting` your data, you define the variables `_t0`, `_t`, and `_d`, which serve as the trivariate response variable (t_0, t, d). Each response corresponds to a period under observation, $(t_0, t]$, resulting in either failure ($d = 1$) or right-censoring ($d = 0$) at time t. As a result, `streg` is appropriate for data exhibiting delayed entry, gaps, time-varying covariates, and even multiple-failure data.

Distributions

Six parametric survival distributions are currently supported by `streg`. The parameterization and ancillary parameters for each distribution are summarized in table 1:

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Metric</th>
<th>Survivor function</th>
<th>Parameterization</th>
<th>Ancillary parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponential</td>
<td>PH</td>
<td>$\exp(-\lambda_j t_j)$</td>
<td>$\lambda_j = \exp(x_j \beta)$</td>
<td></td>
</tr>
<tr>
<td>Exponential</td>
<td>AFT</td>
<td>$\exp(-\lambda_j t_j)$</td>
<td>$\lambda_j = \exp(-x_j \beta)$</td>
<td></td>
</tr>
<tr>
<td>Weibull</td>
<td>PH</td>
<td>$\exp(-\lambda_j t_j^p)$</td>
<td>$\lambda_j = \exp(x_j \beta)$</td>
<td>p</td>
</tr>
<tr>
<td>Weibull</td>
<td>AFT</td>
<td>$\exp(-\lambda_j t_j^p)$</td>
<td>$\lambda_j = \exp(-p x_j \beta)$</td>
<td>p</td>
</tr>
<tr>
<td>Gompertz</td>
<td>PH</td>
<td>$\exp{-\lambda_j \gamma^{-1}(e^{\gamma t_j} - 1)}$</td>
<td>$\lambda_j = \exp(x_j \beta)$</td>
<td>γ</td>
</tr>
<tr>
<td>Lognormal</td>
<td>AFT</td>
<td>$1 - \Phi\left{\frac{\log(t_j) - \mu_j}{\sigma}\right}$</td>
<td>$\mu_j = x_j \beta$</td>
<td>σ</td>
</tr>
<tr>
<td>Loglogistic</td>
<td>AFT</td>
<td>${1 + (\lambda_j t_j)^{1/\gamma}}^{-1}$</td>
<td>$\lambda_j = \exp(-x_j \beta)$</td>
<td>γ</td>
</tr>
<tr>
<td>Generalized gamma</td>
<td>AFT</td>
<td>$1 - I(\gamma, u)$</td>
<td>$\mu_j = x_j \beta$</td>
<td>σ, κ</td>
</tr>
<tr>
<td></td>
<td>AFT</td>
<td>$1 - \Phi(z)$</td>
<td>$\mu_j = x_j \beta$</td>
<td>σ, κ</td>
</tr>
<tr>
<td></td>
<td>AFT</td>
<td>$I(\gamma, u)$</td>
<td>$\mu_j = x_j \beta$</td>
<td>σ, κ</td>
</tr>
</tbody>
</table>

where PH = proportional hazards, AFT = accelerated failure time, and $\Phi(z)$ is the standard normal cumulative distribution. For the generalized gamma, $\gamma = |\kappa|^{-2}$, $u = \gamma \exp(|\kappa| z)$, $I(a, x)$ is the incomplete gamma function, and $z = \text{sign}(\kappa) \{\log(t_j) - \mu_j\}/\sigma$.

Plotted in figure 1 are example hazard functions for five of the six distributions. The exponential hazard (not separately plotted) is a special case of the Weibull hazard when the Weibull ancillary parameter $p = 1$. The generalized gamma (not plotted) is extremely flexible and therefore can take many shapes.
Weibull and exponential models

The Weibull and exponential models are parameterized as both PH and AFT models. The Weibull distribution is suitable for modeling data with monotone hazard rates that either increase or decrease exponentially with time, whereas the exponential distribution is suitable for modeling data with constant hazard (see figure 1).

For the PH model, $h_0(t) = 1$ for exponential regression, and $h_0(t) = pt^{p-1}$ for Weibull regression, where p is the shape parameter to be estimated from the data. Some authors refer not to p but to $\sigma = 1/p$.

The AFT model is written as

$$\log(t_j) = x_j\beta^* + z_j$$

where z_j has an extreme-value distribution scaled by σ. Let β be the vector of regression coefficients derived from the PH model so that $\beta^* = -\sigma\beta$. This relationship holds only if the ancillary parameter, p, is a constant; it does not hold when the ancillary parameter is parameterized in terms of covariates.

`streg` uses, by default, for the exponential and Weibull models, the proportional-hazards metric simply because it eases comparison with those results produced by `stcox` (see [ST] `stcox`). You can, however, specify the `time` option to choose the accelerated failure-time parameterization.

The Weibull hazard and survivor functions are

$$h(t) = p\lambda t^{p-1}$$
where λ is parameterized as described in table 1. If $p = 1$, these functions reduce to those of the exponential.

Gompertz model

The Gompertz regression is parameterized only as a PH model. First described in 1825, this model has been extensively used by medical researchers and biologists modeling mortality data. The Gompertz distribution implemented is the two-parameter function as described in Lee and Wang (2003), with the following hazard and survivor functions:

\[
\begin{align*}
 h(t) &= \lambda \exp(\gamma t) \\
 S(t) &= \exp\left\{-\lambda \gamma^{-1}(e^{\gamma t} - 1)\right\}
\end{align*}
\]

The model is implemented by parameterizing $\lambda_j = \exp(x_j \beta)$, implying that $h_0(t) = \exp(\gamma t)$, where γ is an ancillary parameter to be estimated from the data.

This distribution is suitable for modeling data with monotone hazard rates that either increase or decrease exponentially with time (see figure 1).

When γ is positive, the hazard function increases with time; when γ is negative, the hazard function decreases with time; and when γ is zero, the hazard function is equal to λ for all t, so the model reduces to an exponential.

Some recent survival analysis texts, such as Klein and Moeschberger (2003), restrict γ to be strictly positive. If $\gamma < 0$, then as t goes to infinity, the survivor function, $S(t)$, exponentially decreases to a nonzero constant, implying that there is a nonzero probability of never failing (living forever). That is, there is always a nonzero hazard rate, yet it decreases exponentially. By restricting γ to be positive, we know that the survivor function always goes to zero as t tends to infinity.

Although the above argument may be desirable from a mathematical perspective, in Stata’s implementation, we took the more traditional approach of not restricting γ. We did this because, in survival studies, subjects are not monitored forever—there is a date when the study ends, and in many investigations, specifically in medical research, an exponentially decreasing hazard rate is clinically appealing.

Lognormal and loglogistic models

The lognormal and loglogistic models are implemented only in the AFT form. These two distributions are similar and tend to produce comparable results. For the lognormal distribution, the natural logarithm of time follows a normal distribution; for the loglogistic distribution, the natural logarithm of time follows a logistic distribution.

The lognormal survivor and density functions are

\[
\begin{align*}
 S(t) &= 1 - \Phi\left\{\frac{\log(t) - \mu}{\sigma}\right\} \\
 f(t) &= \frac{1}{t\sigma\sqrt{2\pi}} \exp\left[\frac{-1}{2\sigma^2} \left(\log(t) - \mu\right)^2\right]
\end{align*}
\]

where $\Phi(z)$ is the standard normal cumulative distribution function.
The lognormal regression is implemented by setting \(\mu_j = x_j \beta \) and treating the standard deviation, \(\sigma \), as an ancillary parameter to be estimated from the data.

The loglogistic regression is obtained if \(z_j \) has a logistic density. The loglogistic survivor and density functions are

\[
S(t) = \left\{ \begin{array}{ll}
1 + (\lambda t)^{1/\gamma} & \text{if } \kappa > 0 \\
1 - \Phi(z) & \text{if } \kappa = 0 \\
I(\gamma, u) & \text{if } \kappa < 0
\end{array} \right.
\]

\[
f(t) = \left\{ \begin{array}{ll}
\frac{\lambda^{1/\gamma} t^{\gamma-1}}{\gamma \{1 + (\lambda t)^{1/\gamma}\}^2} & \text{if } \kappa \neq 0 \\
\frac{1}{\sigma t^{\sqrt{2}} \pi} \exp(-z^2/2) & \text{if } \kappa = 0
\end{array} \right.
\]

This model is implemented by parameterizing \(\lambda_j = \exp(-x_j \beta) \) and treating the scale parameter \(\gamma \) as an ancillary parameter to be estimated from the data.

Unlike the exponential, Weibull, and Gompertz distributions, the lognormal and the loglogistic distributions are indicated for data exhibiting nonmonotonic hazard rates, specifically initially increasing and then decreasing rates (figure 1).

Thus far we have considered the exponential, Weibull, lognormal, and loglogistic models. These models are sufficiently flexible for many datasets, but further flexibility can be obtained with the generalized gamma model, described below. Alternatively, you might consider using a Royston–Parmar model (Royston and Parmar 2002; Lambert and Royston 2009). Royston–Parmar models are highly flexible alternatives to the exponential, Weibull, lognormal, and loglogistic models that allow extension from proportional hazards to proportional odds and to scaled probit models. Additional flexibility can be obtained with restricted cubic spline functions as alternatives to the linear functions of log time considered in Introduction. See Royston and Lambert (2011) for a thorough treatment of this topic.

Generalized gamma model

The generalized gamma model is implemented only in the AFT form. The three-parameter generalized gamma survivor and density functions are

\[
S(t) = \left\{ \begin{array}{ll}
1 - I(\gamma, u) & \text{if } \kappa > 0 \\
1 - \Phi(z) & \text{if } \kappa = 0 \\
I(\gamma, u) & \text{if } \kappa < 0
\end{array} \right.
\]

\[
f(t) = \left\{ \begin{array}{ll}
\frac{\gamma^{\gamma^2} \exp(z \sqrt{\gamma} - u)}{\sigma t^{\gamma} \Gamma(\gamma)} & \text{if } \kappa \neq 0 \\
\frac{1}{\sigma t^{\sqrt{2}} \pi} \exp(-z^2/2) & \text{if } \kappa = 0
\end{array} \right.
\]

where \(\gamma = |\kappa|^{-2} \), \(z = \text{sign}(\kappa) \{\log(t) - \mu\}/\sigma \), \(u = \gamma \exp(|\kappa| z) \), \(\Phi(z) \) is the standard normal cumulative distribution function, and \(I(a, x) \) is the incomplete gamma function. See the \texttt{gammap(a,x)} entry in [D] functions to see how the incomplete gamma function is implemented in Stata.

This model is implemented by parameterizing \(\mu_j = x_j \beta \) and treating the parameters \(\kappa \) and \(\sigma \) as ancillary parameters to be estimated from the data.

The hazard function of the generalized gamma distribution is extremely flexible, allowing for many possible shapes, including as special cases the Weibull distribution when \(\kappa = 1 \), the exponential when \(\kappa = 1 \) and \(\sigma = 1 \), and the lognormal distribution when \(\kappa = 0 \). The generalized gamma model is, therefore, commonly used for evaluating and selecting an appropriate parametric model for the data. The Wald or likelihood-ratio test can be used to test the hypotheses that \(\kappa = 1 \) or that \(\kappa = 0 \).
Examples

Example 1

The Weibull distribution provides a good illustration of streg because this distribution is parameterized as both AFT and PH and serves to compare and contrast the two approaches.

We wish to analyze an experiment testing the ability of emergency generators with new-style bearings to withstand overloads. This dataset is described in [ST] stcox. This time, we wish to fit a Weibull model:

```
. use http://www.stata-press.com/data/r13/kva
(Generator experiment)
. streg load bearings, distribution(weibull)
   failure _d: 1 (meaning all fail)
   analysis time _t: failtime
```

Fitting constant-only model:

```
Iteration 0: log likelihood = -13.666193
Iteration 1: log likelihood = -9.7427276
Iteration 2: log likelihood = -9.4421169
Iteration 3: log likelihood = -9.4408287
Iteration 4: log likelihood = -9.4408286
```

Fitting full model:

```
Iteration 0: log likelihood = -9.4408286
Iteration 1: log likelihood = -2.078323
Iteration 2: log likelihood = 5.2226016
Iteration 3: log likelihood = 5.6745808
Iteration 4: log likelihood = 5.6934031
Iteration 5: log likelihood = 5.6934189
Iteration 6: log likelihood = 5.6934189
```

```
Weibull regression -- log relative-hazard form

|        | _t         | Haz. Ratio | Std. Err. | z     | P>|z|   | [95% Conf. Interval] |
|--------|------------|------------|-----------|-------|-------|----------------------|
| load   | 1.599315   | .1883807   | 3.99      | 0.000 | 1.269616 | 2.014631 |
| bearings | .1887995  | .1312109   | -2.40     | 0.016 | .0483546 | .7371644 |
| _cons  | 2.51e-20   | 2.66e-19   | -4.26     | 0.000 | 2.35e-29 | 2.68e-11 |
| /ln_p  | 2.051552   | .2317074   | 8.85      | 0.000 | 1.597414 | 2.506591 |
| p      | 7.779969   | 1.802677   |           |       | 4.940241 | 12.25202 |
| 1/p    | .1285382   | .0297826   |           |       | .0816192 | .2024193 |
```

Because we did not specify otherwise, the estimation took place in the hazard metric, which is the default for distribution(weibull). The estimates are directly comparable to those produced by stcox: stcox estimated a hazard ratio of 1.526 for load and 0.0636 for bearings.

However, we estimated the baseline hazard function as well, assuming that it is Weibull. The estimates are the full maximum-likelihood estimates. The shape parameter is fit as ln \(p \), but streg then reports \(p \) and \(1/p = \sigma \) so that you can think about the parameter however you wish.
We find that p is greater than 1, which means that the hazard of failure increases with time and, here, increases dramatically. After 100 hours, the bearings are more than 1 million times more likely to fail per second than after 10 hours (or, to be precise, $(100/10)^{7.78-1}$). From our knowledge of generators, we would expect this; it is the accumulation of heat due to friction that causes bearings to expand and seize.

Technical note

Regression results are often presented in a metric other than the natural regression coefficients, that is, as hazard ratios, relative risk ratios, odds ratios, etc. In those cases, standard errors are calculated using the delta method.

However, the Z test and p-values given are calculated from the natural regression coefficients and standard errors. Although a test based on, say, a hazard ratio and its standard error would be asymptotically equivalent to that based on a regression coefficient, in real samples a hazard ratio will tend to have a more skewed distribution because it is an exponentiated regression coefficient. Also, it is more natural to think of these tests as testing whether a regression coefficient is nonzero, rather than testing whether a transformed regression coefficient is unequal to some nonzero value (one for a hazard ratio).

Finally, the confidence intervals given are obtained by transforming the endpoints of the corresponding confidence interval for the untransformed regression coefficient. This ensures that, say, strictly positive quantities such as hazard ratios have confidence intervals that do not overlap zero.

Example 2

The previous estimation took place in the PH metric, and exponentiated coefficients—hazard ratios—were reported. If we want to see the unexponentiated coefficients, we could redisplay results and specify the nohr option:

```plaintext
. streg, nohr
```

```
    Weibull regression -- log relative-hazard form

No. of subjects = 12 Number of obs      =  12
No. of failures = 12 Time at risk = 896
LR chi2(2)       = 30.27
Log likelihood   = 5.6934189 Prob > chi2 = 0.0000

    _t      Coef.     Std. Err.     z    P>|z|     [95% Conf. Interval]
load    .4695753    .1177884     3.99   0.000     .2387143    .7004363
bearings  -1.667069    .6949745    -2.40   0.016    -3.029194   -0.3049443
_cons    -45.13191   10.60663    -4.26   0.000    -65.92053   -24.34329

/ln_p   2.051552    .2317074     8.85   0.000     1.597414    2.505691

    p    7.779969    1.802677    4.940241   12.25202
1/p    .1285352    .0297826   .0816192   .2024193
```
Example 3

We could just as well have fit this model in the AFT metric:

```
. streg load bearings, d(weibull) time nolog
    failure _d: 1 (meaning all fail)
    analysis time _t: failtime
```

Weibull regression -- accelerated failure-time form

```
No. of subjects = 12  Number of obs = 12
No. of failures = 12
Time at risk = 896
```

```
LR chi2(2) = 30.27  Prob > chi2 = 0.0000
```

| Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------|-----------|------|-------|----------------------|
| load | -.060357 | .0062214 | -9.70 | 0.000 | -.0725507 -.0481632 |
| bearings | .2142771 | .0746451 | 2.87 | 0.004 | .0679753 .3605789 |
| _cons | 5.80104 | .1752301 | 33.11 | 0.000 | 5.457595 6.144485 |

```
/ln_p
```

```
2.051552 .2317074 8.85 0.000 1.597414 2.505691
```

```
p
```

```
7.779969 1.802677 4.940241 12.25202
```

```
1/p
```

```
.1285352 .0297826 .0816192 .2024193
```

This is the same model we previously fit, but it is presented in a different metric. Calling the previous coefficients \(b \), these coefficients are \(-\sigma b = -b/p \). For instance, in the previous example, the coefficient on `load` was reported as 0.4695753, and \(-0.4695753/7.779969 = -0.06035696\). \(d() \) is a convenient shorthand for `distribution()`.

Example 4

`streg` may also be applied to more complicated data. Below we have multiple records per subject on a failure that can occur repeatedly:

```
. use http://www.stata-press.com/data/r13/mfail3
```

```
stdescribe
```

<table>
<thead>
<tr>
<th>Category</th>
<th>total</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>no. of subjects</td>
<td>926</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no. of records</td>
<td>1734</td>
<td>1.87257</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>(first) entry time</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(final) exit time</td>
<td>470.6857</td>
<td></td>
<td>1</td>
<td>477</td>
<td>960</td>
<td></td>
</tr>
<tr>
<td>subjects with gap</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time on gap if gap</td>
<td>411</td>
<td>68.5</td>
<td>16</td>
<td>57.5</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>time at risk</td>
<td>435444</td>
<td>470.2419</td>
<td>1</td>
<td>477</td>
<td>960</td>
<td></td>
</tr>
<tr>
<td>failures</td>
<td>808</td>
<td>.8725702</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
```

In this dataset, subjects have up to four records (most have two) and have up to three failures (most have one) and, although you cannot tell from the above output, the data have time-varying covariates, as well. There are even six subjects with gaps in their histories, meaning that, for a while, they went unobserved. Although we could estimate in the AFT metric, it is easier to interpret results in the PH metric (or the log relative-hazard metric, as it is also known):
. `streg x1 x2, d(weibull) vce(robust)`

Fitting constant-only model:
- Iteration 0: log pseudolikelihood = -1398.2504
- Iteration 1: log pseudolikelihood = -1382.8224
- Iteration 2: log pseudolikelihood = -1382.7457
- Iteration 3: log pseudolikelihood = -1382.7457

Fitting full model:
- Iteration 0: log pseudolikelihood = -1382.7457
- Iteration 1: log pseudolikelihood = -1328.4186
- Iteration 2: log pseudolikelihood = -1326.4483
- Iteration 3: log pseudolikelihood = -1326.4449
- Iteration 4: log pseudolikelihood = -1326.4449

Weibull regression -- log relative-hazard form

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Haz. Ratio</td>
<td>Std. Err.</td>
<td>z</td>
<td>P&gt;</td>
</tr>
<tr>
<td>_t</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x1</td>
<td>2.240069</td>
<td>.1812848</td>
<td>9.97</td>
<td>0.000</td>
</tr>
<tr>
<td>x2</td>
<td>.3206515</td>
<td>.0504626</td>
<td>-7.23</td>
<td>0.000</td>
</tr>
<tr>
<td>_cons</td>
<td>.0006962</td>
<td>.0001792</td>
<td>-28.25</td>
<td>0.000</td>
</tr>
<tr>
<td>/ln_p</td>
<td>.1771265</td>
<td>.0310111</td>
<td>5.71</td>
<td>0.000</td>
</tr>
<tr>
<td>p</td>
<td>1.193782</td>
<td>.0370205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/p</td>
<td>.8376738</td>
<td>.0259772</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Std. Err. adjusted for 926 clusters in id)

A one-unit change in \( x_1 \) approximately doubles the hazard of failure, whereas a one-unit change in \( x_2 \) cuts the hazard to one-third its previous value. We also see that these data are close to being exponentially distributed; \( p \) is nearly 1.

Above we mentioned that interpreting results in the PH metric is easier, though regression coefficients are not difficult to interpret in the AFT metric. A positive coefficient means that time is decelerated by a unit increase in the covariate in question. This may seem awkward, but think of this instead as a unit increase in the covariate causing a delay in failure and thus increasing the expected time until failure.

The difficulty that arises with the AFT metric is merely that it places an emphasis on log(time-to-failure) rather than risk (hazard) of failure. With this emphasis usually comes a desire to predict the time to failure, and therein lies the difficulty with complex survival data. Predicting the log(time to failure) with `predict` assumes that the subject is at risk from time 0 until failure and has a fixed covariate pattern over this period. With these data, such assumptions produce predictions having little to do with the test subjects, who exhibit not only time-varying covariates but also multiple failures.

Predicting time to failure with complex survival data is difficult regardless of the metric under which estimation took place. Those who estimate in the PH metric are probably used to dealing with results from Cox regression, of which predicted time to failure is typically not the focus.
Example 5

The multiple-failure data above are close enough to exponentially distributed that we will reestimate using exponential regression:

```
streg x1 x2, d(exp) vce(robust)
```

<table>
<thead>
<tr>
<th>Iteration</th>
<th>log pseudolikelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1398.2504</td>
</tr>
<tr>
<td>1</td>
<td>-1343.6083</td>
</tr>
<tr>
<td>2</td>
<td>-1341.5932</td>
</tr>
<tr>
<td>3</td>
<td>-1341.5893</td>
</tr>
<tr>
<td>4</td>
<td>-1341.5893</td>
</tr>
</tbody>
</table>

Exponential regression -- log relative-hazard form

<table>
<thead>
<tr>
<th>No. of subjects</th>
<th>926</th>
<th>Number of obs</th>
<th>1734</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of failures</td>
<td>808</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time at risk</td>
<td>435444</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wald chi2(2) = 166.92  Prob > chi2 = 0.0000

Robust

|       | Haz. Ratio | Std. Err. | z     | P>|z|  | [95% Conf. Interval] |
|-------|------------|-----------|-------|------|---------------------|
| _t    |            |           |       |      |                     |
| x1    | 2.19065    | .1684399  | 10.20 | 0.000| 1.884186            |
| x2    | .3037259   | .0462489  | -7.83 | 0.000| .2253552            |
| _cons | .0024536   | .0001535  | -96.05| 0.000| .0021704            |

Technical note

For our “complex” survival data, we specified `vce(robust)` when fitting the Weibull and exponential models. This was because these data were `stset` with an `id()` variable, and given the time-varying covariates and multiple failures, it is important not to assume that the observations within each subject are independent. When we specified `vce(robust)`, it was implicit that we were “clustering” on the groups defined by the `id()` variable.

You might sometimes have multiple observations per subject, which exist merely as a result of the data-organization mechanism and are not used to record gaps, time-varying covariates, or multiple failures. Such data could be collapsed into single-observation-per-subject data with no loss of information. In these cases, we refer to splitting the observations to form multiple observations per subject as noninformative. When the episode-splitting is noninformative, the model-based (nonrobust) standard errors produced will be the same as those produced when the data are collapsed into single records per subject. Thus, for these type of data, clustering of these multiple observations that results from specifying `vce(robust)` is not critical.

Example 6

A reasonable question to ask is, “Given that we have several possible parametric models, how can we select one?” When parametric models are nested, the likelihood-ratio or Wald test can be used to discriminate between them. This can certainly be done for Weibull versus exponential or gamma versus Weibull or lognormal. When models are not nested, however, these tests are inappropriate, and the task of discriminating between models becomes more difficult. A common approach to this problem is to use the Akaike information criterion (AIC). Akaike (1974) proposed penalizing each log likelihood to reflect the number of parameters being estimated in a particular model and then comparing them. Here the AIC can be defined as
AIC = −2(\log \text{ likelihood}) + 2(c + p + 1)

where \(c\) is the number of model covariates and \(p\) is the number of model-specific ancillary parameters listed in table 1. Although the best-fitting model is the one with the largest log likelihood, the preferred model is the one with the smallest AIC value. The AIC value may be obtained by using the estat ic postestimation command; see [R] estat ic.

Using cancer.dta distributed with Stata, let’s first fit a generalized gamma model and test the hypothesis that \(\kappa = 0\) (test for the appropriateness of the lognormal) and then test the hypothesis that \(\kappa = 1\) (test for the appropriateness of the Weibull).

\[. use http://www.stata-press.com/data/r13/cancer\]
\[. stset studytime, failure(died)\]
\[. replace drug = drug==2 | drug==3 // 0, placebo : 1, nonplacebo\]  
\[. streg drug age, d(gamma) nolog\]
\[. test [kappa]_cons = 1\]
\[. test [kappa]_cons = 1\]
\[. chi2( 1) = 0.97\]
\[. Prob > chi2 = 0.3253\]

providing some support against rejecting the Weibull model.

We now fit the exponential, Weibull, loglogistic, and lognormal models separately. To directly compare coefficients, we will ask Stata to report the exponential and Weibull models in AFT form by specifying the time option. The output from fitting these models and the results from the generalized gamma model are summarized in table 2.
Table 2. Results obtained from streg, using cancer.dta with drug as an indicator variable

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Exponential</th>
<th>Weibull</th>
<th>Lognormal</th>
<th>Loglogistic</th>
<th>Generalized gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>-.0886715</td>
<td>-.0714323</td>
<td>-.0833996</td>
<td>-.0803289</td>
<td>-.078042</td>
</tr>
<tr>
<td>Drug</td>
<td>1.682625</td>
<td>1.305563</td>
<td>1.445838</td>
<td>1.420237</td>
<td>1.394658</td>
</tr>
<tr>
<td>Ancillary</td>
<td>1.682751</td>
<td>0.751136</td>
<td>0.429276</td>
<td>0.684297</td>
<td>0.684297</td>
</tr>
<tr>
<td>Kappa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.466925</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-48.397094</td>
<td>-42.931335</td>
<td>-42.800864</td>
<td>-43.21698</td>
<td>-42.452006</td>
</tr>
<tr>
<td>AIC</td>
<td>102.7942</td>
<td>93.86267</td>
<td>93.60173</td>
<td>94.43396</td>
<td>94.90401</td>
</tr>
</tbody>
</table>

The largest log likelihood was obtained for the generalized gamma model; however, the lognormal model is preferred by the AIC.

Parameterization of ancillary parameters

By default, all ancillary parameters are estimated as being constant. For example, the ancillary parameter, \( p \), of the Weibull distribution is assumed to be a constant that is not dependent on any covariates. streg’s ancillary() and anc2() options allow for complete parameterization of parametric survival models. By specifying, for example,

```
. streg x1 x2, d(weibull) ancillary(x2 z1 z2)
```

both \( \lambda \) and the ancillary parameter, \( p \), are parameterized in terms of covariates.

Ancillary parameters are usually restricted to be strictly positive, in which case the logarithm of the ancillary parameter is modeled using a linear predictor, which can assume any value on the real line.

Example 7

Consider a dataset in which we model the time until hip fracture as Weibull for patients on the basis of age, sex, and whether the patient wears a hip-protective device (variable protect). We believe that the hazard is scaled according to sex and the presence of the device but believe the hazards for both sexes to be of different shapes.
. use http://www.stata-press.com/data/r13/hip3, clear
(hip fracture study)
. streg protect age, d(weibull) ancillary(male) nolog
   failure _d: fracture
   analysis time _t: time1
   id: id

Weibull regression -- log relative-hazard form

|         | Coef.    | Std. Err. | z     | P>|z|   | [95% Conf. Interval] |
|---------|----------|-----------|-------|-------|----------------------|
| _t      |          |           |       |       |                      |
| protect | -2.130058| .3567005  | -5.97 | 0.000 | -2.829178 -1.430938  |
| age     | .0939131 | .0341107  | 2.75  | 0.006 | .0270573 .1607689   |
| _cons   | -10.17575| 2.551821  | -3.99 | 0.000 | -15.17722 -5.174269 |

ln_p					
male	-.4887189	.185608	-2.63	0.008	-.8525039 -.1249339
_cons	.4540139	.1157915	3.92	0.000	.2270667 .6809611

From our estimation results, we see that \( \hat{\ln(p)} = 0.454 \) for females and \( \hat{\ln(p)} = 0.454 - 0.489 = -0.035 \) for males. Thus \( \hat{p} = 1.57 \) for females and \( \hat{p} = 0.97 \) for males. When we combine this with the main equation in the model, the estimated hazards are then

\[
\hat{h}(t_j|x_j) = \begin{cases} 
\exp(-10.18 - 2.13\text{protect}_j + 0.09\text{age}_j)\cdot 1.57t_j^{0.57} & \text{if female} \\
\exp(-10.18 - 2.13\text{protect}_j + 0.09\text{age}_j)\cdot 0.97t_j^{-0.03} & \text{if male}
\end{cases}
\]

If we believe this model, we would say that the hazard for males given \text{age} and \text{protect} is almost constant over time.

Contrast this with what we obtain if we type

. streg protect age if male, d(weibull)
. streg protect age if !male, d(weibull)

which is completely general, because not only will the shape parameter, \( p \), differ over both sexes, but the regression coefficients will as well.

The \texttt{anc2()} option is for use only with the gamma regression model, because it contains two ancillary parameters—\texttt{anc2()} is used to parametrize \( \kappa \).

### Stratified estimation

When we type

. streg xvars, d(distname) strata(varname)

we are asking that a completely stratified model be fit. By \textit{completely stratified}, we mean that both the model’s intercept and any ancillary parameters are allowed to vary for each level of the strata variable. That is, we are constraining the coefficients on the covariates to be the same across strata but allowing the intercept and ancillary parameters to vary.
Example 8

We demonstrate this by fitting a stratified lognormal model to the cancer data, with the `drug` variable left in its original state: `drug==1` refers to the placebo, and `drug==2` and `drug==3` correspond to two alternative treatments.

```
use http://www.stata-press.com/data/r13/cancer
(stata-press.com: Drug Trial)
.stset studytime, failure(died)
(output omitted)
.streg age, d(weibull) strata(drug) nolog
 failure _d: died
 analysis time _t: studytime
```

Weibull regression -- log relative-hazard form

|       | Coef.     | Std. Err. | z    | P>|z| | [95% Conf. Interval] |
|-------|-----------|-----------|------|------|----------------------|
| _t    |           |           |      |      |                      |
| age   | .1212332  | .0367538  | 3.30 | 0.001| .049197              |
|       |           |           |      |      |  .1932694            |
| _Sdrug_2 | -4.561178 | 2.339448  | -1.95| 0.051| -9.146411            |
|       |           |           |      |      |  .0240556            |
| _Sdrug_3 | -3.715737 | 2.595986  | -1.43| 0.152| -8.803776            |
|       |           |           |      |      |  1.372302             |
| _cons | -10.36921 | 2.341022  | -4.43| 0.000| -14.95753            |
|       |           |           |      |      |  5.780896             |
| ln_p  |           |           |      |      |                      |
|       |           |           |      |      |                      |
| _Sdrug_2 | .4872195  | .332019   | 1.47 | 0.142| -.1635257            |
|       |           |           |      |      |  1.137965             |
| _Sdrug_3 | .2194213  | .4079989  | 0.54 | 0.591| -.5802418            |
|       |           |           |      |      |  1.019084             |
| _cons | .4541282  | .1715663  | 2.65 | 0.008| .1178645             |
|       |           |           |      |      |  .7903919             |

Completely stratified models are fit by first generating stratum-specific indicator variables (dummy variables) and then adding these as independent variables in the model and as covariates in the ancillary parameter. The `strata()` option is thus merely a shorthand method for generating the indicator variables from the `drug` categories and then placing these indicators in both the main equation and the ancillary equation(s).

We associate the term `stratification` with this process by noting that the intercept term of the main equation is a component of the baseline hazard (or baseline survivor) function. By allowing this intercept, as well as the ancillary shape parameter, to vary with respect to the strata, we allow the baseline functions to completely vary over the strata, analogous to a stratified Cox model.
Example 9

We can produce a less-stratified model by specifying a factor variable in the ancillary() option.

```
. streg age, d(weibull) ancillary(i.drug) nolog
 failure _d: died
 analysis time _t: studytime
```

Weibull regression -- log relative-hazard form

```
No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744
LR chi2(1) = 9.61
Log likelihood = -44.596379 Prob > chi2 = 0.0019
```

|     | Coef.  | Std. Err. | z    | P>|z|   | [95% Conf. Interval] |
|-----|--------|-----------|------|-------|----------------------|
| _t  |        |           |      |       |                      |
| age | 0.1126419 | 0.0362786 | 3.10 | 0.002 | 0.0415373 to 0.1837466 |
| _cons | -10.95772 | 2.308489  | -4.75 | 0.000 | -15.48227 to -6.433162 |
| ln_p|        |           |      |       |                      |
| drug|        |           |      |       |                      |
| 2   | -0.3279568 | 0.11238  | -2.92 | 0.004 | -0.5482176 to -0.107696 |
| 3   | -0.4775351 | 0.109141 | -4.38 | 0.000 | -0.6913948 to -0.2636755 |
| _cons | 0.6684086 | 0.1327284 | 5.04 | 0.000 | 0.4082657 to 0.9285514 |

By doing this, we are restricting not only the coefficients on the covariates to be the same across “strata” but also the intercept, while allowing only the ancillary parameter to differ.

By using ancillary() or strata(), we may thus consider a wide variety of models, depending on what we believe about the effect of the covariate(s) in question. For example, when fitting a Weibull PH model to the cancer data, we may choose from many models, depending on what we want to assume is the effect of the categorical variable drug. For all models considered below, we assume implicitly that the effect of age is proportional on the hazard function.

1. drug has no effect:
   ```
 . streg age, d(weibull)
   ```
2. The effect of drug is proportional on the hazard (scale), and the effect of age is the same for each level of drug:
   ```
 . streg age i.drug, d(weibull)
   ```
3. drug affects the shape of the hazard, and the effect of age is the same for each level of drug:
   ```
 . streg age, d(weibull) ancillary(i.drug)
   ```
4. drug affects both the scale and shape of the hazard, and the effect of age is the same for each level of drug:
   ```
 . streg age, d(weibull) strata(drug)
   ```
5. drug affects both the scale and shape of the hazard, and the effect of age is different for each level of drug:
. streg drug##c.age, d(weibull) strata(drug)

These models may be compared using Wald or likelihood-ratio tests when the models in question are nested (such as 3 nested within 4) or by using the AIC for nonnested models.

Everything we said regarding the modeling of ancillary parameters and stratification applies to AFT models as well, for which interpretations may be stated in terms of the baseline survivor function, that is, the unaccelerated probability of survival past time \( t \).

Technical note

When fitting PH models, \texttt{streg} will, by default, display the exponentiated regression coefficients, labeled as hazard ratios. However, in our previous examples using \texttt{ancillary()} and \texttt{strata()}, the regression outputs displayed the untransformed coefficients instead. This change in behavior has to do with the modeling of the ancillary parameter. When we use one or more covariates from the main equation to model an ancillary parameter, hazard ratios (and time ratios for AFT models) lose their interpretation. \texttt{streg}, as a precaution, disallows the display of hazard/time ratios when \texttt{ancillary()}, \texttt{anc2()}, or \texttt{strata()} is specified.

Keep this in mind when comparing results across various model specifications. For example, when comparing a stratified Weibull PH model to a standard Weibull PH model, be sure that the latter is displayed using the \texttt{nohr} option.

(Unshared-) frailty models

A frailty model is a survival model with unobservable heterogeneity, or frailty. At the observation level, frailty is introduced as an unobservable multiplicative effect, \( \alpha \), on the hazard function, such that

\[
h(t|\alpha) = \alpha h(t)
\]

where \( h(t) \) is a nonfrailty hazard function, say, the hazard function of any of the six parametric models supported by \texttt{streg} described earlier in this entry. The frailty, \( \alpha \), is a random positive quantity and, for model identifiability, is assumed to have mean 1 and variance \( \theta \).

Exploiting the relationship between the cumulative hazard function and survivor function yields the expression for the survivor function, given the frailty

\[
S(t|\alpha) = \exp \left\{ - \int_0^t h(u|\alpha)du \right\} = \exp \left\{ -\alpha \int_0^t \frac{f(u)}{S(u)}du \right\} = \{S(t)\}^\alpha
\]

where \( S(t) \) is the survivor function that corresponds to \( h(t) \).

Because \( \alpha \) is unobservable, it must be integrated out of \( S(t|\alpha) \) to obtain the unconditional survivor function. Let \( g(\alpha) \) be the probability density function of \( \alpha \), in which case an estimable form of our frailty model is achieved as

\[
S_\theta(t) = \int_0^\infty S(t|\alpha)g(\alpha)d\alpha = \int_0^\infty \{S(t)\}^\alpha g(\alpha)d\alpha
\]

Given the unconditional survivor function, we can obtain the unconditional hazard and density in the usual way:

\[
f_\theta(t) = -\frac{d}{dt}S_\theta(t) \quad h_\theta(t) = \frac{f_\theta(t)}{S_\theta(t)}
\]
Hence, an unshared-frailty model is merely a typical parametric survival model, with the additional estimation of an overdispersion parameter, $\theta$. In a standard survival regression, the likelihood calculations are based on $S(t)$, $h(t)$, and $f(t)$. In an unshared-frailty model, the likelihood is based analogously on $S_\theta(t)$, $h_\theta(t)$, and $f_\theta(t)$.

At this stage, the only missing piece is the choice of frailty distribution, $g(\alpha)$. In theory, any continuous distribution supported on the positive numbers that has expectation 1 and finite variance $\theta$ is allowed here. For mathematical tractability, however, we limit the choice to either the gamma$(1/\theta, \theta)$ distribution or the inverse-Gaussian distribution with parameters 1 and $1/\theta$, denoted as IG$(1, 1/\theta)$.

The gamma$(a,b)$ distribution has probability density function

$$g(x) = \frac{x^{a-1}e^{-x/b}}{\Gamma(a)b^a}$$

and the IG$(a,b)$ distribution has density

$$g(x) = \left(\frac{b}{2\pi x^3}\right)^{1/2} \exp\left\{ -\frac{b}{2a} \left( \frac{x}{a} - 2 + \frac{a}{x} \right) \right\}$$

Therefore, performing the integrations described above will show that specifying frailty(gamma) will result in the frailty survival model (in terms of the nonfrailty survivor function, $S(t)$)

$$S_\theta(t) = \left[ 1 - \theta \log \{ S(t) \} \right]^{-1/\theta}$$

Specifying frailty(invgaussian) will give

$$S_\theta(t) = \exp \left\{ \frac{1}{\theta} \left( 1 - \left[ 1 - 2\theta \log \{ S(t) \} \right]^{1/2} \right) \right\}$$

Regardless of the choice of frailty distribution, $\lim_{\theta \to 0} S_\theta(t) = S(t)$, and thus the frailty model reduces to $S(t)$ when there is no heterogeneity present.

When using frailty models, distinguish between the hazard faced by the individual (subject), $\alpha h(t)$, and the “average” hazard for the population, $h_\theta(t)$. Similarly, an individual will have probability of survival past time $t$ equal to $\{ S(t) \}^\alpha$, whereas $S_\theta(t)$ will measure the proportion of the population surviving past time $t$. You specify $S(t)$ as before with distribution(distname), and the list of possible parametric forms for $S(t)$ is given in table 1. Thus when you specify distribution() you are specifying a model for an individual with frailty equal to one. Specifying frailty(distname) determines which of the two above forms for $S_\theta(t)$ is used.

The output of the estimation remains unchanged from the nonfrailty version, except for the additional estimation of $\theta$ and a likelihood-ratio test of $H_0: \theta = 0$. For more information on frailty models, Hougaard (1986) offers an excellent introduction. For a Stata-specific overview, see Gutierrez (2002).

Example 10

Consider as an example a survival analysis of data on women with breast cancer. Our hypothetical dataset consists of analysis times on 80 women with covariates age, smoking, and dietfat, which measures the average weekly calories from fat ($\times 10^3$) in the patient’s diet over the course of the study.
. use http://www.stata-press.com/data/r13/bc
. list in 1/12

<table>
<thead>
<tr>
<th></th>
<th>age</th>
<th>smoking</th>
<th>dietfat</th>
<th>t</th>
<th>dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>30</td>
<td>1</td>
<td>4.919</td>
<td>14.2</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>50</td>
<td>0</td>
<td>4.437</td>
<td>8.21</td>
<td>1</td>
</tr>
<tr>
<td>3.</td>
<td>47</td>
<td>0</td>
<td>5.85</td>
<td>5.64</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>49</td>
<td>1</td>
<td>5.149</td>
<td>4.42</td>
<td>1</td>
</tr>
<tr>
<td>5.</td>
<td>52</td>
<td>1</td>
<td>4.363</td>
<td>2.81</td>
<td>1</td>
</tr>
<tr>
<td>6.</td>
<td>29</td>
<td>0</td>
<td>6.153</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>49</td>
<td>1</td>
<td>3.82</td>
<td>4.57</td>
<td>1</td>
</tr>
<tr>
<td>8.</td>
<td>27</td>
<td>1</td>
<td>5.294</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>9.</td>
<td>47</td>
<td>0</td>
<td>6.102</td>
<td>3.74</td>
<td>1</td>
</tr>
<tr>
<td>10.</td>
<td>59</td>
<td>0</td>
<td>4.446</td>
<td>2.29</td>
<td>1</td>
</tr>
<tr>
<td>11.</td>
<td>35</td>
<td>0</td>
<td>6.203</td>
<td>15.3</td>
<td>0</td>
</tr>
<tr>
<td>12.</td>
<td>26</td>
<td>0</td>
<td>4.515</td>
<td>35</td>
<td>0</td>
</tr>
</tbody>
</table>

The data are well fit by a Weibull model for the distribution of survival time conditional on age, smoking, and dietary fat. By omitting the dietfat variable from the model, we hope to introduce unobserved heterogeneity.

. stset t, fail(dead)
(output omitted)
. streg age smoking, d(weibull) frailty(gamma)
    failure _d:  dead
    analysis time _t:  t

Fitting Weibull model:
Fitting constant-only model:
 Iteration 0:  log likelihood = -137.15363
 Iteration 1:  log likelihood = -136.39270
 Iteration 2:  log likelihood = -136.01557
 Iteration 3:  log likelihood = -136.01202
 Iteration 4:  log likelihood = -136.01201
Fitting full model:
 Iteration 0:  log likelihood = -85.933969
 Iteration 1:  log likelihood = -73.61173
 Iteration 2:  log likelihood = -68.999447
 Iteration 3:  log likelihood = -68.340858
 Iteration 4:  log likelihood = -68.136187
 Iteration 5:  log likelihood = -68.135804
 Iteration 6:  log likelihood = -68.135804
Weibull regression -- log relative-hazard form  
Gamma frailty

No. of subjects = 80  Number of obs = 80
No. of failures = 58  Time at risk = 1257.07
Log likelihood = -68.135804  
LR chi2(2) = 135.75  Prob > chi2 = 0.0000

|     | Haz. Ratio | Std. Err. | z    | P>|z| | [95% Conf. Interval] |
|-----|------------|-----------|------|-----|----------------------|
| _t  |            |           |      |     |                      |
| age | 1.475948   | .1379987  | 4.16 | 0.000 | 1.228811  1.772788  |
| smoking | 2.788548 | 1.457031  | 1.96 | 0.050 | 1.00143  7.764894  |
| _cons | 4.57e-11  | 2.38e-10  | -4.57| 0.000 | 1.70e-15  1.23e-06  |
| /ln_p | 1.087761  | .222261  | 4.89 | 0.000 | .6521376  1.523385  |
| /ln_the | .3307466 | .5250758 | 0.63 | 0.529 | -.698383  1.359876  |
| p   | 2.967622  | .6595867  | 1.91964 | 0.000 | 4.587727  |
| 1/p | .3369701  | .0748953  | .2179729 | .520931  |
| theta | 1.392007  | .7309092  | 2.049079 | 2.714273  |
|     | .4880241  | .0700013  | .3684228 | .6464518  |
|     | 1.268047  | 1.086471  | .2364941 | 6.799082  |

Likelihood-ratio test of theta=0: chibar2(01) = 22.57  Prob>=chibar2 = 0.000

We could also use an inverse-Gaussian distribution to model the heterogeneity.

```
. streg age smoking, d(weibull) frailty(invgauss) nolog
 failure _d: dead
 analysis time _t: t
```

Weibull regression -- log relative-hazard form  
Inverse-Gaussian frailty

No. of subjects = 80  Number of obs = 80
No. of failures = 58  Time at risk = 1257.07
Log likelihood = -73.838578  
LR chi2(2) = 125.44  Prob > chi2 = 0.0000

|     | Haz. Ratio | Std. Err. | z    | P>|z| | [95% Conf. Interval] |
|-----|------------|-----------|------|-----|----------------------|
| _t  |            |           |      |     |                      |
| age | 1.284133   | .0463256  | 6.93 | 0.000 | 1.196473  1.378217  |
| smoking | 2.905409 | 1.252785  | 2.47 | 0.013 | 1.247892  6.764528  |
| _cons | 1.11e-07  | 2.34e-07  | -7.63| 0.000 | 1.83e-09  6.79e-06  |
| /ln_p | .7173904 | .1434382  | 5.00 | 0.000 | .4362567  .9985241  |
| /ln_the | .2374778 | .8568064 | 0.28 | 0.782 | -.1441832  1.916788  |
| p   | 2.049079  | .2939162  | 1.546906 | 2.714273  |
| 1/p | .4880241  | .0700013  | .3684228 | .6464518  |
| theta | 1.268047  | 1.086471  | .2364941 | 6.799082  |

Likelihood-ratio test of theta=0: chibar2(01) = 11.16  Prob>=chibar2 = 0.000

The results are similar with respect to the choice of frailty distribution, with the gamma frailty model producing a slightly higher likelihood. Both models show a statistically significant level of unobservable heterogeneity because the p-value for the likelihood-ratio (LR) test of $H_0: \theta = 0$ is virtually zero in both cases.
Technical note

With gamma-distributed or inverse-Gaussian–distributed frailty, hazard ratios decay over time in favor of the frailty effect, and thus the displayed “Haz. Ratio” in the above output is actually the hazard ratio only for \( t = 0 \). The degree of decay depends on \( \theta \). Should the estimated \( \theta \) be close to zero, the hazard ratios regain their usual interpretation. The rate of decay and the limiting hazard ratio differ between the gamma and inverse-Gaussian models; see Gutierrez (2002) for details.

For this reason, many researchers prefer fitting frailty models in the AFT metric because the interpretation of regression coefficients is unchanged by the frailty—the factors in question serve to either accelerate or decelerate the survival experience. The only difference is that with frailty models, the unconditional probability of survival is described by \( S_\theta(t) \) rather than \( S(t) \).

Technical note

The LR test of \( \theta = 0 \) is a boundary test and thus requires careful consideration concerning the calculation of its \( p \)-value. In particular, the null distribution of the LR test statistic is not the usual \( \chi^2 \) but rather is a 50:50 mixture of a \( \chi^2_0 \) (point mass at zero) and a \( \chi^2_1 \), denoted as \( \bar{\chi}^2_{01} \). See Gutierrez, Carter, and Drukker (2001) for more details.

To verify that the significant heterogeneity is caused by the omission of dietfat, we now refit the Weibull/inverse-Gaussian frailty model with dietfat included.

```
. streg age smoking dietfat, d(weibull) frailty(invgauss) nolog
 failure _d: dead
 analysis time _t: t
Weibull regression -- log relative-hazard form
Inverse-Gaussian frailty
No. of subjects = 80 Number of obs = 80
No. of failures = 58
Time at risk = 1257.07
LR chi2(3) = 246.41
Log likelihood = -13.352142 Prob > chi2 = 0.0000

 _t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
------------- ------------- ------------- -------- -------- ----------------------
 age 1.74928 .0985244 9.93 0.000 1.566453 1.953446
 smoking 5.203549 1.70494 5.03 0.000 2.737815 9.889978
 dietfat 9.229841 2.219328 9.24 0.000 5.761315 14.78655
 _cons 1.07e-20 4.98e-20 -9.92 0.000 1.22e-24 9.45e-17
 _ln_p 1.431742 .0978844 14.63 0.000 1.239892 1.623592
 /ln_the -14.42565 2850.629 -0.01 0.996 -5601.555 5572.704
 p 4.185986 .4097429 3.45 0.001 3.455242 5.071275
 1/p .2388923 .0233838 10.97 0.000 .1971891 .2894153
 theta 5.43e-07 .0015487 -0.73 0.467 -530.8414 530.8414

Likelihood-ratio test of theta=0: chibar2(01) = 0.00 Prob>=chibar2 = 1.000
```

The estimate of the frailty variance component \( \theta \) is near zero, and the \( p \)-value of the test of \( H_0: \theta = 0 \) equals one, indicating negligible heterogeneity. A regular Weibull model could be fit to these data (with dietfat included), producing almost identical estimates of the hazard ratios and ancillary parameter, \( p \), so such an analysis is omitted here.
Also hazard ratios now regain their original interpretation. Thus an increase in weekly calories from fat of 1,000 would increase the risk of death by more than ninefold.

**Shared-frailty models**

A generalization of the frailty models considered in the previous section is the *shared-frailty* model, where the frailty is assumed to be group specific; this is analogous to a panel-data regression model. For observation \( j \) from the \( i \)th group, the hazard is

\[
 h_{ij}(t|z_i) = z_i h_{ij}(t)
\]

for \( i = 1, \ldots, n \) and \( j = 1, \ldots, n_i \), where by \( h_{ij}(t) \) we mean \( h(t|x_{ij}) \), which is the individual hazard given covariates \( x_{ij} \).

Shared-frailty models are appropriate when you wish to model the frailties as being specific to groups of subjects, such as subjects within families. Here a shared-frailty model may be used to model the degree of correlation within groups; that is, the subjects within a group are correlated because they share the same common frailty.

**Example 11**

Consider the data from a study of 38 kidney dialysis patients, as described in McGilchrist and Aisbett (1991). The study is concerned with the prevalence of infection at the catheter-insertion point. Two recurrence times (in days) are measured for each patient, and each recorded time is the time from initial insertion (onset of risk) to infection or censoring.

```
. use http://www.stata-press.com/data/r13/catheter
 (Kidney data, McGilchrist and Aisbett, Biometrics, 1991)
. list patient time infect age female in 1/10
```

<table>
<thead>
<tr>
<th>patient</th>
<th>time</th>
<th>infect</th>
<th>age</th>
<th>female</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1</td>
<td>1</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>1</td>
<td>8</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>2</td>
<td>13</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>2</td>
<td>23</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>5.</td>
<td>3</td>
<td>22</td>
<td>32</td>
<td>0</td>
</tr>
</tbody>
</table>
| 6.      | 3    | 28     | 1   | 32     | 0
| 7.      | 4    | 318    | 1   | 31.5   | 1
| 8.      | 4    | 447    | 1   | 31.5   | 1
| 9.      | 5    | 30     | 1   | 10     | 0
| 10.     | 5    | 12     | 1   | 10     | 0

Each patient (patient) has two recurrence times (time) recorded, with each catheter insertion resulting in either infection (infect==1) or right-censoring (infect==0). Among the covariates measured are age and sex (female==1 if female, female==0 if male).

One subtlety to note concerns the use of the generic term *subjects*. In this example, the subjects are the individual catheter insertions, not the patients themselves. This is a function of how the data were recorded—the onset of risk occurs at catheter insertion (of which there are two for each patient) not, say, at the time of admission of the patient into the study. Thus we have two subjects (insertions) within each group (patient).
It is reasonable to assume independence of patients but unreasonable to assume that recurrence times within each patient are independent. One solution would be to fit a standard survival model, adjusting the standard errors of the parameter estimates to account for the possible correlation by specifying `vce(cluster patient)`.

We could also model the correlation by assuming that the correlation is the result of a latent patient-level effect, or frailty. That is, rather than fitting a standard model and specifying `vce(cluster patient)`, we fit a frailty model and specify `shared(patient)`. Assuming that the time to infection, given `age` and `female`, follows a Weibull distribution, and inverse-Gaussian distributed frailties, we get

```
. stset time, fail(infect)
(output omitted)
. streg age female, d(weibull) frailty(invgauss) shared(patient) nolog
 failure _d: infect
 analysis time _t: time
Weibull regression --
 log relative-hazard form
 Number of obs = 76
 Inverse-Gaussian shared frailty
 Number of groups = 38
Group variable: patient
No. of subjects = 76
 Obs per group: min = 2
No. of failures = 58
 avg = 2
Time at risk = 7424
 max = 2
LR chi2(2) = 9.84
Log likelihood = -99.093527 Prob > chi2 = 0.0073

 _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
----------|------------------+----------------+---------+---------+------------------------+
age | 1.006918 .0135741 0.51 0.609 .9806623 1.033878
female | .2331376 .10463821 -3.24 0.001 .0967322 .5618928
_cons | .0110089 .00992661 -5.00 0.000 .0018803 .0644557
/ln_p | .1900625 .13153421 1.44 0.148 -.0677398 .4478649
/ln_the | .0357272 .77453621 0.05 0.963 -1.482336 1.55379
----------|------------------+----------------+---------+---------+------------------------+
p | 1.209325 .1590676 7.70 0.000 .8912123 1.642641
1/p | .8269074 .10876661 7.70 0.000 .6147727 1.100041
theta | 1.036373 .80270851 1.30 0.194 .0296531 4.891033
----------|------------------+----------------+---------+---------+------------------------+
Likelihood-ratio test of theta=0: chibar2(01) = 8.70 Prob>=chibar2 = 0.002
```
Contrast this with what we obtain by assuming a subject-level lognormal model:

```
. streg age female, d(lnormal) frailty(invgauss) shared(patient) nolog
 failure _d: infect
 analysis time _t: time
```

Lognormal regression --
accelerated failure-time form
Inverse-Gaussian shared frailty

Group variable: patient

<table>
<thead>
<tr>
<th></th>
<th>Number of obs = 76</th>
<th>Number of groups = 38</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of subjects</td>
<td>76</td>
<td>38</td>
</tr>
<tr>
<td>No. of failures</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Time at risk</td>
<td>7424</td>
<td></td>
</tr>
<tr>
<td>LR chi2(2)</td>
<td>16.34</td>
<td></td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-97.614583</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

|      | Coef.     | Std. Err. | z     | P>|z|  | [95% Conf. Interval] |
|------|-----------|-----------|-------|------|----------------------|
| _t   |           |           |       |      |                      |
| age  | -.0066762 | .0099457  | -0.67 | 0.502| -.0261694 .0128171  |
| female| 1.401719  | .3334931  | 4.20  | 0.000| .7480844 2.055354   |
| _cons| 3.336709  | .4972641  | 6.71  | 0.000| 2.362089 4.311329   |
| /ln_sig | .0625872 | .1256185  | 0.50  | 0.618| -.1836205 .3087949 |
| /ln_the| -1.606248 | 1.190775  | -1.35 | 0.177| -3.940125 .7276282 |
| sigma | 1.064587  | .1337318  | .8322516 | 1.361783 |
| theta | .2006389  | .2389159  | .0194458 | 2.070165 |

Likelihood-ratio test of theta=0: chibar2(01) = 1.53 Prob>=chibar2 = 0.108

The frailty effect is insignificant at the 10% level in the latter model yet highly significant in the former. We thus have two possible stories to tell concerning these data: If we believe the first model, we believe that the individual hazard of infection continually rises over time (Weibull), but there is a significant frailty effect causing the population hazard to begin falling after some time. If we believe the second model, we believe that the individual hazard first rises and then declines (lognormal), meaning that if a given insertion does not become infected initially, the chances that it will become infected begin to decrease after a certain point. Because the frailty effect is insignificant, the population hazard mirrors the individual hazard in the second model.

As a result, both models view the population hazard as rising initially and then falling past a certain point. The second version of our story corresponds to higher log likelihood, yet perhaps not significantly higher given the limited data. More investigation is required. One idea is to fit a more distribution-agnostic form of a frailty model, such as a piecewise exponential (Cleves et al. 2010, 328–331) or a Cox model with frailty; see [ST] stcox.

Shared-frailty models are also appropriate when the frailties are subject specific yet there exist multiple records per subject. Here you would share frailties across the same id() variable previously stset. When you have subject-specific frailties and uninformative episode splitting, it makes no difference whether you fit a shared or an unshared frailty model. The estimation results will be the same.
stored results

streg stores the following in e():

Scalars

- e(N) number of observations
- e(N_sub) number of subjects
- e(N_fail) number of failures
- e(N_g) number of groups
- e(k) number of parameters
- e(k_eq) number of equations in e(b)
- e(k_eq_model) number of equations in overall model test
- e(k_aux) number of auxiliary parameters
- e(dv) number of dependent variables
- e(df_m) model degrees of freedom
- e(ll) log likelihood
- e(ll_0) log likelihood, constant-only model
- e(ll_c) log likelihood, comparison model
- e(N_clust) number of clusters
- e(chi2) \( \chi^2 \)
- e(chi2_c) \( \chi^2 \), comparison model
- e(risk) total time at risk
- e(g_min) smallest group size
- e(g_avg) average group size
- e(g_max) largest group size
- e(theta) frailty parameter
- e(aux_p) ancillary parameter (weibull)
- e(gamma) ancillary parameter (gompertz, loglogistic)
- e(sigma) ancillary parameter (gamma, lnormal)
- e(kappa) ancillary parameter (gamma)
- e(p) significance
- e(p_c) significance, comparison model
- e(rank) rank of e(V)
- e(rank0) rank of e(V), constant-only model
- e(ic) number of iterations
- e(rc) return code
- e(converged) 1 if converged, 0 otherwise
Methods and formulas

For an introduction to survival models, see Cleves et al. (2010). For an introduction to survival analysis directed at social scientists, see Box-Steffensmeier and Jones (2004).

Consider for \( j = 1, \ldots, n \) observations the trivariate response, \((t_{0j}, t_j, d_j)\), representing a period of observation, \((t_{0j}, t_j]\), ending in either failure (\(d_j = 1\)) or right-censoring (\(d_j = 0\)). This structure allows analysis of a wide variety of models and may be used to account for delayed entry, gaps, time-varying covariates, and multiple failures per subject. Regardless of the structure of the data, once they are \texttt{stset}\, the data may be treated in a common manner by \texttt{streg}: the \texttt{stset}-created variable \_t0 holds the \(t_{0j}\), \_t holds the \(t_j\), and \_d holds the \(d_j\).

For a given survivor function, \(S(t)\), the density function is obtained as

\[
    f(t) = -\frac{d}{dt} S(t)
\]
and the hazard function (the instantaneous rate of failure) is obtained as \( h(t) = \frac{f(t)}{S(t)} \). Available forms for \( S(t) \) are listed in Table 1. For a set of covariates from the \( j \)th observation, \( x_j \), define \( S_j(t) = S(t|x = x_j) \), and similarly define \( h_j(t) \) and \( f_j(t) \). For example, in a Weibull PH model, \( S_j(t) = \exp\{-\exp(x_j\beta)t^p\} \).

**Parameter estimation**

In this command, \( \beta \) and the ancillary parameters are estimated via maximum likelihood. A subject known to fail at time \( t_j \) contributes to the likelihood function the value of the density at time \( t_j \) conditional on the entry time \( t_{0j} \), \( f_j(t_j)/S_j(t_{0j}) \). A censored observation, known to survive only up to time \( t_j \), contributes \( S_j(t_j)/S_j(t_{0j}) \), which is the probability of surviving beyond time \( t_j \) conditional on the entry time, \( t_{0j} \). The log likelihood is thus given by

\[
\log L = \sum_{j=1}^{n} \left\{ d_j \log f_j(t_j) + (1 - d_j) \log S_j(t_j) - \log S_j(t_{0j}) \right\}
\]

Implicit in the above log-likelihood expression are the regression parameters, \( \beta \), and the ancillary parameters because both are components of the chosen \( S_j(t) \) and its corresponding \( f_j(t) \); see Table 1. `streg` reports maximum likelihood estimates of \( \beta \) and of the ancillary parameters (if any for the chosen model). The reported log-likelihood value is \( \log L_r = \log L + T \), where \( T = \sum \log(t_j) \) is summed over uncensored observations. The adjustment removes the time units from \( \log L \). Whether the adjustment is made makes no difference to any test or result since such tests and results depend on differences in log-likelihood functions or their second derivatives, or both.

Specifying `ancillary()`, `anc2()`, or `strata()` will parameterize the ancillary parameter(s) by using the linear predictor, \( z_j\alpha_z \), where the covariates, \( z_j \), need not be distinct from \( x_j \). Here `streg` will report estimates of \( \alpha_z \) in addition to estimates of \( \beta \). The log likelihood here is simply the log likelihood given above, with \( z_j\alpha_z \) substituted for the ancillary parameter. If the ancillary parameter is constrained to be strictly positive, its logarithm is parameterized instead; that is, we substitute the linear predictor for the logarithm of the ancillary parameter in the above log likelihood. The gamma model has two ancillary parameters, \( \sigma \) and \( \kappa \); we parameterize \( \sigma \) by using `ancillary()` and \( \kappa \) by using `anc2()`, and the linear predictors used for each may be distinct. Specifying `strata()` creates indicator variables for the strata, places these indicators in the main equation, and uses the indicators to parameterize any ancillary parameters that exist for the chosen model.

Unshared-frailty models have a log likelihood of the above form, with \( S_\theta(t) \) and \( f_\theta(t) \) substituted for \( S(t) \) and \( f(t) \), respectively. Equivalently, for gamma-distributed frailties,

\[
\log L = \sum_{j=1}^{n} \left[ \theta^{-1} \log \{1 - \theta \log S_j(t_{0j})\} - (\theta^{-1} + d_j) \log \{1 - \theta \log S_j(t_j)\} + d_j \log h_j(t_j) \right]
\]
and for inverse-Gaussian–distributed frailties,

$$\log L = \sum_{j=1}^{n} \left[ \theta^{-1} \left\{ 1 - 2\theta \log S_j(t_{0j}) \right\}^{1/2} - \theta^{-1} \left\{ 1 - 2\theta \log S_j(t_j) \right\}^{1/2} + 
ight.$$ 

$$d_j \log h_j(t_j) - \frac{1}{2} d_j \log \left\{ 1 - 2\theta \log S_j(t_j) \right\} \right]$$

In a shared-frailty model, the frailty is common to a group of observations. Thus, to form an unconditional likelihood, the frailties must be integrated out at the group level. The data are organized as i = 1, ..., n groups with the ith group comprising j = 1, ..., ni observations. The log likelihood is the sum of the log-likelihood contributions for each group. Define Di = \( \sum_{j} d_{ij} \) as the number of failures in the ith group. For gamma frailties, the log-likelihood contribution for the ith group is

$$\log L_i = \sum_{j=1}^{n_i} d_{ij} \log h_{ij}(t_{ij}) - (1/\theta + D_i) \log \left\{ 1 - \theta \sum_{j=1}^{n_i} \log \frac{S_{ij}(t_{ij})}{S_{ij}(t_{0ij})} \right\} +$$

$$D_i \log \theta + \log \Gamma(1/\theta + D_i) - \log \Gamma(1/\theta)$$

This formula corresponds to the log-likelihood contribution for multiple-record data. For single-record data, the denominator \( S_{ij}(t_{0ij}) \) is equal to 1. This formula is not applicable to data with delayed entries or gaps.

For inverse-Gaussian frailties, define

$$C_i = \left\{ 1 - 2\theta \sum_{j=1}^{n_i} \log \frac{S_{ij}(t_{ij})}{S_{ij}(t_{0ij})} \right\}^{-1/2}$$

The log-likelihood contribution for the ith group then becomes

$$\log L_i = \theta^{-1}(1 - C_i^{-1}) + B(\theta C_i, D_i) + \sum_{j=1}^{n_i} d_{ij} \{ \log h_{ij}(t_{ij}) + \log C_i \}$$

The function \( B(a, b) \) is related to the modified Bessel function of the third kind, commonly known as the BesselK function; see Wolfram (1999, 767). In particular,

$$B(a, b) = a^{-1} + \frac{1}{2} \left\{ \log \left( \frac{2}{\pi} \right) - \log a \right\} + \log \text{BesselK} \left( \frac{1}{2} - b, a^{-1} \right)$$

For both unshared- and shared-frailty models, estimation of \( \theta \) takes place jointly with the estimation of \( \beta \) and the ancillary parameters.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version using vce(robust) and vce(cluster clustvar), respectively. See [P] _robust, particularly Maximum likelihood estimators and Methods and formulas. If observations in the dataset represent repeated observations on the same subjects (that is, there are time-varying covariates), the assumption of independence of the observations is highly questionable, meaning that the conventional estimate of variance is not appropriate. We strongly advise that you use the vce(robust) and vce(cluster clustvar) options here. (streg knows to specify vce(cluster clustvar) if you specify vce(robust).) vce(robust) and vce(cluster clustvar) do not apply in shared-frailty models, where the correlation within groups is instead modeled directly.

streg also supports estimation with survey data. For details on VCEs with survey data, see [SVY] variance estimation.
Benjamin Gompertz (1779–1865) came from a Jewish family who left Holland and settled in England. He was self-educated in mathematics and in 1824 was appointed as actuary and head clerk of the Alliance Assurance Company. He carried out pioneer work on the application of differential calculus to actuarial questions, particularly the dependence of mortality on age, and contributed to astronomy and the study of scientific instruments.

Ernst Hjalmar Waloddi Weibull (1887–1979) was a Swedish applied physicist most famous for his work on the statistics of material properties. He worked in Germany and Sweden as an inventor and a consulting engineer, publishing his first paper on the propagation of explosive waves in 1914, thereafter becoming a full professor at the Royal Institute of Technology in 1924. Weibull wrote two important papers, “Investigations into strength properties of brittle materials” and “The phenomenon of rupture in solids”, which discussed his ideas about the statistical distributions of material strength. These articles came to the attention of engineers in the late 1930s.

References


Also see

[ST] **streg postestimation** — Postestimation tools for streg

[ST] **stcurve** — Plot survivor, hazard, cumulative hazard, or cumulative incidence function

[ST] **stcox** — Cox proportional hazards model

[ST] **stcrreg** — Competing-risks regression

[ST] **sts** — Generate, graph, list, and test the survivor and cumulative hazard functions

[ST] **stset** — Declare data to be survival-time data

[MI] **estimation** — Estimation commands for use with mi estimate

[SVY] **svy estimation** — Estimation commands for survey data

[U] 20 Estimation and postestimation commands
The following postestimation command is of special interest after `streg`:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>stcurve</code></td>
<td>plot the survivor, hazard, and cumulative hazard functions</td>
</tr>
</tbody>
</table>

For information on `stcurve`, see [ST] `stcurve`.

The following standard postestimation commands are also available:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>contrast</code></td>
<td>contrasts and ANOVA-style joint tests of estimates</td>
</tr>
<tr>
<td><code>estat ic</code></td>
<td>Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)</td>
</tr>
<tr>
<td><code>estat summarize</code></td>
<td>summary statistics for the estimation sample</td>
</tr>
<tr>
<td><code>estat vce</code></td>
<td>variance–covariance matrix of the estimators (VCE)</td>
</tr>
<tr>
<td><code>estat (svy)</code></td>
<td>postestimation statistics for survey data</td>
</tr>
<tr>
<td><code>estimates</code></td>
<td>cataloging estimation results</td>
</tr>
<tr>
<td><code>lincom</code></td>
<td>point estimates, standard errors, testing, and inference for linear combinations of coefficients</td>
</tr>
<tr>
<td><code>linktest</code></td>
<td>link test for model specification</td>
</tr>
<tr>
<td><code>lrtest</code></td>
<td>likelihood-ratio test</td>
</tr>
<tr>
<td><code>margins</code></td>
<td>marginal means, predictive margins, marginal effects, and average marginal effects</td>
</tr>
<tr>
<td><code>marginsplot</code></td>
<td>graph the results from margins (profile plots, interaction plots, etc.)</td>
</tr>
<tr>
<td><code>nlcom</code></td>
<td>point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients</td>
</tr>
<tr>
<td><code>predict</code></td>
<td>predictions, residuals, influence statistics, and other diagnostic measures</td>
</tr>
<tr>
<td><code>predictnl</code></td>
<td>point estimates, standard errors, testing, and inference for generalized predictions</td>
</tr>
<tr>
<td><code>pwcompare</code></td>
<td>pairwise comparisons of estimates</td>
</tr>
<tr>
<td><code>suest</code></td>
<td>seemingly unrelated estimation</td>
</tr>
<tr>
<td><code>test</code></td>
<td>Wald tests of simple and composite linear hypotheses</td>
</tr>
<tr>
<td><code>testnl</code></td>
<td>Wald tests of nonlinear hypotheses</td>
</tr>
</tbody>
</table>

1 `lrtest` is not appropriate with `svy` estimation results.
Special-interest postestimation command

`stcurve` is used after `streg` (or `stcox`) to plot the cumulative hazard, survivor, and hazard functions at the mean value of the covariates or at values specified by the `at()` options.

Syntax for predict

```
predict [type] newvar [if] [in], statistic options
```

```
predict [type] { stub*|newvarlist } [if] [in], scores
```

<table>
<thead>
<tr>
<th>statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>median time</code></td>
<td>median survival time; the default</td>
</tr>
<tr>
<td><code>median ln time</code></td>
<td>median ln(survival time)</td>
</tr>
<tr>
<td><code>mean time</code></td>
<td>mean survival time</td>
</tr>
<tr>
<td><code>mean ln time</code></td>
<td>mean ln(survival time)</td>
</tr>
<tr>
<td><code>hazard</code></td>
<td>hazard</td>
</tr>
<tr>
<td><code>hr</code></td>
<td>hazard ratio, also known as the relative hazard</td>
</tr>
<tr>
<td><code>xb</code></td>
<td>linear prediction ( x_j\beta )</td>
</tr>
<tr>
<td><code>stdp</code></td>
<td>standard error of the linear prediction; ( SE(x_j\beta) )</td>
</tr>
<tr>
<td><code>surv</code></td>
<td>( S(t</td>
</tr>
<tr>
<td><code>c surviv</code></td>
<td>( S(t</td>
</tr>
<tr>
<td><code>csnell</code></td>
<td>Cox–Snell residuals</td>
</tr>
<tr>
<td><code>mgale</code></td>
<td>martingale-like residuals</td>
</tr>
<tr>
<td><code>deviance</code></td>
<td>deviance residuals</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>oos</code></td>
<td>make <code>statistic</code> available in and out of sample</td>
</tr>
<tr>
<td><code>nooffset</code></td>
<td>ignore the <code>offset()</code> variable specified in <code>streg</code></td>
</tr>
<tr>
<td><code>unconditional</code></td>
<td>predict <code>statistic</code> unconditionally on the frailty</td>
</tr>
<tr>
<td><code>partial</code></td>
<td>produce observation-level results</td>
</tr>
</tbody>
</table>

Unstarred statistics are available both in and out of sample; type `predict ... if e(sample) ...` if wanted only for the estimation sample. Starred statistics are calculated for the estimation sample by default, but the `oos` option makes them available both in and out of sample. When no option is specified, the predicted median survival time is calculated for all models. The predicted hazard ratio, option `hr`, is available only for the exponential, Weibull, and Gompertz models. The `mean time` and `mean ln time` options are not available for the Gompertz model. Unconditional estimates of `mean time` and `mean ln time` are not available if `frailty()` was specified with `streg`; see [ST] `streg`. `csnell`, `mgale`, and `deviance` are not allowed with `svy` estimation results.
Menu for predict

Statistics  >  Postestimation  >  Predictions, residuals, etc.

Options for predict

<table>
<thead>
<tr>
<th>Main</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>median time</strong> calculates the predicted median survival time in analysis-time units. This is the prediction from time 0 conditional on constant covariates. When no options are specified with <code>predict</code>, the predicted median survival time is calculated for all models.</td>
</tr>
<tr>
<td><strong>median lntime</strong> calculates the natural logarithm of what <code>median time</code> produces.</td>
</tr>
<tr>
<td><strong>mean time</strong> calculates the predicted mean survival time in analysis-time units. This is the prediction from time 0 conditional on constant covariates. This option is not available for Gompertz regressions and is available for frailty models only if <code>alpha1</code> is specified, in which case what you obtain is an estimate of the mean survival time conditional on a frailty effect of one.</td>
</tr>
<tr>
<td><strong>mean lntime</strong> predicts the mean of the natural logarithm of <code>time</code>. This option is not available for Gompertz regression and is available for frailty models only if <code>alpha1</code> is specified, in which case what you obtain is an estimate of the mean log survival-time conditional on a frailty effect of one.</td>
</tr>
<tr>
<td><strong>hazard</strong> calculates the predicted hazard.</td>
</tr>
<tr>
<td><strong>hr</strong> calculates the hazard ratio. This option is valid only for models having a proportional-hazards parameterization.</td>
</tr>
<tr>
<td><strong>xb</strong> calculates the linear prediction from the fitted model. That is, you fit the model by estimating a set of parameters, ( \beta_0, \beta_1, \beta_2, \ldots, \beta_k ), and the linear prediction is ( \hat{y}<em>j = \hat{\beta}<em>0 + \hat{\beta}<em>1 x</em>{1j} + \hat{\beta}<em>2 x</em>{2j} + \cdots + \hat{\beta}<em>k x</em>{kj} ), often written in matrix notation as ( \hat{y}<em>j = x_j \hat{\beta} ). The ( x</em>{1j}, x</em>{2j}, \ldots, x</em>{kj} ) used in the calculation are obtained from the data currently in memory and need not correspond to the data on the independent variables used in estimating ( \beta ).</td>
</tr>
<tr>
<td><strong>stdp</strong> calculates the standard error of the prediction, that is, the standard error of ( \hat{y}_j ).</td>
</tr>
<tr>
<td><strong>surv</strong> calculates each observation’s predicted survivor probability, ( S(t \mid t_0) ), where ( t_0 ) is ( _{t0} ), the analysis time at which each record became at risk. For multiple-record data, see the <code>csurv</code> option below.</td>
</tr>
<tr>
<td><strong>csurv</strong> calculates the predicted ( S(t \mid \text{earliest } t_0) ) for each subject in multiple-record data by calculating the conditional survivor values, ( S(t \mid t_0) ) (see the <code>surv</code> option above), and then multiplying them. What you obtain from <code>surv</code> will differ from what you obtain from <code>csurv</code> only if you have multiple records for that subject.</td>
</tr>
<tr>
<td>In the presence of gaps or delayed entry, the estimates obtained from <code>csurv</code> can be different for subjects with gaps from those without gaps, having the same covariate values, because the probability of survival over gaps is assumed to be 1. Thus the predicted cumulative conditional survivor function is not a smooth function of time ( _{t} ) for constant values of the covariates. Use <code>stcurve, survival</code> to obtain a smooth estimate of the cumulative survivor function ( S(t \mid x) ).</td>
</tr>
<tr>
<td><strong>csnell</strong> calculates the Cox–Snell generalized residuals. For multiple-record-per-subject data, by default only one value per subject is calculated and it is placed on the last record for the subject.</td>
</tr>
<tr>
<td>Adding the <code>partial</code> option will produce partial Cox–Snell residuals, one for each record within subject; see <code>partial</code> below. Partial Cox–Snell residuals are the additive contributions to a subject’s overall Cox–Snell residual. In single-record-per-subject data, the partial Cox–Snell residuals are the Cox–Snell residuals.</td>
</tr>
</tbody>
</table>
mgaile calculates the martingale-like residuals. For multiple-record data, by default only one value per subject is calculated and it is placed on the last record for the subject.

Adding the partial option will produce partial martingale residuals, one for each record within subject; see partial below. Partial martingale residuals are the additive contributions to a subject’s overall martingale residual. In single-record data, the partial martingale residuals are the martingale residuals.

deviance calculates the deviance residuals. Deviance residuals are martingale residuals that have been transformed to be more symmetric about zero. For multiple-record data, by default only one value per subject is calculated and it is placed on the last record for the subject.

Adding the partial option will produce partial deviance residuals, one for each record within subject; see partial below. Partial deviance residuals are transformed partial martingale residuals. In single-record data, the partial deviance residuals are the deviance residuals.

oos makes csurv, csnell, mgaile, and deviance available both in and out of sample. oos also dictates that summations and other accumulations take place over the sample as defined by if and in. By default, the summations are taken over the estimation sample, with if and in merely determining which values of newvar are to be filled in once the calculation is finished.

nooffset is relevant only if you specified offset(varname) with streg. It modifies the calculations made by predict so that they ignore the offset variable; the linear prediction is treated as x/β rather than x/β + offset.

alpha1, when used after fitting a frailty model, specifies that statistic be predicted conditional on a frailty value equal to one. This is the default for shared-frailty models.

unconditional, when used after fitting a frailty model, specifies that statistic be predicted unconditional on the frailty. That is, the prediction is averaged over the frailty distribution. This is the default for unshared-frailty models.

partial is relevant only for multiple-record data and is valid with csnell, mgaile, and deviance. Specifying partial will produce “partial” versions of these statistics, where one value is calculated for each record instead of one for each subject. The subjects are determined by the id() option of stset.

Specify partial if you wish to perform diagnostics on individual records rather than on individual subjects. For example, a partial deviance can be used to diagnose the fitted characteristics of an individual record rather than those of the set of records for a given subject.

scores calculates equation-level score variables. The number of score variables created depends upon the chosen distribution.

The first new variable will always contain ∂ln L/∂(x_jβ).

The subsequent new variables will contain the partial derivative of the log likelihood with respect to the ancillary parameters.

Remarks and examples

predict after streg is used to generate a variable containing predicted values or residuals.

For a more detailed discussion on residuals, read Residuals and diagnostic measures in the [ST] stcox postestimation entry. Many of the concepts and ideas presented there also apply to streg models.

Regardless of the metric used, predict can generate predicted median survival times and median log survival-times for all models, and predicted mean times and mean log survival-times where available. Predicted survival, hazard, and residuals are also available for all models. The predicted
hazard ratio can be calculated only for models with a proportional-hazards parameterization, that is, the Weibull, exponential, and Gompertz models. However, the estimation need not take place in the log-hazard metric. You can perform, for example, a Weibull regression specifying the time option and then ask that hazard ratios be predicted.

After fitting a frailty model, you can use predict with the alpha1 option to generate predicted values based on \( S(t) \) or use the unconditional option to generate predictions based on \( S_\theta(t) \); see [ST] streg.

### Example 1

Let’s return to example 1 of [ST] streg concerning the ability of emergency generators with new-style bearings to withstand overloads. Assume that, as before, we fit a proportional hazards Weibull model:

```stata
use http://www.stata-press.com/data/r13/kva
(Generator experiment)
.streg load bearings, d(weibull) nolog
 failure _d: 1 (meaning all fail)
 analysis time _t: failtime
Weibull regression -- log relative-hazard form
No. of subjects = 12 Number of obs = 12
No. of failures = 12 Time at risk = 896
LR chi2(2) = 30.27 Log likelihood = 5.6934189 Prob > chi2 = 0.0000
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
load 1.599315 .1883807 3.99 0.000 1.269616 2.014631
bearings .1887995 .1312109 -2.40 0.016 .0483546 .7371644
_cons 2.51e-20 2.66e-19 -4.26 0.000 2.35e-29 2.68e-11
/ln_p 2.051552 .2317074 8.85 0.000 1.597414 2.505691
_p 7.779969 1.802677 4.940241 12.25202
1/p .1285352 .0297826 .0816192 .2024193
```

Now we can predict both the median survival time and the log-median survival time for each observation:

```stata
.predict time, time
(option median time assumed; predicted median time)
.predict lntime, lntime
(option log median time assumed; predicted median log time)
.format time lntime %9.4f
```
Example 2

Using the cancer data of example 6 in [ST] streg, again with drug remapped into a drug-treatment indicator, we can examine the various residuals that Stata produces. For a more detailed discussion on residuals, read Residuals and diagnostic measures in [ST] stcox postestimation. Many of the concepts and ideas presented there also apply to streg models. For a more technical presentation of these residuals, see Methods and formulas.

We will begin by requesting the generalized Cox–Snell residuals with the command predict cs, csnell. The csnell option causes predict to create a new variable, cs, containing the Cox–Snell residuals. If the model fits the data, these residuals should have a standard exponential distribution with $\lambda = 1$. One way to verify the fit is to calculate an empirical estimate of the cumulative hazard function—based, for example, on the Kaplan–Meier survival estimates or the Aalen–Nelson estimator, taking the Cox–Snell residuals as the time variable and the censoring variable as before—and plotting it against cs. If the model fits the data, the plot should be a straight line with a slope of 1.

To do this after fitting the model, we first stset the data, specifying cs as our new failure-time variable and died as the failure indicator. We then use the sts generate command to generate the variable km containing the Kaplan–Meier survival estimates. Finally, we generate a new variable, H (cumulative hazard), and plot it against cs. The commands are

```stata
. use http://www.stata-press.com/data/r13/cancer, clear
(Patient Survival in Drug Trial)
. replace drug = drug==2 | drug==3 // 0, placebo : 1, nonplacebo
 (48 real changes made)
. qui stset studytime, failure(died)
. qui streg age drug, d(exp)
. predict double cs, csnell
. qui stset cs, failure(died)
. qui sts generate km=s
. qui generate double H=-ln(km)
. line H cs cs, sort
```

We specified cs twice in the `graph' command so that a reference 45° line was plotted. We did this separately for each of four distributions. Results are plotted in figure 1:
The plots indicate that the Weibull and lognormal models fit the data best and that the exponential model fits poorly. These results are consistent with our previous results (in [ST] streg) based on Akaike’s information criterion.

Example 3

Let’s now look at the martingale-like and deviance residuals. We use the term “martingale-like” because, although these residuals do not arise naturally from martingale theory for parametric survival models as they do for the Cox proportional hazards model, they do share similar form. We can generate these residuals by using predict’s mgale option. Martingale residuals take values between $-\infty$ and 1 and therefore are difficult to interpret. The deviance residuals are a rescaling of the martingale-like residuals so that they are symmetric about zero and thus more like residuals obtained from linear regression. Plots of either deviance residuals against the linear predictor (that is, the log relative hazard in PH models) or of deviance residuals against individual predictors can be useful in identifying aberrant observations and in assessing model fit. Continuing with our modified cancer data, we plot the deviance residual obtained after fitting a lognormal model:

```
. qui streg age drug, d(lnormal)
. predict dev, deviance
```
Figure 2. Deviance residuals to evaluate model fit of lognormal model

Figure 2 shows the deviance residuals to be relatively well behaved, with a few minor early exceptions.

Methods and formulas

`predict newvar, options` may be used after `streg` to predict various quantities, according to the following options:

**median time:**

\[
newvar_j = \{t : \hat{S}_j(t) = 1/2\}
\]

where \(\hat{S}_j(t)\) is \(S_j(t)\) with the parameter estimates “plugged in”.

**median lntime:**

\[
newvar_j = \{y : \hat{S}_j(e^y) = 1/2\}
\]

**mean time:**

\[
newvar_j = \int_0^{\infty} \hat{S}_j(t)dt
\]

**mean lntime:**

\[
newvar_j = \int_{-\infty}^{\infty} ye^y\hat{f}_j(e^y)dy
\]

where \(\hat{f}_j(t)\) is \(f_j(t)\) with the parameter estimates plugged in.

**hazard:**

\[
newvar_j = \hat{f}_j(t_j)/\hat{S}_j(t_j)
\]
hr (PH models only):

\[ \text{newvar}_j = \exp(x_j \hat{\beta}) \]

xb:

\[ \text{newvar}_j = x_j \hat{\beta} \]

stdp:

\[ \text{newvar}_j = \hat{\text{se}}(x_j \hat{\beta}) \]

surv and csurv:

\[ \text{newvar}_j = \frac{\hat{S}_j(t_j)}{\hat{S}_j(t_{0j})} \]

The above represents the probability of survival past time \( t_j \) given survival up until \( t_{0j} \) and represents what you obtain when you specify \text{surv}. If \text{csurv} is specified, these probabilities are multiplied (in time order) over a subject’s multiple observations. What is obtained is then equal to the probability of survival past time \( t_j \), given survival through the earliest observed \( t_{0j} \), and given the subject’s (possibly time-varying) covariate history. In single-record-per-subject data, \text{surv} and \text{csurv} are identical.

csnell:

\[ \text{newvar}_j = - \log \hat{S}_j(t_j) \]

The Cox–Snell (1968) residual, \( \hat{CS}_j \), for observation \( j \) at time \( t_j \) is defined as \( \hat{H}_j(t_j) = -\log \hat{S}_j(t_j) \), which is the estimated cumulative hazard function obtained from the fitted model (Collett 2003, 111–112). Cox and Snell argued that if the correct model has been fit to the data, these residuals are \( n \) observations from an exponential distribution with unit mean. Thus a plot of the cumulative hazard rate of the residuals against the residuals themselves should result in a straight line of slope 1. Cox–Snell residuals can never be negative and therefore are not symmetric about zero. The options \text{csnell} and \text{partial} store in each observation that observation’s contribution to the subject’s Cox–Snell residual, which we refer to as a partial Cox–Snell residual. If only \text{csnell} is specified, partial residuals are summed within each subject to obtain one overall Cox–Snell residual for that subject. If there is only 1 observation per subject, \text{partial} has no effect.

gale:

\[ \text{newvar}_j = d_j - CS_j \]

Martingale residuals follow naturally from martingale theory for Cox proportional hazards, but their development does not carry over for parametric survival models. However, martingale-like residuals similar to those obtained for Cox can be derived from the Cox–Snell residuals: \( M_j = d_j - CS_j \), where \( CS_j \) are the Cox–Snell residuals, as previously described.

Because martingale-like residuals are calculated from the Cox–Snell residuals, they also could be partial or not. Partial martingale residuals are generated with the \text{mgale} and \text{partial} options, and overall martingale residuals are generated with the \text{mgale} option.

Martingale residuals can be interpreted as the difference over time between the number of deaths in the data and the expected number from the fitted model. These residuals take values between \(-\infty \) and 1 and have an expected value of zero, although, like the Cox–Snell residuals, they are not symmetric about zero, making them difficult to interpret.
deviance:

\[
newvar_j = \text{sign}(M_j) \left[ -2 \{M_j + d_j \log(d_j - M_j)\} \right]^{1/2}
\]

Deviance residuals are a scaling of the martingale-like residuals in an attempt to make them symmetric about zero. When the model fits the data, these residuals are symmetric about zero and thus can be more readily used to examine the data for outliers. If you also specify the partial option, you obtain partial deviance residuals, one for each observation.

`predict` also allows two options for use after fitting frailty models: `alpha1` and `unconditional`. If `unconditional` is specified, the above predictions are modified to be based on \(S_\theta(t)\) and \(f_\theta(t)\), rather than \(S(t)\) and \(f(t)\); see [ST] streg. If `alpha1` is specified, the predictions are as described above.

References


Also see

[ST] streg — Parametric survival models

[ST] stcurve — Plot survivor, hazard, cumulative hazard, or cumulative incidence function

[U] 20 Estimation and postestimation commands
**Title**

**sts —** Generate, graph, list, and test the survivor and cumulative hazard functions

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
<th>Remarks and examples</th>
<th>Stored results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods and formulas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>Remarks</td>
<td>Also see</td>
<td></td>
</tr>
</tbody>
</table>

### Syntax

- `sts`  
  
- `sts list`  
  
- `sts test varlist`  
  
- `sts generate newvar = ...`  
  
You must `stset` your data before using `sts`; see `[ST] stset`. `fweight`s, `iweight`s, and `pweight`s may be specified using `stset`; see `[ST] stset`.


### Description

`sts` reports and creates variables containing the estimated survivor and related functions, such as the Nelson–Aalen cumulative hazard function. For the survivor function, `sts` tests and produces Kaplan–Meier estimates or, via Cox regression, adjusted estimates.

- `sts graph` is equivalent to typing `sts` by itself—it graphs the survivor function.
- `sts list` lists the estimated survivor and related functions.
- `sts test` tests the equality of the survivor function across groups.
- `sts generate` creates new variables containing the estimated survivor function, the Nelson–Aalen cumulative hazard function, or related functions.

`sts` can be used with single- or multiple-record or single- or multiple-failure `st` data.

#### Example 1

```
. use http://www.stata-press.com/data/r13/drugtr

Graph the Kaplan–Meier survivor function . sts graph
 . sts graph, by(drug)

Graph the Nelson–Aalen cumulative hazard function . sts graph, cumhaz
 . sts graph, cumhaz by(drug)

Graph the estimated hazard function . sts graph, hazard
 . sts graph, hazard by(drug)

List the Kaplan–Meier survivor function . sts list
 . sts list, by(drug) compare

List the Nelson–Aalen cumulative hazard function . sts list, cumhaz
 . sts list, cumhaz by(drug) compare
```
Generate variable containing the Kaplan–Meier survivor function
Generate variable containing the Nelson–Aalen cumulative hazard function
Test equality of survivor functions

\textit{sts gen surv = s}
\textit{sts gen surv\_by\_drug = s, by(drug)}
\textit{sts gen haz = na}
\textit{sts gen haz\_by\_drug = na, by(drug)}
\textit{sts test drug}
\textit{gen agecat = autocode(age,4,47,67)}
\textit{sts test drug, strata(agecat)}

**Remarks and examples**

Remarks are presented under the following headings:

- Listing, graphing, and generating variables
- Comparing survivor or cumulative hazard functions
- Testing equality of survivor functions
- Adjusted estimates
- Counting the number lost due to censoring

\textit{sts} concerns the survivor function, $S(t)$; the probability of surviving to $t$ or beyond; the cumulative hazard function, $H(t)$; and the hazard function, $h(t)$. Its subcommands can list and generate variables containing $\hat{S}(t)$ and $\hat{H}(t)$ and test the equality of $S(t)$ over groups. Also:

- All subcommands share a common syntax.
- All subcommands deal with either the Kaplan–Meier product-limit or the Nelson–Aalen estimates unless you request adjusted survival estimates.
- If you request an adjustment, all subcommands perform the adjustment in the same way, which is described below.

The full details of each subcommand are found in the entries following this one, but each subcommand provides so many options to control exactly how the listing looks, how the graph appears, the form of the test to be performed, or what exactly is to be generated that the simplicity of \textit{sts} can be easily overlooked.

So, without getting burdened by the details of syntax, let us demonstrate the \textit{sts} commands by using the Stanford heart transplant data introduced in [ST] \textit{stset}.

**Listing, graphing, and generating variables**

You can list the overall survivor function by typing \textit{sts list}, and you can graph it by typing \textit{sts graph} or \textit{sts}. \textit{sts} assumes that you mean \textit{graph} when you do not type a subcommand.

Or, you can list the Nelson–Aalen cumulative hazard function by typing \textit{sts list, cumhaz}, and you can graph it by typing \textit{sts graph, cumhaz}.

When you type \textit{sts list}, you are shown all the details:

\begin{verbatim}
. use http://www.stata-press.com/data/r13/stan3
(Heart transplant data)
. stset, noshow
\end{verbatim}
. stslist

<table>
<thead>
<tr>
<th>Time</th>
<th>Total</th>
<th>Fail</th>
<th>Lost</th>
<th>Survivor Function</th>
<th>Std. Error</th>
<th>[95% Conf. Int.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>103</td>
<td>1</td>
<td>0</td>
<td>0.9903</td>
<td>0.0097</td>
<td>0.9331 0.9986</td>
</tr>
<tr>
<td>2</td>
<td>102</td>
<td>3</td>
<td>0</td>
<td>0.9612</td>
<td>0.0190</td>
<td>0.8998 0.9852</td>
</tr>
<tr>
<td>3</td>
<td>99</td>
<td>3</td>
<td>0</td>
<td>0.9320</td>
<td>0.0248</td>
<td>0.8627 0.9670</td>
</tr>
<tr>
<td>5</td>
<td>96</td>
<td>1</td>
<td>0</td>
<td>0.9223</td>
<td>0.0264</td>
<td>0.8507 0.9604</td>
</tr>
</tbody>
</table>

(output omitted)

<table>
<thead>
<tr>
<th>Time</th>
<th>Total</th>
<th>Fail</th>
<th>Lost</th>
<th>Survivor Function</th>
<th>Std. Error</th>
<th>[95% Conf. Int.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1586</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0.1519</td>
<td>0.0493</td>
<td>0.0713 0.2606</td>
</tr>
<tr>
<td>1799</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.1519</td>
<td>0.0493</td>
<td>0.0713 0.2606</td>
</tr>
</tbody>
</table>

When you type stsgraph or just stst, you are shown a graph of the same result detailed by list:

. stsgraph

sts generate is a rarely used command. Typing stsgenerate survf = s creates a new variable, survf, containing the same survivor function that list just listed and graph just graphed:

. stsgen survf = s
. sort t1
. list t1 survf in 1/10

<table>
<thead>
<tr>
<th>t1</th>
<th>survf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.99029126</td>
</tr>
<tr>
<td>2</td>
<td>.99029126</td>
</tr>
<tr>
<td>3</td>
<td>.99029126</td>
</tr>
<tr>
<td>4</td>
<td>.99029126</td>
</tr>
<tr>
<td>5</td>
<td>.96116505</td>
</tr>
<tr>
<td>6</td>
<td>.96116505</td>
</tr>
<tr>
<td>7</td>
<td>.96116505</td>
</tr>
<tr>
<td>8</td>
<td>.96116505</td>
</tr>
<tr>
<td>9</td>
<td>.96116505</td>
</tr>
<tr>
<td>10</td>
<td>.96116505</td>
</tr>
</tbody>
</table>

sts generate is provided if you want to make a calculation, listing, or graph that stss cannot already do for you.
**Comparing survivor or cumulative hazard functions**

`sts` allows you to compare survivor or cumulative hazard functions. `sts graph` and `sts graph, cumhaz` are probably most successful at this. For example, survivor functions can be plotted using

```
. sts graph, by(posttran)
```

and Nelson–Aalen cumulative hazard functions can be plotted using

```
. sts graph, cumhaz by(posttran)
```

To compare survivor functions, we typed `sts graph`, just as before, and then we added `by(posttran)` to see the survivor functions for the groups designated by `posttran`. Here there are two groups, but as far as the `sts` command is concerned, there could have been more. `cumhaz` was also added to compare cumulative hazard functions.

You can also plot and compare estimated hazard functions by using `sts graph, hazard`. The hazard is estimated as a kernel smooth of the increments that sum to form the estimated cumulative hazard. The increments themselves do not estimate the hazard, but the smooth is weighted so that it estimates the hazard; see `[ST] sts graph`. 
Just as you can compare survivor functions graphically by typing \texttt{sts graph, by(posttran)} and cumulative hazard functions by typing \texttt{sts graph, cumhaz by(posttran)}, you can obtain detailed listings by typing \texttt{sts list, by(posttran)} and \texttt{sts list, cumhaz by(posttran)}, respectively. Below we list the survivor function and specify \texttt{enter}, which adds a number-who-enter column:

\begin{verbatim}
. sts list, by(posttran) enter

<table>
<thead>
<tr>
<th>Time</th>
<th>Total</th>
<th>Fail</th>
<th>Lost</th>
<th>Enter</th>
<th>Function</th>
<th>Std. Error</th>
<th>[95% Conf. Int.]</th>
</tr>
</thead>
</table>
| posttran=0
| 0    | 0     | 0    | 0    | 103   | 1.0000   |            |                 |
| 1    | 103   | 1    | 3    | 0     | 0.9903   | 0.0097     | 0.9331 0.9986  |
| 2    | 99    | 3    | 3    | 0     | 0.9603   | 0.0195     | 0.8976 0.9849  |
| (output omitted) |
| 427  | 2     | 0    | 1    | 0     | 0.2359   | 0.1217     | 0.0545 0.4882  |
| 1400 | 1     | 0    | 1    | 0     | 0.2359   | 0.1217     | 0.0545 0.4882  |
| posttran=1
| 1    | 0     | 0    | 0    | 3     | 1.0000   |            |                 |
| 2    | 3     | 0    | 0    | 3     | 1.0000   |            |                 |
| 3    | 6     | 0    | 0    | 3     | 1.0000   |            |                 |
| 4    | 9     | 0    | 0    | 2     | 1.0000   |            |                 |
| 5    | 11    | 0    | 0    | 3     | 1.0000   |            |                 |
| 5.1  | 14    | 1    | 0    | 0     | 0.9286   | 0.0688     | 0.5908 0.9896  |
| 6    | 13    | 0    | 0    | 1     | 0.9286   | 0.0688     | 0.5908 0.9896  |
| 8    | 14    | 0    | 0    | 2     | 0.9286   | 0.0688     | 0.5908 0.9896  |
| 10   | 16    | 0    | 0    | 2     | 0.9286   | 0.0688     | 0.5908 0.9896  |
| (output omitted) |
| 1586 | 2     | 0    | 1    | 0     | 0.1420   | 0.0546     | 0.0566 0.2653  |
| 1799 | 1     | 0    | 1    | 0     | 0.1420   | 0.0546     | 0.0566 0.2653  |
\end{verbatim}

\texttt{sts list}'s \texttt{compare} option allows you to compare survivor or cumulative hazard functions by listing the groups side by side.

\begin{verbatim}
. sts list, by(posttran) compare

<table>
<thead>
<tr>
<th>Time</th>
<th>Total</th>
<th>Fail</th>
<th>Lost</th>
<th>Enter</th>
<th>Function</th>
<th>Std. Error</th>
<th>[95% Conf. Int.]</th>
</tr>
</thead>
</table>
| posttran=0
| 0    | 0     | 0    | 0    | 103   | 1.0000    |            |                 |
| 1    | 103   | 1    | 3    | 0     | 0.9903 0.0097 | 0.9331 0.9986 |
| 2    | 99    | 3    | 3    | 0     | 0.9603 0.0195 | 0.8976 0.9849 |
| (output omitted) |
| 427  | 2     | 0    | 1    | 0     | 0.2359 0.1217 | 0.0545 0.4882 |
| 1400 | 1     | 0    | 1    | 0     | 0.2359 0.1217 | 0.0545 0.4882 |
| posttran=1
| 1    | 0     | 0    | 0    | 3     | 1.0000    |            |                 |
| 2    | 3     | 0    | 0    | 3     | 1.0000    |            |                 |
| 3    | 6     | 0    | 0    | 3     | 1.0000    |            |                 |
| 4    | 9     | 0    | 0    | 2     | 1.0000    |            |                 |
| 5    | 11    | 0    | 0    | 3     | 1.0000    |            |                 |
| 5.1  | 14    | 1    | 0    | 0     | 0.9286 0.0688 | 0.5908 0.9896 |
| 6    | 13    | 0    | 0    | 1     | 0.9286 0.0688 | 0.5908 0.9896 |
| 8    | 14    | 0    | 0    | 2     | 0.9286 0.0688 | 0.5908 0.9896 |
| 10   | 16    | 0    | 0    | 2     | 0.9286 0.0688 | 0.5908 0.9896 |
| (output omitted) |
| 1586 | 2     | 0    | 1    | 0     | 0.1420 0.0546 | 0.0566 0.2653 |
| 1799 | 1     | 0    | 1    | 0     | 0.1420 0.0546 | 0.0566 0.2653 |
\end{verbatim}
If we include the `cumhaz` option, the cumulative hazard functions are listed:

```
. stst list, cumhaz by(posttran) compare
```

<table>
<thead>
<tr>
<th>Nelson-Aalen Cum. Haz.</th>
<th>posttran</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1                      | 0.0097   | 0.0000
| 225                    | 0.7896   | 0.9145
| 449                    | 1.3229   | 1.0850
| 673                    | 1.3229   | 1.1350
| 897                    | 1.3229   | 1.3411
| 1121                   | 1.3229   | 1.6772
| 1345                   | 1.3229   | 1.6772
| 1569                   | .        | 1.8772
| 1793                   | .        | 1.8772
| 2017                   | .        | .    |

When you specify `compare`, the same detailed survivor or cumulative hazard function is calculated, but it is then evaluated at 10 or so given times, and those evaluations are listed. Above we left it to `sts list` to choose the comparison times, but we can specify them ourselves with the `at()` option:

```
. stst list, by(posttran) compare at(0 100 to 1700)
```

<table>
<thead>
<tr>
<th>Survivor Function</th>
<th>posttran</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 0                 | 1.0000   | 1.0000
| 100               | 0.5616   | 0.4814
| 200               | 0.4422   | 0.4184
| 300               | 0.3538   | 0.3680
| 400               | 0.2359   | 0.3304
| 500               | 0.2359   | 0.3304
| 600               | 0.2359   | 0.3139
| 700               | 0.2359   | 0.2942
| 800               | 0.2359   | 0.2746
| 900               | 0.2359   | 0.2535
| 1000              | 0.2359   | 0.2028
| 1100              | 0.2359   | 0.1774
| 1200              | 0.2359   | 0.1774
| 1300              | 0.2359   | 0.1774
| 1400              | 0.2359   | 0.1420
| 1500              | .        | 0.1420
| 1600              | .        | 0.1420
| 1700              | .        | 0.1420

**Testing equality of survivor functions**

`sts test` tests equality of survivor functions:

```
. stst test posttran
```

```
Log-rank test for equality of survivor functions

<table>
<thead>
<tr>
<th>posttran</th>
<th>Events observed</th>
<th>Events expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
<td>31.20</td>
</tr>
<tr>
<td>1</td>
<td>45</td>
<td>43.80</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
<td>75.00</td>
</tr>
</tbody>
</table>

chi2(1) = 0.13
Pr>chi2 = 0.7225
```
When you do not specify otherwise, `sts test` performs the log-rank test, but it can also perform the Wilcoxon test:

```
. sts test posttran, wilcoxon

Wilcoxon (Breslow) test for equality of survivor functions

<table>
<thead>
<tr>
<th>posttran</th>
<th>Events observed</th>
<th>Events expected</th>
<th>Sum of ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
<td>31.20</td>
<td>-85</td>
</tr>
<tr>
<td>1</td>
<td>45</td>
<td>43.80</td>
<td>85</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
<td>75.00</td>
<td>0</td>
</tr>
</tbody>
</table>
```

```
chi2(1) = 0.14
Pr>chi2 = 0.7083
```

`sts test` also performs stratified tests; see [ST] `sts test`.

### Adjusted estimates

All the estimates of the survivor function we have seen so far are the Kaplan–Meier product-limit estimates. `sts` can make adjusted estimates to the survivor function. We want to illustrate this and explain how it is done.

The heart transplant dataset is not the best for demonstrating this feature because we are starting with survivor functions that are similar already, so let’s switch to data on a fictional drug trial:

```
. use http://www.stata-press.com/data/r13/drug2, clear
(Patient Survival in Drug Trial)
. stset, noshow
. stdescribe
```

```
Category | total | per subject |
---------|-------|-------------|
 | mean | min | median | max |
no. of subjects | 48 | 1 | 1 | 1 | 1 |
no. of records | 48 | 1 | 1 | 1 | 1 |
(first) entry time | 0 | 0 | 0 | 0 |
(final) exit time | 15.5 | 1 | 12.5 | 39 |
subjects with gap | 0 | | | |
time on gap if gap | 0 | | | |
time at risk | 744 | 15.5 | 1 | 12.5 | 39 |
failures | 31 | .6458333 | 0 | 1 | 1 |
```

This dataset contains 48 subjects, all observed from time 0. The `st` command shows us how the dataset is currently declared:

```
. st
-> stset studytime, failure(died) noshow

 failure event: died != 0 & died < .
ob. time interval: [0, studytime]
exit on or before: failure
```
The dataset contains variables `age` and `drug`:

```
Variable | Obs | Mean | Std. Dev. | Min | Max
---------|-----|-------|-----------|-----|-----
age | 48 | 47.125| 9.492718 | 32 | 67
drug | 48 | .583333| .4982238 | 0 | 1
```

We are comparing the outcomes of `drug = 1` with that of the placebo, `drug = 0`. Here are the survivor curves for the two groups:

```
. sts graph, by(drug)
```

Here are the survivor curves adjusted for age (and scaled to age 50):

```
. generate age50 = age-50
. sts graph, by(drug) adjustfor(age50)
```

The age difference between the two samples accounts for much of the difference between the survivor functions.
When you type `by(group) adjustfor(vars)`, `sts` fits a separate Cox proportional hazards model on `vars` (estimation via `stcox`) and retrieves the separately estimated baseline survivor functions. `sts graph` graphs the baseline survivor functions, `sts list` lists them, and `sts generate` saves them.

Thus `sts list` can list what `sts graph` plots:

```stata
 . sts list, by(drug) adjustfor(age50) compare
 Adjusted Survivor Function
 drug 0 1
 time
 1 0.9463 1.0000
 5 0.7439 1.0000
 9 0.6135 0.7358
 13 0.3770 0.5588
 17 0.2282 0.4668
 21 0.2282 0.4668
 25 . 0.1342
 29 . 0.0872
 33 . 0.0388
 37 . 0.0388
 41 . .
```

Survivor function adjusted for age50

In both the graph and the listing, we must adjust for variable `age50 = age - 50` and not just `age`. Adjusted survivor functions are adjusted to the `adjustfor()` variables and scaled to correspond to the `adjustfor()` variables set to 0. Here is the result of adjusting for `age`, which is 0 at birth:

```stata
 . sts list, by(drug) adjustfor(age) compare
 Adjusted Survivor Function
 drug 0 1
 time
 1 0.9994 1.0000
 5 0.9970 1.0000
 9 0.9951 0.9995
 13 0.9903 0.9990
 17 0.9853 0.9987
 21 0.9853 0.9987
 25 . 0.9965
 29 . 0.9958
 33 . 0.9944
 37 . 0.9944
 41 . .
```

Survivor function adjusted for age

These are equivalent to what we obtained previously but not nearly so informative because of the scaling of the survivor function. The `adjustfor(age)` option scales the survivor function to correspond to `age = 0`. `age` is calendar age, so the survivor function is scaled to correspond to a newborn.

There is another way that `sts` will adjust the survivor function. Rather than specifying `by(group) adjustfor(vars)`, we can specify `strata(group) adjustfor(vars):`
. \texttt{sts list, strata(drug) adjustfor(age50) compare}

\begin{verbatim}
  Adjusted Survivor Function
  
  drug  0  1
  
  time  1  0.9526  1.0000
         5  0.7668  1.0000
         9  0.6417  0.7626
        13  0.4080  0.5995
        17  0.2541  0.5139
        21  0.2541  0.5139
        25     .  0.1800
        29     .  0.1247
        33     .  0.0614
        37     .  0.0614
        41     .   .

  Survivor function adjusted for age50
\end{verbatim}

When we specify \texttt{strata()} instead of \texttt{by()}, instead of fitting separate Cox models for each stratum, \texttt{sts list} fits one stratified Cox model and retrieves the stratified baseline survivor function. That is, \texttt{strata()} rather than \texttt{by()} constrains the effect of the \texttt{adjustfor()} variables to be the same across strata.

**Counting the number lost due to censoring**

\texttt{sts list}, in the detailed output, shows the number lost in the fourth column:

. \texttt{sts list}

\begin{verbatim}

  Time  Begin  Total  Fail  Net  Lost  Survivor  Std.  [95% Conf. Int.]
         1  48  2  0  0  0.9583  0.0288  0.8435  0.9894
         2  46  1  0  0  0.9375  0.0349  0.8186  0.9794
         3  45  1  0  0  0.9167  0.0399  0.7930  0.9679

(output omitted)

         8  36  3  1  1  0.7061  0.0661  0.5546  0.8143
         9  32  0  1  1  0.7061  0.0661  0.5546  0.8143
       10  31  1  1  1  0.6833  0.0678  0.5302  0.7957

(output omitted)

         39  1  0  1  1  0.1918  0.0791  0.0676  0.3634
\end{verbatim}

\texttt{sts graph}, if you specify the \texttt{lost} option, will show that number, too:
The number on the listing and on the graph is the number of net lost, defined as the number of censored minus the number who enter. With simple survival data—with 1 observation per subject—net lost corresponds to lost.

With more complicated survival data—meaning delayed entry or multiple records per subject—the number of net lost may surprise you. With complicated data, the vague term lost can mean many things. Sometimes subjects are lost, but mostly there are many censorings followed by reentries—a subject is censored at time 5 immediately to reenter the data with different covariates. This is called thrashing.

There are other possibilities: a subject can be lost, but only for a while, and so reenter the data with a gap; a subject can be censored out of one stratum to enter another. There are too many possibilities to dedicate a column in a table or a plotting symbol in a graph to each one. Sts’s solution is to define lost as net lost, meaning censored minus entered, and show that number. How we define lost does not affect the calculation of the survivor function; it merely affects a number that researchers often report.

Defining lost as censored minus entered results in exactly what is desired for simple survival data. Because everybody enters at time 0, calculating censored minus entered amounts to calculating censored − 0. The number of net lost is the number of censored.

In more complicated data, calculating censored minus entered results in the number really lost if there are no gaps and no delayed entry. Then the subtraction smooths the thrashing. In an interval, five might be censored and three reenter, so 5 − 3 = 2 were lost.

In even more complicated data, calculating censored minus entered results in something reasonable once you understand how to interpret negative numbers and are cautious in interpreting positive ones. Five might be censored and three might enter (from the five? who can say?), resulting in two net lost; or three might be censored and five enter, resulting in −2 being lost.

Sts, by default, reports the net lost but will, if you specify the enter option, report the pure number censored and the pure number who enter. Sometimes you will want to do that. Earlier in this entry, we used sts list to display the survivor functions in the Stanford heart transplant data for subjects pre- and posttransplantation, and we slipped in an enter option:

```
 . use http://www.stata-press.com/data/r13/stan3, clear
 (Heart transplant data)
```
We did that to keep you from being shocked at negative numbers for the net lost. In this complicated dataset, the value of posttran changes over time. All patients start with posttran = 0, and later some change to posttran = 1.

Thus, at time 1 in the posttran = 0 group, three are lost—to the group but not to the experiment. Simultaneously, in the posttran = 1 group, we see that three enter. Had we not specified the enter option, you would not have seen that three enter, and you would have seen that −3 were, in net, lost:

<table>
<thead>
<tr>
<th>Time</th>
<th>Total</th>
<th>Fail</th>
<th>Lost</th>
<th>Enter</th>
<th>Survivor Function</th>
<th>Std. Error</th>
<th>[95% Conf. Int.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>posttran=0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>103</td>
<td>1.0000</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>1</td>
<td>103</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0.9903</td>
<td>0.0097</td>
<td>0.9331</td>
</tr>
<tr>
<td>2</td>
<td>99</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0.9603</td>
<td>0.0195</td>
<td>0.8976</td>
</tr>
<tr>
<td>3</td>
<td>93</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0.9293</td>
<td>0.0258</td>
<td>0.8574</td>
</tr>
<tr>
<td>(output omitted)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>427</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.2359</td>
<td>0.1217</td>
<td>0.0545</td>
</tr>
<tr>
<td>1400</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.2359</td>
<td>0.1217</td>
<td>0.0545</td>
</tr>
<tr>
<td>posttran=1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.0000</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.0000</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.0000</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0000</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.0000</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>5.1</td>
<td>14</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.9286</td>
<td>0.0688</td>
<td>0.5908</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.9286</td>
<td>0.0688</td>
<td>0.5908</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0.9286</td>
<td>0.0688</td>
<td>0.5908</td>
</tr>
<tr>
<td>(output omitted)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1586</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.1420</td>
<td>0.0546</td>
<td>0.0566</td>
</tr>
<tr>
<td>1799</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.1420</td>
<td>0.0546</td>
<td>0.0566</td>
</tr>
</tbody>
</table>
Here specifying \texttt{enter} makes the table easier to explain, but do not jump to the conclusion that specifying \texttt{enter} is always a good idea. In this same dataset, let’s look at the overall survivor function, first with the \texttt{enter} option:

\begin{verbatim}
. sts list, enter
Beg. Survivor Std.
Time Total Fail Lost Enter Function Error [95% Conf. Int.]
0 0 0 0 103 1.0000 . . .
1 103 1 3 3 0.9903 0.0097 0.9331 0.9986
2 102 3 3 3 0.9612 0.0190 0.8998 0.9852
3 99 3 3 3 0.9320 0.0248 0.8627 0.9670
(output omitted)
1571 3 0 1 0 0.1519 0.0493 0.0713 0.2606
1586 2 0 1 0 0.1519 0.0493 0.0713 0.2606
1799 1 0 1 0 0.1519 0.0493 0.0713 0.2606
\end{verbatim}

At time 1, three are lost and three enter. There is no delayed entry in this dataset, and there are no gaps; so, it is the same three that were lost and reentered, and no one was really lost. At time 1571, on the other hand, a patient really was lost. This is all more clearly revealed when we do not specify the \texttt{enter} option:

\begin{verbatim}
. sts list
Beg. Net Survivor Std.
Time Total Fail Lost Function Error [95% Conf. Int.]
1 103 1 0 0.9903 0.0097 0.9331 0.9986
2 102 3 0 0.9612 0.0190 0.8998 0.9852
3 99 3 0 0.9320 0.0248 0.8627 0.9670
(output omitted)
1571 3 0 1 0.1519 0.0493 0.0713 0.2606
1586 2 0 1 0.1519 0.0493 0.0713 0.2606
1799 1 0 1 0.1519 0.0493 0.0713 0.2606
\end{verbatim}

Thus, to summarize:

- The \texttt{sts list} and \texttt{graph} commands will show the number lost or censored. \texttt{sts list}, by default, shows this number on the detailed output. \texttt{sts graph} shows the number when you specify the \texttt{lost} option.
- By default, the number lost is the net number lost, defined as censored minus entered.
- Both commands allow you to specify the \texttt{enter} option and then show the number who actually entered, and the number lost becomes the actual number censored, not censored minus entered.

\section*{Technical note}

There is one other issue about the Kaplan–Meier estimator regarding delayed entry. When the earliest entry into the study occurs after $t = 0$, one may still calculate the Kaplan–Meier estimation, but the interpretation changes. Rather than estimating $S(t)$, you are now estimating $S(t|t_{min})$, the probability of surviving past time $t$ given survival to time $t_{min}$, where $t_{min}$ is the earliest entry time.
Methods and formulas

Unless adjusted estimates are requested, \texttt{sts} estimates the survivor function by using the Kaplan–Meier product-limit method.

When the \texttt{cumhaz} option is specified, \texttt{sts} estimates the cumulative hazard function by using the Nelson–Aalen estimator.

For an introduction to the Kaplan–Meier product-limit method and the log-rank test, see Pagano and Gauvreau (2000, 495–499); for a detailed discussion, see Cox and Oakes (1984), Kalbfleisch and Prentice (2002), or Klein and Moeschberger (2003). For an introduction to survival analysis with examples using the \texttt{sts} commands, see Dupont (2009).

Let \( t_j, j = 1, \ldots, \) denote the times at which failure occurs. Let \( n_j \) be the number at risk of failure just before time \( t_j \) and \( d_j \) be the number of failures at time \( t_j \). Then the nonparametric maximum likelihood estimate of the survivor function (Kaplan and Meier 1958) is

\[
\hat{S}(t) = \prod_{j|t_j \leq t} \left( \frac{n_j - d_j}{n_j} \right)
\]

(Kalbfleisch and Prentice 2002, 15).

The failure function, \( \hat{F}(t) \), is defined as \( 1 - \hat{S}(t) \).

The standard error reported is given by Greenwood’s formula (Greenwood 1926):

\[
\hat{\text{Var}}\{\hat{S}(t)\} = \hat{S}^2(t) \sum_{j|t_j \leq t} \frac{d_j}{n_j(n_j - d_j)}
\]

(Kalbfleisch and Prentice 2002, 17–18). These standard errors, however, are not used for confidence intervals. Instead, the asymptotic variance of \( \ln[-\ln \hat{S}(t)] \),

\[
\hat{\sigma}^2(t) = \frac{\sum d_j}{\left\{ \sum \ln\left( \frac{n_j - d_j}{n_j} \right) \right\}^2}
\]

is used, where sums are calculated over \( j|t_j \leq t \) (Kalbfleisch and Prentice 2002, 18). The confidence bounds are then \( \hat{S}(t)^\exp(\pm z_{\alpha/2} \hat{\sigma}(t)) \), where \( z_{\alpha/2} \) is the \( (1 - \alpha/2) \) quantile of the normal distribution. \texttt{sts} suppresses reporting the standard error and confidence bounds if the data are \texttt{pweight}ed because these formulas are no longer appropriate.

When the \texttt{adjustfor()} option is specified, the survivor function estimate, \( \hat{S}(t) \), is the baseline survivor function estimate \( \hat{S}_0(t) \) of \texttt{stcox}; see [ST] \texttt{stcox}. If, by(), is specified, \( \hat{S}(t) \) is obtained from fitting separate Cox models on \texttt{adjustfor()} for each of the by() groups. If instead \texttt{strata()} is specified, one Cox model on \texttt{adjustfor()}, stratified by \texttt{strata()}, is fit.

The Nelson–Aalen estimator of the cumulative hazard rate function is derived from Nelson (1972) and Aalen (1978) and is defined up to the largest observed time as

\[
\hat{H}(t) = \sum_{j|t_j \leq t} \frac{d_j}{n_j}
\]
Its variance (Aalen 1978) may be estimated by

$$\hat{\var{H(t)}} = \sum_{j \mid t_j \leq t} \frac{d_j}{n_j^2}$$

Pointwise confidence intervals are calculated using the asymptotic variance of $\ln \hat{H(t)}$,

$$\hat{\phi^2(t)} = \frac{\var{\hat{H(t)}}}{\{\hat{H(t)}\}^2}$$

The confidence bounds are then $\hat{H(t)} \exp\{\pm z_{\alpha/2} \hat{\phi(t)}\}$. If the data are pweighted, these formulas are not appropriate, and then confidence intervals are not reported.

Major Greenwood (1880–1949) was born in London to a medical family. His given name, “Major”, was also that of his father and grandfather. Greenwood trained as a doctor but followed a career in medical research, learning statistics from Karl Pearson. He worked as a medical statistician and epidemiologist at the Lister Institute, the Ministry of Health, and the London School of Hygiene and Tropical Medicine. With interests ranging from clinical trials to historical subjects, Greenwood played a major role in developing biostatistics in the first half of the twentieth century.

Edward Lynn Kaplan (1920–2006) was working at Bell Telephone Laboratories on the lifetimes of vacuum tubes when, through John W. Tukey, he became aware of the work of Paul Meier on essentially the same statistical problem. They had both previously been graduate students at Princeton. Their two separate papers were merged and the result was published after some years. Kaplan became a professor of mathematics at Oregon State University, where he wrote a book on mathematical programming and games.

Paul Meier (1924–2011) was born in Newark, New Jersey; took degrees at Oberlin and Princeton; and then served on the faculty at Lehigh, Johns Hopkins, Chicago, and Columbia. In addition to his key contribution with Kaplan, the most cited paper in statistical science, he worked as a biostatistician, making many theoretical and applied contributions in the area of clinical trials, especially through his early and sustained advocacy of randomization.

Wayne B. Nelson (1936– ) was born in Chicago and received degrees in physics and statistics from Caltech and the University of Illinois. A longtime employee of General Electric, he now works as a consultant, specializing in reliability analysis and accelerated testing.

Odd Olai Aalen (1947– ) was born in Oslo, Norway, and studied there and at Berkeley, where he was awarded a PhD in 1975 for a thesis on counting processes. He is a professor of statistics at the University of Oslo and works on survival and event history analysis. Aalen was one of the prime movers in introducing martingale ideas to this branch of statistics.

Nelson and Aalen met for the first time at a conference at the University of South Carolina in 2003.

References


Also see

[ST] stci — Confidence intervals for means and percentiles of survival time

[ST] stcox — Cox proportional hazards model

[ST] sts generate — Create variables containing survivor and related functions

[ST] sts graph — Graph the survivor, hazard, or cumulative hazard function

[ST] sts list — List the survivor or cumulative hazard function

[ST] sts test — Test equality of survivor functions

[ST] stset — Declare data to be survival-time data

[ST] survival analysis — Introduction to survival analysis & epidemiological tables commands
**sts generate —** Create variables containing survivor and related functions

### Syntax

```
sts gen\nerate newvar =
{ s | se(s) | h | se(hs) | lb(s) | ub(s) | na | se(na) | lb(na) | ub(na) | n | d }
[newvar = {...} ...] [if] [in] [, options]
```

<table>
<thead>
<tr>
<th>options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>by(varlist)</td>
<td>calculate separately for each group formed by varlist</td>
</tr>
<tr>
<td>adjustfor(varlist)</td>
<td>adjust the estimates to zero values of varlist</td>
</tr>
<tr>
<td>strata(varlist)</td>
<td>stratify on different groups of varlist</td>
</tr>
<tr>
<td>level(#)</td>
<td>set confidence level; default is level(95)</td>
</tr>
</tbody>
</table>

You must `stset` your data before using `sts generate`; see [ST] stset.

### Menu

Statistics > Survival analysis > Summary statistics, tests, and tables > Create survivor, hazard, and other variables

### Description

`sts generate` creates new variables containing the estimated survivor (failure) function, the Nelson–Aalen cumulative hazard (integrated hazard) function, and related functions. See [ST] st for an introduction to this command.

`sts generate` can be used with single- or multiple-record or single- or multiple-failure st data.

### Functions

- `s` produces the Kaplan–Meier product-limit estimate of the survivor function, \( \hat{S}(t) \), or, if `adjustfor()` is specified, the baseline survivor function from a Cox regression model on the `adjustfor()` variables.
- `se(s)` produces the Greenwood, pointwise standard error, \( \hat{\text{se}}(\hat{S}(t)) \). This option may not be used with `adjustfor()`.
h produces the estimated hazard component, $\Delta H_j = H(t_j) - H(t_{j-1})$, where $t_j$ is the current failure time and $t_{j-1}$ is the previous one. This is mainly a utility function used to calculate the estimated cumulative hazard, $H(t_j)$, yet you can estimate the hazard via a kernel smooth of the $\Delta H_j$; see [ST]sts graph. It is recorded at all the points at which a failure occurs and is computed as $d_j/n_j$, where $d_j$ is the number of failures occurring at time $t_j$ and $n_j$ is the number at risk at $t_j$ before the occurrence of the failures.

$se(lls)$ produces $\hat{\sigma}(t)$, the standard error of $\ln\{-\ln \hat{S}(t)\}$. This option may not be used with adjustfor().

$lb(s)$ produces the lower bound of the confidence interval for $\hat{S}(t)$ based on $\ln\{-\ln \hat{S}(t)\}$:

$$\hat{S}(t)^{\exp(-z_{\alpha/2}\hat{\sigma}(t))},$$

where $z_{\alpha/2}$ is the $(1 - \alpha/2)$ quantile of the standard normal distribution. This option may not be used with adjustfor().

$ub(s)$ produces the upper bound of the confidence interval for $\hat{S}(t)$ based on $\ln\{-\ln \hat{S}(t)\}$:

$$\hat{S}(t)^{\exp(z_{\alpha/2}\hat{\sigma}(t))},$$

where $z_{\alpha/2}$ is the $(1 - \alpha/2)$ quantile of the standard normal distribution. This option may not be used with adjustfor().

$na$ produces the Nelson–Aalen estimate of the cumulative hazard function. This option may not be used with adjustfor().

$se(na)$ produces pointwise standard error for the Nelson–Aalen estimate of the cumulative hazard function, $\hat{H}(t)$. This option may not be used with adjustfor().

$lb(na)$ produces the lower bound of the confidence interval for $\hat{H}(t)$ based on the log-transformed cumulative hazard function. This option may not be used with adjustfor().

$ub(na)$ produces the corresponding upper bound. This option may not be used with adjustfor().

$n$ produces $n_j$, the number at risk just before time $t_j$. This option may not be used with adjustfor().

$d$ produces $d_j$, the number failing at time $t_j$. This option may not be used with adjustfor().

**Options**

- `by()` performs a separate calculation for each by-group. By-groups are identified by equal values of the variables in `varlist`. `by()` may not be combined with `strata()`.

- `adjustfor()` adjusts the estimate of the survivor (failure) or hazard function to that for 0 values of `varlist`. This option is available only with functions `s` or `h`. See [ST]sts graph for an example of how to adjust for values different from 0.

  If you specify `adjustfor()` with `by()`, `sts` fits separate Cox regression models for each group, using the `adjustfor()` variables as covariates. The separately calculated baseline survivor functions are then retrieved.

  If you specify `adjustfor()` with `strata()`, `sts` fits a stratified-on-group Cox regression model using the `adjustfor()` variables as covariates. The stratified, baseline survivor function is then retrieved.

- `strata()` requests estimates of the survivor (failure) or hazard functions stratified on variables in `varlist`. It requires specifying `adjustfor()` and may not be combined with `by()`.

- `level(#)` specifies the confidence level, as a percentage, for the $lb(s)$, $ub(s)$, $lb(na)$, and $ub(na)$ functions. The default is `level(95)` or as set by `set level`; see [U] 20.7 Specifying the width of confidence intervals.
Remarks and examples

sts generate is a seldom-used command that gives you access to the calculations listed by sts list and graphed by sts graph.

Use of this command is demonstrated in [ST] sts.

Methods and formulas

See [ST] sts.

References

See [ST] sts for references.

Also see

[ST] sts — Generate, graph, list, and test the survivor and cumulative hazard functions
[ST] sts graph — Graph the survivor, hazard, or cumulative hazard function
[ST] sts list — List the survivor or cumulative hazard function
[ST] sts test — Test equality of survivor functions
[ST] stset — Declare data to be survival-time data
## Syntax

```stata
sts graph [if] [in] [, options]
```

### options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>survival</td>
<td>graph Kaplan–Meier survivor function; the default</td>
</tr>
<tr>
<td>failure</td>
<td>graph Kaplan–Meier failure function</td>
</tr>
<tr>
<td>cumhaz</td>
<td>graph Nelson–Aalen cumulative hazard function</td>
</tr>
<tr>
<td>hazard</td>
<td>graph smoothed hazard estimate</td>
</tr>
<tr>
<td>by(varlist)</td>
<td>estimate and graph separate functions for each group formed by varlist</td>
</tr>
<tr>
<td>adjustfor(varlist)</td>
<td>adjust the estimates to zero values of varlist</td>
</tr>
<tr>
<td>strata(varlist)</td>
<td>stratify on different groups of varlist</td>
</tr>
<tr>
<td>separate</td>
<td>show curves on separate graphs; default is to show curves one on top of another</td>
</tr>
<tr>
<td>ci</td>
<td>show pointwise confidence bands</td>
</tr>
</tbody>
</table>

### At-risk table

- `risktable`
- `risktable(risk_spec)`

- show table of number at risk beneath graph
- show customized table of number at risk beneath graph
sts graph — Graph the survivor, hazard, or cumulative hazard function

Options

- `level(#)`
  - set confidence level; default is `level(95)`
- `per(#)`
  - units to be used in reported rates
- `noshow`
  - do not show st setting information
- `tmax(#)`
  - show graph for $t \leq #$
- `tmin(#)`
  - show graph for $t \geq #$
- `noorigin`
  - begin survival (failure) curve at first exit time; default is to begin at $t = 0$
- `width(# [#. . .])`
  - override default bandwidth(s)
- `kernel(kernel)`
  - kernel function; use with `hazard`
- `noboundary`
  - no boundary correction; use with `hazard`
- `lost`
  - show number lost
- `enter`
  - show number entered and number lost
- `atrisk`
  - show numbers at risk at beginning of each interval
- `censored(single)`
  - show one hash mark at each censoring time, no matter what number is censored
- `censored(number)`
  - show one hash mark at each censoring time and number censored above hash mark
- `censored(multiple)`
  - show multiple hash marks for multiple censoring at the same time
- `cenopts(hash_options)`
  - affect rendition of hash marks
- `lostopts(marker_label_options)`
  - affect rendition of numbers lost
- `atriskopts(marker_label_options)`
  - affect rendition of numbers at risk

Plot

- `plotopts(cline_options)`
  - affect rendition of the plotted lines
- `plot#opts(cline_options)`
  - affect rendition of the $\#$th plotted line; may not be combined with `separate`

CI plot

- `ciopts(area_options)`
  - affect rendition of the confidence bands
- `ci#opts(area_options)`
  - affect rendition of the $\#$th confidence band; may not be combined with `separate`

Add plots

- `addplot(plot)`
  - add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

- `twoway_options`:
  - any options documented in `[G-3] twoway_options`
- `byopts(byopts)`
  - how subgraphs are combined, labeled, etc.


where `risk_spec` is

```
[numlist[, table_options group(group)]]
```

`numlist` specifies the points at which the number at risk is to be evaluated, `table_options` customizes the table of number at risk, and `group(group)` specifies a specific group/row for `table_options` to be applied.
### stsc graph — Graph the survivor, hazard, or cumulative hazard function

<table>
<thead>
<tr>
<th>table_options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Main</strong></td>
<td></td>
</tr>
<tr>
<td><strong>axis_label_options</strong></td>
<td>control table by using axis labeling options; seldom used</td>
</tr>
<tr>
<td><strong>order(order_spec)</strong></td>
<td>select which rows appear and their order</td>
</tr>
<tr>
<td><strong>righttitles</strong></td>
<td>place titles on right side of the table</td>
</tr>
<tr>
<td><strong>failevents</strong></td>
<td>show number failed in the at-risk table</td>
</tr>
<tr>
<td><strong>text_options</strong></td>
<td>affect rendition of table elements and titles</td>
</tr>
</tbody>
</table>

| Row titles                |                                                  |
| **rowtitle([text], rtext_options)** | change title for a row                          |

| Title                     |                                                  |
| **title([text], ttext_options)** | change overall table title                      |

See [G-3] **axis_label_options**.

where **order_spec** is

```
["text" ["text" ...]] [...]
```

<table>
<thead>
<tr>
<th>text_options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>size(textsizestyle)</strong></td>
<td>size of text</td>
</tr>
<tr>
<td><strong>color(colorstyle)</strong></td>
<td>color of text</td>
</tr>
<tr>
<td><strong>justification(justificationstyle)</strong></td>
<td>text left-justified, centered, or right-justified</td>
</tr>
<tr>
<td><strong>format(%fmt)</strong></td>
<td>format values per %fmt</td>
</tr>
<tr>
<td><strong>topgap(relativesize)</strong></td>
<td>margin above rows</td>
</tr>
<tr>
<td><strong>bottomgap(relativesize)</strong></td>
<td>margin beneath rows</td>
</tr>
<tr>
<td><strong>style(textstyle)</strong></td>
<td>overall style of text</td>
</tr>
</tbody>
</table>

**style()** does not appear in the dialog box.


<table>
<thead>
<tr>
<th>rtext_options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>size(textsizestyle)</strong></td>
<td>size of text</td>
</tr>
<tr>
<td><strong>color(colorstyle)</strong></td>
<td>color of text</td>
</tr>
<tr>
<td><strong>justification(justificationstyle)</strong></td>
<td>text left-justified, centered, or right-justified</td>
</tr>
<tr>
<td><strong>at(#)</strong></td>
<td>override x position of titles</td>
</tr>
<tr>
<td><strong>topgap(relativesize)</strong></td>
<td>margin above rows</td>
</tr>
<tr>
<td><strong>style(textstyle)</strong></td>
<td>overall style of text</td>
</tr>
</tbody>
</table>

**style()** does not appear in the dialog box.

sts graph — Graph the survivor, hazard, or cumulative hazard function

**ttext_options**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>size(textsizestyle)</code></td>
<td>size of text</td>
</tr>
<tr>
<td><code>color(colorstyle)</code></td>
<td>color of text</td>
</tr>
<tr>
<td><code>justification(justificationstyle)</code></td>
<td>text left-justified, centered, or right-justified</td>
</tr>
<tr>
<td><code>at(#)</code></td>
<td>override x position of titles</td>
</tr>
<tr>
<td><code>topgap(relativesize)</code></td>
<td>margin above rows</td>
</tr>
<tr>
<td><code>bottomgap(relativesize)</code></td>
<td>margin beneath rows</td>
</tr>
<tr>
<td><code>style(textstyle)</code></td>
<td>overall style of text</td>
</tr>
</tbody>
</table>

*style()* does not appear in the dialog box.


**group**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>#rownum</code></td>
<td>specify group by row number in table</td>
</tr>
<tr>
<td><code>value</code></td>
<td>specify group by value of group</td>
</tr>
<tr>
<td><code>label</code></td>
<td>specify group by text of value label associated with group</td>
</tr>
</tbody>
</table>

**hash_options**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>line_options</code></td>
<td>change look of dropped lines</td>
</tr>
<tr>
<td><code>marker_label_options</code></td>
<td>add marker labels; any options documented in [G-3] <code>marker_label_options</code>, except <code>mlabel()</code></td>
</tr>
</tbody>
</table>


**risktable()** may be repeated and is *merged-explicit*; see [G-4] concept: repeated options.

You must `stset` your data before using `sts graph`; see [ST] `stset`.

`fweight`s, `iweight`s, and `pweight`s may be specified using `stset`; see [ST] `stset`.

**Menu**

Statistics > Survival analysis > Graphs > Survivor and cumulative hazard functions

**Description**

*sts graph* graphs the estimated survivor (failure) function, the Nelson–Aalen estimated cumulative (integrated) hazard function, or the estimated hazard function. See [ST] `sts` for an introduction to this command.

*sts graph* can be used with single- or multiple-record or single- or multiple-failure st data.

**Options**

- `survival`, `failure`, `cumhaz`, and `hazard` specify the function to graph.

  `survival` specifies that the Kaplan–Meier survivor function be plotted. This option is the default if a function is not specified.
failure specifies that the Kaplan–Meier failure function, $1 - S(t + 0)$, be plotted.
cumhaz specifies that the Nelson–Aalen estimate of the cumulative hazard function be plotted.
hazard specifies that an estimate of the hazard function be plotted. This estimate is calculated
as a weighted kernel-density estimate using the estimated hazard contributions,
$$
\Delta \hat{H}(t_j) = \hat{H}(t_j) - \hat{H}(t_{j-1}).
$$
These hazard contributions are the same as those obtained by \texttt{sts generate newvar = h}.

\texttt{by() \texttt{varlist}} estimates a separate function for each by-group and plots all the functions on one graph. By-groups are identified by equal values of the variables in \texttt{varlist}. \texttt{by()} may not be combined with \texttt{strata()}. 

\texttt{adjustfor() \texttt{varlist}} adjusts the estimate of the survivor or hazard functions to that for 0 values of \texttt{varlist}. If you want to adjust the function to values different from 0, you need to center the variables around those values before issuing the command. Say that you want to plot the survivor function adjusted to age of patients and the ages in your sample are 40–60 years. Then

\begin{verbatim}
. sts graph, adjustfor(age)
\end{verbatim}

will graph the survivor function adjusted to age 0. If you want to adjust the function to age 40, type

\begin{verbatim}
. gen age40 = age - 40
. sts graph, adjustfor(age40)
\end{verbatim}

\texttt{adjustfor()} is not available with \texttt{cumhaz} or \texttt{ci}. 

If you specify \texttt{adjustfor()} with \texttt{by()}, \texttt{sts} fits separate Cox regression models for each group, using the \texttt{adjustfor()} variables as covariates. The separately calculated baseline survivor functions are then retrieved.

If you specify \texttt{adjustfor()} with \texttt{strata()}, \texttt{sts} fits a stratified-on-group Cox regression model using the \texttt{adjustfor()} variables as covariates. The stratified, baseline survivor function is then retrieved.

\texttt{strata() \texttt{varlist}} produces estimates of the survivor (failure) or hazard functions stratified on variables in \texttt{varlist} and plots all the groups on one graph. It requires specifying \texttt{adjustfor()} and may not be combined with \texttt{by()}. 

If you have more than one \texttt{strata()} variable but need only one, use \texttt{egen} to create it; see \cite{D egen}.

\texttt{separate} is meaningful only with \texttt{by()} or \texttt{strata()}; it requests that each group be placed on its own graph rather than one on top of the other. Sometimes curves have to be placed on separate graphs—such as when you specify \texttt{ci}—because otherwise it would be too confusing.

\texttt{ci} includes pointwise confidence bands. The default is not to produce these bands. \texttt{ci} is not allowed with \texttt{adjustfor()} or \texttt{pweights}.

\begin{verbatim}
| At-risk table |
\end{verbatim}

\texttt{risktable([\texttt{numlist][, table_options]}) displays a table showing the number at risk beneath the plot. \texttt{risktable} may not be used with \texttt{separate} or \texttt{adjustfor()}. 

\texttt{risktable} displays the table in the default format with number at risk shown for each time reported on the $x$ axis.

\texttt{risktable(\texttt{numlist][, table_options])} specifies that the number at risk be evaluated at the points specified in \texttt{numlist} or that the rendition of the table be changed by \texttt{table_options}. 

There are two ways to change the points at which the numbers at risk are evaluated.

1. The \( x \) axis of the graph may be altered. For example:
   \[
   \texttt{. sts graph, xlabel(0(5)40) risktable}
   \]

2. A \texttt{numlist} can be specified directly in the \texttt{risktable()} option, which affects only the at-risk table. For example:
   \[
   \texttt{. sts graph, risktable(0(5)40)}
   \]

The two examples produce the same at-risk table, but the first also changes the time labels on the graph’s \( x \) axis.

\texttt{table\_options} affect the rendition of the at-risk table and may be any of the following:

- \texttt{group(#rownum | value | label)} specifies that all the suboptions specified in the \texttt{risktable()} apply only to the specified group. Because the \texttt{risktable()} option may be repeated, this option allows different rows of the at-risk table to be displayed with different colors, font sizes, etc.

   When both a value and a value label are matched, the value label takes precedence.

- \texttt{risktable()} may be specified with or without the \texttt{group()} suboption. When specified without \texttt{group()}, each suboption is applied to all available groups or rows. \texttt{risktable()} specified without \texttt{group()} is considered to be global and is itself merged-explicit. See [G-4] \texttt{concept: repeated options} for more information on how repeated options are merged.

Consider the following example:
   \[
   \texttt{. sts graph, by(drug) risktable(, color(red) size(small))}
   \texttt{> risktable(, color(navy))}
   \]

   The example above would produce a table where all rows are colored navy with small text.

   Combining global \texttt{risktable()} options with group-specific \texttt{risktable()} options can be useful. When global options are combined with group-specific options, group-specific options always take precedence.

   Consider the following example:
   \[
   \texttt{. sts graph, by(drug) risktable(, color(navy))}
   \texttt{> risktable(, color(red) group(#1))}
   \]

   The example above would produce a table with the first row colored red and all remaining rows colored navy.

\texttt{axis\_label\_options} control the table by using axis labeling options. These options are seldom used. See [G-3] \texttt{axis\_label\_options}.

- \texttt{order()} specifies which and in what order rows are to appear in the at-risk table. Optionally, \texttt{order()} can be used to override the default text.

   \texttt{order(# # # ...) is the syntax used for identifying which rows to display and their order. \texttt{order(1 2 3)} would specify that row 1 is to appear first in the table, followed by row 2, followed by row 3. \texttt{order(1 2 3)} is the default if there are three groups. If there were four groups, \texttt{order(1 2 3 4)} would be the default, and so on. If there were four groups and you specified \texttt{order(1 2 3)}, the fourth row would not appear in the at-risk table. If you specified \texttt{order(2 1 3)}, row 2 would appear first, followed by row 1, followed by row 3.}

   \texttt{order(# "text" # "text" ...)} is the syntax used for specifying the row order and alternate row titles.
Consider the following at-risk table:

<table>
<thead>
<tr>
<th>drug = 1</th>
<th>20</th>
<th>8</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>drug = 2</td>
<td>14</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>drug = 3</td>
<td>14</td>
<td>13</td>
<td>10</td>
</tr>
</tbody>
</table>

Specifying `order(1 "Placebo" 3 2)` would produce

<table>
<thead>
<tr>
<th>Placebo</th>
<th>20</th>
<th>8</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>drug = 3</td>
<td>14</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>drug = 2</td>
<td>14</td>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>

and specifying `order(1 "Placebo" 3 "Drug 2" 2 "Drug 1")` would produce

<table>
<thead>
<tr>
<th>Placebo</th>
<th>20</th>
<th>8</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug 2</td>
<td>14</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Drug 1</td>
<td>14</td>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>

`righttitles` specifies that row titles be placed to the right of the at-risk values. The default is to place row titles to the left of the at-risk values.

`failevents` specifies that the number of failure events be shown in parentheses, after the time in which the risk values were calculated.

`text_options` affect the rendition of both row titles and number at risk and may be any of the following:

- `size(textsizestyle)` specifies the size of text.
- `color(colorstyle)` specifies the color of text.
- `justification(justificationstyle)` specifies how text elements are to be justified.
- `format(%fmt)` specifies how numeric values are to be formatted.
- `topgap(relativesize)` specifies how much space is to be placed above each row.
- `bottomgap(relativesize)` specifies how much space is to be placed beneath each row.
- `style(textstyle)` specifies the style of text. This option does not appear in the dialog box.

`rowtitle([text], rtext_options)` changes the default text or rendition of row titles. Specifying `rowtitle("Experimental drug")` would change the color of all row titles to red.

`rowtitle()` is often combined with `group()` to change the text or rendition of a title. Specifying `rowtitle("Experimental drug") group(#2)` would change the title of the second row to `Placebo`. Specifying `rowtitle(), color(red)` group(#3) would change the color of the row title for the third row to red.

Row titles may include more than one line. Lines are specified one after the other, each enclosed in double quotes. Specifying `rowtitle("Experimental drug")` group(#1) would produce a one-line row title, and specifying `rowtitle("Experimental" "Drug")` group(#1) would produce a multiple-line row title.

`rtext_options` affect the rendition of both row titles and number at risk and may be any of the following:

- `size(textsizestyle)` specifies the size of text.
color(colorstyle) specifies the color of text.
justification(Justificationstyle) specifies how text elements are to be justified.
at(#) allows you to reposition row titles or the overall table title to align with a specific location on the x axis.
topgap(relativesize) specifies how much space is to be placed above each row.
style(textstyle) specifies the style of text. This option does not appear on the dialog box.
title([title], text_options) may be used to override the default title for the at-risk table and affect the rendition of its text.

Titles may include one line of text or multiple lines. title("At-risk table") will produce a one-line title, and title("At-risk" "table") will produce a multiple-line title.
text_options affect the rendition of both row titles and number at risk and may be any of the following:

size(textsizestyle) specifies the size of text.
color(colorstyle) specifies the color of text.
justification(Justificationstyle) specifies how text elements are to be justified.
at(#) allows you to reposition row titles or the overall table title to align with a specific location on the x axis.
at(rowtitles) places the overall table title at the default position calculated for the row titles. This option is sometimes useful for alignment when the default justification has not been used.
topgap(relativesize) specifies how much space is to be placed above each row.
bottomgap(relativesize) specifies how much space is to be placed beneath each row.
style(textstyle) specifies the style of text. This option does not appear on the dialog box.

level(#) specifies the confidence level, as a percentage, for the pointwise confidence interval around the survivor, failure, or cumulative hazard function; see \( U \) 20.7 Specifying the width of confidence intervals.
per(#) specifies the units used to report the survival or failure rates. For example, if the analysis time is in years, specifying per(100) results in rates per 100 person-years.
noshow prevents sts graph from showing the key st variables. This option is seldom used because most people type stset, show or stset, noshow to set whether they want to see these variables mentioned at the top of the output of every st command; see \[ST\] stset.
tmax(#) specifies that the plotted curve be graphed only for \( t \leq # \). This option does not affect the calculation of the function, rather the portion that is displayed.
tmin(#) specifies that the plotted curve be graphed only for \( t \geq # \). This option does not affect the calculation of the function, rather the portion that is displayed.
norigin requests that the plot of the survival (failure) curve begin at the first exit time instead of beginning at \( t = 0 \) (the default). This option is ignored when cumhaz or hazard is specified.
width(# [#...]) is for use with hazard and specifies the bandwidth to be used in the kernel smooth used to plot the estimated hazard function. If width() is not specified, a default bandwidth is used as described in [R] kdensity. If it is used with by(), multiple bandwidths may be specified, one for each group. If there are more groups than the $k$ bandwidths specified, the default bandwidth is used for the $k + 1, \ldots$ remaining groups. If any bandwidth is specified as . (dot), the default bandwidth is used for that group.

kernel(kernel) is for use with hazard and specifies the kernel function to be used in calculating the weighted kernel-density estimate required to produce a smoothed hazard-function estimator. The default kernel is Epanechnikov, yet kernel may be any of the kernels supported by kdensity; see [R] kdensity.

noboundary is for use with hazard. It specifies that no boundary-bias adjustments are to be made when calculating the smoothed hazard-function estimator. By default, the smoothed hazards are adjusted near the boundaries. If the epan2, biweight, or rectangular kernel is used, the bias correction near the boundary is performed using boundary kernels. For other kernels, the plotted range of the smoothed hazard function is restricted to be within one bandwidth of each endpoint. For these other kernels, specifying noboundary merely removes this range restriction.

lost specifies that the numbers lost be shown on the plot. These numbers are shown as small numbers over the flat parts of the function.

If enter is not specified, the numbers displayed are the number censored minus the number who enter. If you do specify enter, the numbers displayed are the pure number censored. The underlying logic is described in [ST] sts.

lost may not be used with hazard.

enter specifies that the number who enter be shown on the graph, as well as the number lost. The number who enter are shown as small numbers beneath the flat parts of the plotted function.

enter may not be used with hazard.

atrisk specifies that the numbers at risk at the beginning of each interval be shown on the plot. The numbers at risk are shown as small numbers beneath the flat parts of the plotted function.

atrisk may not be used with hazard.

censored(single | number | multiple) specifies that hash marks be placed on the graph to indicate censored observations.

censored(single) places one hash mark at each censoring time, regardless of the number of censorings at that time.

censored(number) places one hash mark at each censoring time and displays the number of censorings about the hash mark.

censored(multiple) places multiple hash marks for multiple censorings at the same time. For instance, if 3 observations are censored at time 5, three hash marks are placed at time 5. censored(multiple) is intended for use when there are few censored observations; if there are too many censored observations, the graph can look bad. In such cases, we recommend that censored(number) be used.

censored() may not be used with hazard.

censopts(hash_options) specifies options that affect how the hash marks for censored observations are rendered; see [G-3] line_options. When combined with censored(number), censopts() also specifies how the count of censoring is rendered; see [G-3] marker_label_options, except mlabel() is not allowed.
lostopts(marker_label_options) specifies options that affect how the numbers lost are rendered; see [G-3] marker_label_options. This option implies the lost option.

atriskopts(marker_label_options) specifies options that affect how the numbers at risk are rendered; see [G-3] marker_label_options. This option implies the atrisk option.

plotopts(cline_options) affects the rendition of the plotted lines; see [G-3] cline_options. This option may not be combined with by(varlist) or strata(varlist), unless separate is also specified.

plot#opts(cline_options) affects the rendition of the #th plotted line; see [G-3] cline_options. This option may not be combined with separate.

ciopts(area_options) affects the rendition of the confidence bands; see [G-3] area_options. This option may not be combined with by(varlist) or strata(varlist), unless separate is also specified.

ci#opts(area_options) affects the rendition of the #th confidence band; see [G-3] area_options. This option may not be combined with separate.

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot_option.

twoway_options are any of the options documented in [G-3] twoway_options. These include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see [G-3] saving_option).

byopts(byopts) affects the appearance of the combined graph when by() or adjustfor() is specified, including the overall graph title and the organization of subgraphs. byopts() may not be specified with separate. See [G-3] by_option.

Remarks and examples

Remarks are presented under the following headings:

Including the number lost on the graph
Graphing the Nelson–Aalen cumulative hazard function
Graphing the hazard function
Adding an at-risk table
On boundary bias for smoothed hazards

If you have not read [ST] sts, please do so.

By default, sts graph displays the Kaplan–Meier product-limit estimate of the survivor (failure) function. Only one of sts graph’s options, adjustfor(), modifies the calculation. All the other options merely determine how the results of the calculation are graphed.

We demonstrate many of sts graph’s features in [ST] sts. This discussion picks up where that entry leaves off.

See Cefalu (2011) for covariate-adjusted estimates and confidence intervals.
In *Adjusted estimates* in [ST] *sts*, we introduced a simple drug-trial dataset with 1 observation per subject. Here is a graph of the survivor functions, by drug, including the number lost because of censoring:

```
. use http://www.stata-press.com/data/r13/drug2
(Patient Survival in Drug Trial)
. sts graph, by(drug) lost
 failure _d: died
 analysis time _t: studytime
```

There is no late entry in these data, so we modify the data so that a few subjects entered late. Here is the same graph on the modified data:

```
. use http://www.stata-press.com/data/r13/drug2b
(Patient Survival in Drug Trial)
. sts graph, by(drug) lost
 failure _d: died
 analysis time _t: studytime
```
Note the negative numbers. These occur because, by default, `lost` means censored minus entered. Here \(-1\) means that 1 entered, or 2 entered and 1 was lost, etc. If we specify the `enter` option, we will see the censored and entered separately:

```
. sts graph, by(drug) lost enter
 failure _d: died
 analysis time _t: studytime
```

Although it might appear that specifying `enter` with `lost` is a good idea, that is not always true.

We have yet another version of the data—the correct data not adjusted to have late entry—but in this version we have multiple records per subject. The data are the same, but where there was one record in the first dataset, sometimes there are now two because we have a covariate that is changing over time. From this dataset, here is the graph with the number lost shown:
This looks just like the first graph we presented, as indeed it should. Again we emphasize that the data are logically, if not physically, equivalent. If, however, we graph the number lost and entered, we get a graph showing a lot of activity:

```
. stsgraph, by(drug) lost enter
 failure _d: died
 analysis time _t: studytime
 id: id
```

All that activity goes by the name *thrashing*—subjects are being censored to enter the data again, but with different covariates. This graph was better when we did not specify `enter` because the censored-minus-entered calculation smoothed out the thrashing.
Graphing the Nelson–Aalen cumulative hazard function

We can plot the Nelson–Aalen estimate of the cumulative (integrated) hazard function by specifying the `cumhaz` option. For example, from the 1-observation-per-subject drug-trial dataset, here is a graph of the cumulative hazard functions by drug:

```
. use http://www.stata-press.com/data/r13/drug2
 (Patient Survival in Drug Trial)
. stset, noshow
. sts graph, cumhaz by(drug)
```

And here is a plot including the number lost because of censoring:

```
. sts graph, cumhaz by(drug) lost
```

![Nelson–Aalen cumulative hazard estimates](image)
Graphing the hazard function

\texttt{sts graph} may also be used to plot an estimate of the hazard function. This graph is based on a weighted kernel smooth of the estimated hazard contributions, $\Delta \hat{H}(t_j) = \hat{H}(t_j) - \hat{H}(t_{j-1})$, obtained by \texttt{sts generate newvar = h}. There are thus issues associated with selecting a kernel function and a bandwidth, although \texttt{sts graph} will use defaults if we do not want to worry about this.

\begin{verbatim}
 . sts graph, hazard by(drug)
\end{verbatim}

We can also adjust and customize the kernel smooth.

\begin{verbatim}
 . sts graph, hazard by(drug) kernel(gauss) width(5 7) > title(Comparison of hazard functions)
\end{verbatim}
Adding an at-risk table

A table showing the number at risk may be added beneath a survivor, failure, or Nelson–Aalen cumulative hazard plot.

```
sts graph, by(drug) risktable
```

By default, both the legend and the at-risk table share space at the bottom of the graph. Placing the legend in an empty area inside the plot may often be desirable.

```
sts graph, by(drug) risktable legend(ring(0) position(2) rows(2))
```

By default, row titles are placed on the left of the at-risk table and are right-justified. We can illustrate this by changing the text of the row titles to have an unequal length.
. sts graph, by(drug) risktable(, order(1 "Placebo" 2 "Test drug") rowtitle(, justification(left)))

If desired, the text of row titles can be left-justified.

. sts graph, by(drug) risktable(, order(1 "Placebo" 2 "Test drug") rowtitle(, justification(left)))
In addition to left justification, the table title can be aligned with the row titles.

```
sts graph, by(drug) risktable(, order(1 "Placebo" 2 "Test drug")
> rowtitle(, justification(left)) title(, at(rowtitle)))
```

![Kaplan–Meier survival estimates](image)

**On boundary bias for smoothed hazards**

`sts graph` uses the usual smoothing kernel technique to estimate the hazard function. Kernel estimators commonly encounter bias when estimating near the boundaries of the data range, and therefore estimates of the hazard function in the boundary regions are generally less reliable. To alleviate this problem, estimates that use the `epan2`, `biweight`, and `rectangular` kernels are adjusted at the boundaries with what are known as *boundary kernels* (for example, Müller and Wang [1994]; Hess, Serachitopol, and Brown [1999]). For estimates using other kernels, no boundary adjustment is made. Instead, the default graphing range is constrained to be the range \([L + b, R - b]\), where \(L\) and \(R\) are the respective minimum and maximum analysis times at which failure occurred and \(b\) is the bandwidth.

**Methods and formulas**

See [ST] `sts`.

The estimated hazard is calculated as a kernel smooth of the estimated hazard contributions, 
\[
\Delta \hat{H}(t_j) = \hat{H}(t_j) - \hat{H}(t_{j-1}),
\]
using
\[
\hat{h}(t) = b^{-1} \sum_{j=1}^{D} K_t \left( \frac{t - t_j}{b} \right) \Delta \hat{H}(t_j)
\]
where \(K_t(\cdot)\) is the kernel (Müller and Wang 1994) function, \(b\) is the bandwidth, and the summation is over the \(D\) times at which failure occurs (Klein and Moeschberger 2003, 167). If `adjustfor()` is specified, the \(\Delta \hat{H}(t_j)\) are instead obtained from `stcox` as the estimated baseline contributions from a Cox model; see [ST] `stcox` for details on how the \(\Delta \hat{H}(t_j)\) are calculated in this case.
Pointwise confidence bands for smoothed hazard functions are calculated using the method based on a log transformation,

\[
\hat{h}(t) \exp \left[ \pm Z_{1-\alpha/2} \frac{\sigma \{ \hat{h}(t) \}}{\hat{h}(t)} \right]
\]

See Klein and Moeschberger (2003, 168) for details.

References


Also see [ST] sts for more references.

Also see

[ST] sts — Generate, graph, list, and test the survivor and cumulative hazard functions
[ST] sts generate — Create variables containing survivor and related functions
[ST] sts list — List the survivor or cumulative hazard function
[ST] sts test — Test equality of survivor functions
[ST] stset — Declare data to be survival-time data
[R] kdensity — Univariate kernel density estimation
Title

sts list — List the survivor or cumulative hazard function

Syntax

sts list [if] [in] [ , options ]

options                     Description

Main

survival                  report Kaplan–Meier survivor function; the default
failure                   report Kaplan–Meier failure function
cumhaz                    report Nelson–Aalen cumulative hazard function
by(varlist)               estimate separate functions for each group formed by varlist
adjustfor(varlist)        adjust the estimates to zero values of varlist
strata(varlist)           stratify on different groups of varlist

Options

level(#)                  set confidence level; default is level(95)
at(#) | numlist              report estimated survivor/cumulative hazard function at specified
times; default is to report at all unique time values
enter                    report number lost as pure censored instead of censored minus
lost
no show                  do not show st setting information
compare                  report groups of survivor/cumulative hazard functions side by
side
saving(filename[ , replace]) save results to filename; use replace to overwrite existing
filename

You must stset your data before using sts list; see [ST] stset.
fweights, iweights, and pweights may be specified using stset; see [ST] stset.

Menu

Statistics > Survival analysis > Summary statistics, tests, and tables > List survivor and cumulative hazard functions

Description

sts list lists the estimated survivor (failure) or the Nelson–Aalen estimated cumulative (integrated) hazard function. See [ST] sts for an introduction to this command.

sts list can be used with single- or multiple-record or single- or multiple-failure st data.
Options

survival, failure, and cumhaz specify the function to report.

survival specifies that the Kaplan–Meier survivor function be listed. This option is the default if a function is not specified.

failure specifies that the Kaplan–Meier failure function $1 - S(t + 0)$ be listed.

cumhaz specifies that the Nelson–Aalen estimate of the cumulative hazard function be listed.

by(varlist) estimates a separate function for each by-group. By-groups are identified by equal values of the variables in varlist. by() may not be combined with strata().

adjustfor(varlist) adjusts the estimate of the survivor (failure) function to that for 0 values of varlist. This option is not available with the Nelson–Aalen function. See [ST] sts graph for an example of how to adjust for values different from 0.

If you specify adjustfor() with by(), sts fits separate Cox regression models for each group, using the adjustfor() variables as covariates. The separately calculated baseline survivor functions are then retrieved.

If you specify adjustfor() with strata(), sts fits a stratified-on-group Cox regression model, using the adjustfor() variables as covariates. The stratified, baseline survivor function is then retrieved.

strata(varlist) requests estimates of the survivor (failure) function stratified on variables in varlist. It requires specifying adjustfor() and may not be combined with by().

level(#) specifies the confidence level, as a percentage, for the Greenwood pointwise confidence interval of the survivor (failure) or for the pointwise confidence interval of the Nelson–Aalen cumulative hazard function; see [U] 20.7 Specifying the width of confidence intervals.

at(#) | numlist specifies the time values at which the estimated survivor (failure) or cumulative hazard function is to be listed.

The default is to list the function at all the unique time values in the data, or if functions are being compared, at about 10 times chosen over the observed interval. In any case, you can control the points chosen.

at(5 10 20 30 50 90) would display the function at the designated times.

at(10 20 to 100) would display the function at times 10, 20, 30, 40, ..., 100.

at(0 5 10 to 100 200) would display the function at times 0, 5, 10, 15, ..., 100, and 200.

at(20) would display the curve at (roughly) 20 equally spaced times over the interval observed in the data. We say roughly because Stata may choose to increase or decrease your number slightly if that would result in rounder values of the chosen times.

enter specifies that the table contain the number who enter and, correspondingly, that the number lost be displayed as the pure number censored rather than censored minus entered. The logic underlying this is explained in [ST] sts.

noshow prevents sts list from showing the key st variables. This option is seldom used because most people type stset, show or stset, noshow to set whether they want to see these variables mentioned at the top of the output of every st command; see [ST] stset.
compare is specified only with by() or strata(). It compares the survivor (failure) or cumulative hazard functions and lists them side by side rather than first one and then the next.

saving(filename[, replace]) saves the results in a Stata data file (.dta file).

replace specifies that filename be overwritten if it exists.

Remarks and examples

Only one of sts list’s options—adjustfor()—modifies the calculation. All the other options merely determine how the results of the calculation are displayed.

If you do not specify adjustfor() or cumhaz, sts list displays the Kaplan–Meier product-limit estimate of the survivor (failure) function. Specify by() to perform the calculation separately on the different groups.

Specify adjustfor() to calculate an adjusted survival curve. Now if you specify by() or strata(), this further modifies how the adjustment is made.

sts list, cumhaz displays the Nelson–Aalen estimate of the cumulative hazard function.

We demonstrate many of sts list’s features in [ST] sts. This discussion picks up where that entry leaves off.

By default, sts list will bury you in output. With the Stanford heart transplant data introduced in [ST] stset, the following commands produce 154 lines of output.

```
. use http://www.stata-press.com/data/r13/stan3
 (Heart transplant data)
. stset, noshow
. sts list, by(posttran)
```

<table>
<thead>
<tr>
<th>Time</th>
<th>Beg. Total</th>
<th>Fail</th>
<th>Lost</th>
<th>Survivor Function</th>
<th>Std. Error</th>
<th>[95% Conf. Int.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>103</td>
<td>1</td>
<td>3</td>
<td>0.9903</td>
<td>0.0097</td>
<td>0.9331 0.9986</td>
</tr>
<tr>
<td>2</td>
<td>99</td>
<td>3</td>
<td>3</td>
<td>0.9603</td>
<td>0.0195</td>
<td>0.8976 0.9849</td>
</tr>
<tr>
<td>3</td>
<td>93</td>
<td>3</td>
<td>3</td>
<td>0.9293</td>
<td>0.0258</td>
<td>0.8574 0.9657</td>
</tr>
<tr>
<td>(output omitted)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.2359</td>
<td>0.1217</td>
<td>0.0545 0.4882</td>
</tr>
<tr>
<td>posttran=1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-3</td>
<td>1.0000</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
<td>-3</td>
<td>1.0000</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>(output omitted)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>14</td>
<td>1</td>
<td>0</td>
<td>0.9286</td>
<td>0.0688</td>
<td>0.5908 0.9896</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>0</td>
<td>-1</td>
<td>0.9286</td>
<td>0.0688</td>
<td>0.5908 0.9896</td>
</tr>
<tr>
<td>(output omitted)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1799</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.1420</td>
<td>0.0546</td>
<td>0.0566 0.2653</td>
</tr>
</tbody>
</table>

at() and compare are the solutions. Here is another detailed, but more useful, view of the heart transplant data:
. stsp list, at(10 40 to 170) by(posttran)

<table>
<thead>
<tr>
<th>Time</th>
<th>Total</th>
<th>Fail</th>
<th>Survivor Function</th>
<th>Std. Error</th>
<th>[95% Conf. Int.]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>posttran=0</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>74</td>
<td>12</td>
<td>0.8724</td>
<td>0.0346</td>
<td>0.7858 0.9256</td>
</tr>
<tr>
<td>40</td>
<td>31</td>
<td>11</td>
<td>0.6781</td>
<td>0.0601</td>
<td>0.5446 0.7801</td>
</tr>
<tr>
<td>70</td>
<td>17</td>
<td>2</td>
<td>0.6126</td>
<td>0.0704</td>
<td>0.4603 0.7339</td>
</tr>
<tr>
<td>100</td>
<td>11</td>
<td>1</td>
<td>0.5616</td>
<td>0.0810</td>
<td>0.3900 0.7022</td>
</tr>
<tr>
<td>130</td>
<td>10</td>
<td>1</td>
<td>0.5054</td>
<td>0.0903</td>
<td>0.3199 0.6646</td>
</tr>
<tr>
<td>160</td>
<td>7</td>
<td>1</td>
<td>0.4422</td>
<td>0.0986</td>
<td>0.2480 0.6204</td>
</tr>
<tr>
<td><strong>posttran=1</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>1</td>
<td>0.9286</td>
<td>0.0688</td>
<td>0.5908 0.9896</td>
</tr>
<tr>
<td>40</td>
<td>43</td>
<td>6</td>
<td>0.7391</td>
<td>0.0900</td>
<td>0.5140 0.8716</td>
</tr>
<tr>
<td>70</td>
<td>45</td>
<td>9</td>
<td>0.6002</td>
<td>0.0841</td>
<td>0.4172 0.7423</td>
</tr>
<tr>
<td>100</td>
<td>40</td>
<td>9</td>
<td>0.4814</td>
<td>0.0762</td>
<td>0.3271 0.6198</td>
</tr>
<tr>
<td>130</td>
<td>38</td>
<td>1</td>
<td>0.4687</td>
<td>0.0752</td>
<td>0.3174 0.6063</td>
</tr>
<tr>
<td>160</td>
<td>36</td>
<td>1</td>
<td>0.4561</td>
<td>0.0742</td>
<td>0.3076 0.5928</td>
</tr>
</tbody>
</table>

Note: survivor function is calculated over full data and evaluated at indicated times; it is not calculated from aggregates shown at left.

We specified at(10 40 to 170) when that is not strictly correct; at(10 40 to 160) would make sense and so would at(10 40 to 180), but stsp list is not picky.

Technical note

When used with at(), stsp list is designed to give you only a snapshot of the full Kaplan–Meier curve. That is, the Beg. Total information is that for the last observed failure time (before the failures occur).

When the at() option is used, the Beg. Total column in the output does not contain the number at risk at the time indicated in the Time column. It shows the number at risk at the time just before the previous failure.

Similar output for the Nelson–Aalen estimated cumulative hazard can be produced by specifying the cumhaz option:

. stsp list, cumhaz at(10 40 to 170) by(posttran)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>posttran=0</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>74</td>
<td>12</td>
<td>0.1349</td>
<td>0.0391</td>
<td>0.0764 0.2382</td>
</tr>
<tr>
<td>40</td>
<td>31</td>
<td>11</td>
<td>0.3824</td>
<td>0.0871</td>
<td>0.2448 0.5976</td>
</tr>
<tr>
<td>70</td>
<td>17</td>
<td>2</td>
<td>0.4813</td>
<td>0.1124</td>
<td>0.3044 0.7608</td>
</tr>
<tr>
<td>100</td>
<td>11</td>
<td>1</td>
<td>0.5646</td>
<td>0.1400</td>
<td>0.3473 0.9178</td>
</tr>
<tr>
<td>130</td>
<td>10</td>
<td>1</td>
<td>0.6646</td>
<td>0.1720</td>
<td>0.4002 1.1037</td>
</tr>
<tr>
<td>160</td>
<td>7</td>
<td>1</td>
<td>0.7896</td>
<td>0.2126</td>
<td>0.4658 1.3385</td>
</tr>
<tr>
<td><strong>posttran=1</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>1</td>
<td>0.0714</td>
<td>0.0714</td>
<td>0.0101 0.5071</td>
</tr>
<tr>
<td>40</td>
<td>43</td>
<td>6</td>
<td>0.2929</td>
<td>0.1176</td>
<td>0.1334 0.6433</td>
</tr>
<tr>
<td>70</td>
<td>45</td>
<td>9</td>
<td>0.4981</td>
<td>0.1360</td>
<td>0.2916 0.8507</td>
</tr>
<tr>
<td>100</td>
<td>40</td>
<td>9</td>
<td>0.7155</td>
<td>0.1542</td>
<td>0.4691 1.0915</td>
</tr>
<tr>
<td>130</td>
<td>38</td>
<td>1</td>
<td>0.7418</td>
<td>0.1564</td>
<td>0.4908 1.1214</td>
</tr>
<tr>
<td>160</td>
<td>36</td>
<td>1</td>
<td>0.7689</td>
<td>0.1587</td>
<td>0.5130 1.1523</td>
</tr>
</tbody>
</table>

Note: Nelson-Aalen function is calculated over full data and evaluated at indicated times; it is not calculated from aggregates shown at left.
Here is the result of the survivor functions with the `compare` option:

```
. stsl list, at(10 40 to 170) by(posttran) compare

Survivor Function

 posttran 0 1
 time
 10 0.8724 0.9286
 40 0.6781 0.7391
 70 0.6126 0.6002
 100 0.5616 0.4814
 130 0.5054 0.4687
 160 0.4422 0.4561
```

And here is the result of the cumulative hazard functions with the `compare` option:

```
. stsl list, cumhaz at(10 40 to 170) by(posttran) compare

 posttran 0 1
 time
 10 0.1349 0.0714
 40 0.3824 0.2929
 70 0.4813 0.4981
 100 0.5646 0.7155
 130 0.6646 0.7418
 160 0.7896 0.7689
```

### Methods and formulas

See [ST] `sts`.

### References

See [ST] `sts` for references.

### Also see

- [ST] `sts` — Generate, graph, list, and test the survivor and cumulative hazard functions
- [ST] `sts generate` — Create variables containing survivor and related functions
- [ST] `sts graph` — Graph the survivor, hazard, or cumulative hazard function
- [ST] `sts test` — Test equality of survivor functions
- [ST] `stset` — Declare data to be survival-time data
sts test — Test equality of survivor functions

Syntax

```
sts test varlist [if] [in] [, options]
```

```
options Description
Main
logrank perform log-rank test of equality; the default
cox perform Cox test of equality
wilcoxon perform Wilcoxon–Breslow–Gehan test of equality
tware perform Tarone–Ware test of equality
peto perform Peto–Peto–Prentice test of equality
fh(p q) perform generalized Fleming–Harrington test of equality
trend test trend of the survivor function across three or more ordered groups
strata(varlist) perform stratified test on varlist, displaying overall test results
detail display individual test results; modifies strata()
```

```
Options
mat(mname1 mname2) store vector u in mname1 and matrix V in mname2
noshow do not show st setting information
notitle suppress title
```

You must stset your data before using sts test; see [ST] stset.
Note that fweights, iweights, and pweights may be specified using stset; see [ST] stset.

Menu

Statistics > Survival analysis > Summary statistics, tests, and tables > Test equality of survivor functions

Description

sts test tests the equality of survivor functions across two or more groups. The log-rank, Cox, Wilcoxon–Breslow–Gehan, Tarone–Ware, Peto–Peto–Prentice, and Fleming–Harrington tests are provided, in both unstratified and stratified forms.

sts test also provides a test for trend.

See [ST] sts for an introduction to this command.

sts test can be used with single- or multiple-record or single- or multiple-failure st data.
### Options

**Main**

- `logrank`, `cox`, `wilcoxon`, `tware`, `peto`, and `fh(p q)` specify the test of equality desired. `logrank` is the default, unless the data are `pweight`, in which case `cox` is the default and is the only possibility.

- `wilcoxon` specifies the Wilcoxon–Breslow–Gehan test; `tware`, the Tarone–Ware test; `peto`, the Peto–Peto–Prentice test; and `fh()`, the generalized Fleming–Harrington test. The Fleming–Harrington test requires two arguments, `p` and `q`. When `p = 0` and `q = 0`, the Fleming–Harrington test reduces to the log-rank test; when `p = 1` and `q = 0`, the test reduces to the Mann–Whitney–Wilcoxon test.

- `trend` specifies that a test for trend of the survivor function across three or more ordered groups be performed.

- `strata(varlist)` requests that a stratified test be performed.

- `detail` modifies `strata();` it requests that, in addition to the overall stratified test, the tests for the individual strata be reported. `detail` is not allowed with `cox`.

**Options**

- `mat(mname1 mname2)` requests that the vector `u` be stored in `mname1` and that matrix `V` be stored in `mname2`. The other tests are rank tests of the form `u'V^{-1}u`. This option may not be used with `cox`.

- `noshow` prevents `sts test` from showing the key `st` variables. This option is seldom used because most people type `stset, show` or `stset, noshow` to set whether they want to see these variables mentioned at the top of the output of every `st` command; see `[ST] stset`.

- `notitle` requests that the title printed above the test be suppressed.

### Remarks and examples

Remarks are presented under the following headings:

- **The log-rank test**
- **The Wilcoxon (Breslow–Gehan) test**
- **The Tarone–Ware test**
- **The Peto–Peto–Prentice test**
- **The generalized Fleming–Harrington tests**
- **The “Cox” test**
- **The trend test**

`sts test` tests the equality of the survivor function across groups. With the exception of the Cox test, these tests are members of a family of statistical tests that are extensions to censored data of traditional nonparametric rank tests for comparing two or more distributions. A technical description of these tests can be found in the *Methods and formulas* section of this entry. Simply, at each distinct failure time in the data, the contribution to the test statistic is obtained as a weighted standardized sum of the difference between the observed and expected number of deaths in each of the `k` groups. The expected number of deaths is obtained under the null hypothesis of no differences between the survival experience of the `k` groups.

The weights or weight function used determines the test statistic. For example, when the weight is 1 at all failure times, the log-rank test is computed, and when the weight is the number of subjects at risk of failure at each distinct failure time, the Wilcoxon–Breslow–Gehan test is computed.
The following table summarizes the weights used for each statistical test.

<table>
<thead>
<tr>
<th>Test</th>
<th>Weight at each distinct failure time ((t_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log-rank</td>
<td>1</td>
</tr>
<tr>
<td>Wilcoxon–Breslow–Gehan</td>
<td>(n_i)</td>
</tr>
<tr>
<td>Tarone–Ware</td>
<td>(\sqrt{n_i})</td>
</tr>
<tr>
<td>Peto–Peto–Prentice</td>
<td>(\tilde{S}(t_i))</td>
</tr>
<tr>
<td>Fleming–Harrington</td>
<td>(\hat{S}(t_{i-1})^p\left{1 - \hat{S}(t_{i-1})\right}^q)</td>
</tr>
</tbody>
</table>

where \(\hat{S}(t_i)\) is the estimated Kaplan–Meier survivor-function value for the combined sample at failure time \(t_i\), \(\tilde{S}(t_i)\) is a modified estimate of the overall survivor function described in Methods and formulas, and \(n_i\) is the number of subjects in the risk pool at failure time \(t_i\).

These tests are appropriate for testing the equality of survivor functions across two or more groups. Up to 800 groups are allowed.

The “Cox” test is related to the log-rank test but is performed as a likelihood-ratio test (or, alternatively, as a Wald test) on the results from a Cox proportional hazards regression. The log-rank test should be preferable to what we have labeled the Cox test, but with pweight ed data the log-rank test is not appropriate. Whether you perform the log-rank or Cox test makes little substantive difference with most datasets.

\texttt{sts test, trend} can be used to test against the alternative hypothesis that the failure rate increases or decreases as the level of the \(k\) groups increases or decreases. This test is appropriate only when there is a natural ordering of the comparison groups, for example, when each group represents an increasing or decreasing level of a therapeutic agent.

\texttt{trend} is not valid when \texttt{cox} is specified.

**The log-rank test**

\texttt{sts test}, by default, performs the log-rank test, which is, to be clear, the exponential scores test (Savage 1956; Mantel and Haenszel 1959; Mantel 1963, 1966). This test is most appropriate when the hazard functions are thought to be proportional across the groups if they are not equal.

This test statistic is constructed by giving equal weights to the contribution of each failure time to the overall test statistic.

In Testing equality of survivor functions in [ST] \texttt{sts}, we demonstrated the use of this command with the heart transplant data, a multiple-record, single-failure st dataset.
. use http://www.stata-press.com/data/r13/stan3
(Heart transplant data)
. sts test posttran
    failure _d: died
    analysis time _t: t1
    id: id

Log-rank test for equality of survivor functions

<table>
<thead>
<tr>
<th>posttran</th>
<th>Events</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>observed</td>
<td>expected</td>
</tr>
<tr>
<td>0</td>
<td>30</td>
<td>31.20</td>
</tr>
<tr>
<td>1</td>
<td>45</td>
<td>43.80</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
<td>75.00</td>
</tr>
</tbody>
</table>

chi2(1) = 0.13
Pr>chi2 = 0.7225

We cannot reject the hypothesis that the survivor functions are the same.

sts test, logrank can also perform the stratified log-rank test. Say that it is suggested that calendar year of acceptance also affects survival and that there are three important periods: 1967–1969, 1970–1972, and 1973–1974. Therefore, a stratified test should be performed:

. stset, noshow
. generate group = 1 if year <= 69
  (117 missing values generated)
. replace group=2 if year>=70 & year<=72
  (78 real changes made)
. replace group=3 if year>=73
  (39 real changes made)
. sts test posttran, strata(group)

Stratified log-rank test for equality of survivor functions

<table>
<thead>
<tr>
<th>posttran</th>
<th>Events</th>
<th>Events(*)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>observed</td>
<td>expected(*)</td>
</tr>
<tr>
<td>0</td>
<td>30</td>
<td>31.51</td>
</tr>
<tr>
<td>1</td>
<td>45</td>
<td>43.49</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
<td>75.00</td>
</tr>
</tbody>
</table>

(*) sum over calculations within group

chi2(1) = 0.20
Pr>chi2 = 0.6547

Still finding nothing, we ask Stata to show the within-stratum tests:
. `sts test posttran, strata(group) detail`

**Stratified log-rank test for equality of survivor functions**

-> group = 1

<table>
<thead>
<tr>
<th>posttran</th>
<th>Events observed</th>
<th>Events expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14</td>
<td>13.59</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>17.41</td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
<td>31.00</td>
</tr>
<tr>
<td></td>
<td>chi2(1) = 0.03</td>
<td>Pr&gt;chi2 = 0.8558</td>
</tr>
</tbody>
</table>

-> group = 2

<table>
<thead>
<tr>
<th>posttran</th>
<th>Events observed</th>
<th>Events expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>13</td>
<td>13.63</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>19.37</td>
</tr>
<tr>
<td>Total</td>
<td>33</td>
<td>33.00</td>
</tr>
<tr>
<td></td>
<td>chi2(1) = 0.09</td>
<td>Pr&gt;chi2 = 0.7663</td>
</tr>
</tbody>
</table>

-> group = 3

<table>
<thead>
<tr>
<th>posttran</th>
<th>Events observed</th>
<th>Events expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>4.29</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>6.71</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>11.00</td>
</tr>
<tr>
<td></td>
<td>chi2(1) = 0.91</td>
<td>Pr&gt;chi2 = 0.3410</td>
</tr>
</tbody>
</table>

-> Total

<table>
<thead>
<tr>
<th>posttran</th>
<th>Events observed</th>
<th>Events expected(*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
<td>31.51</td>
</tr>
<tr>
<td>1</td>
<td>45</td>
<td>43.49</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
<td>75.00</td>
</tr>
</tbody>
</table>

(*) sum over calculations within group

|          | chi2(1) = 0.20 | Pr>chi2 = 0.6547 |

---

**The Wilcoxon (Breslow–Gehan) test**

`sts test, wilcoxon` performs the generalized Wilcoxon test of Breslow (1970) and Gehan (1965). This test is appropriate when hazard functions are thought to vary in ways other than proportionally and when censoring patterns are similar across groups.

The Wilcoxon test statistic is constructed by weighting the contribution of each failure time to the overall test statistic by the number of subjects at risk. Thus it gives heavier weights to earlier failure times when the number at risk is higher. As a result, this test is susceptible to differences in the censoring pattern of the groups.
sts test, wilcoxon works the same way as sts test, logrank:

. sts test posttran, wilcoxon

<table>
<thead>
<tr>
<th>Wilcoxon (Breslow) test for equality of survivor functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>posttran</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

chi2(1) = 0.14
Pr>chi2 = 0.7083

With the strata() option, sts test, wilcoxon performs the stratified test:

. sts test posttran, wilcoxon strata(group)

<table>
<thead>
<tr>
<th>Stratified Wilcoxon (Breslow) test for equality of survivor functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>posttran</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

(*) sum over calculations within group

chi2(1) = 0.22
Pr>chi2 = 0.6385

As with sts test, logrank, you can also specify the detail option to see the within-stratum tests.

The Tarone–Ware test

sts test, tware performs a test suggested by Tarone and Ware (1977), with weights equal to the square root of the number of subjects in the risk pool at time $t_i$.

Like Wilcoxon’s test, this test is appropriate when hazard functions are thought to vary in ways other than proportionally and when censoring patterns are similar across groups. The test statistic is constructed by weighting the contribution of each failure time to the overall test statistic by the square root of the number of subjects at risk. Thus, like the Wilcoxon test, it gives heavier weights, although not as large, to earlier failure times. Although less susceptible to the failure and censoring pattern in the data than Wilcoxon’s test, this could remain a problem if large differences in these patterns exist between groups.

sts test, tware works the same way as sts test, logrank:

. sts test posttran, tware

<table>
<thead>
<tr>
<th>Tarone-Ware test for equality of survivor functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>posttran</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

chi2(1) = 0.12
Pr>chi2 = 0.7293
With the `strata()` option, `sts test, tware` performs the stratified test:

```
. sts test posttran, tware strata(group)
```

### Stratified Tarone-Ware test for equality of survivor functions

<table>
<thead>
<tr>
<th>posttran</th>
<th>Events observed</th>
<th>Events expected(*)</th>
<th>Sum of ranks(*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
<td>31.51</td>
<td>-7.4679345</td>
</tr>
<tr>
<td>1</td>
<td>45</td>
<td>43.49</td>
<td>7.4679345</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
<td>75.00</td>
<td>0</td>
</tr>
</tbody>
</table>

(*) sum over calculations within group

\[
\chi^2(1) = 0.21 \\
\text{Pr} > \chi^2 = 0.6464
\]

As with `sts test, logrank`, you can also specify the `detail` option to see the within-stratum tests.

### The Peto–Peto–Prentice test

`sts test, peto` performs an alternative to the Wilcoxon test proposed by Peto and Peto (1972) and Prentice (1978). The test uses as the weight function an estimate of the overall survivor function, which is similar to that obtained using the Kaplan–Meier estimator. See Methods and formulas for details.

This test is appropriate when hazard functions are thought to vary in ways other than proportionally, but unlike the Wilcoxon–Breslow–Gehan test, it is not affected by differences in censoring patterns across groups.

`sts test, peto` works the same way as `sts test, logrank`:

```
. sts test posttran, peto
```

### Peto-Peto test for equality of survivor functions

<table>
<thead>
<tr>
<th>posttran</th>
<th>Events observed</th>
<th>Events expected</th>
<th>Sum of ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
<td>31.20</td>
<td>-.86708453</td>
</tr>
<tr>
<td>1</td>
<td>45</td>
<td>43.80</td>
<td>.86708453</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
<td>75.00</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\chi^2(1) = 0.15 \\
\text{Pr} > \chi^2 = 0.6979
\]

With the `strata()` option, `sts test, peto` performs the stratified test:

```
. sts test posttran, peto strata(group)
```

### Stratified Peto-Peto test for equality of survivor functions

<table>
<thead>
<tr>
<th>posttran</th>
<th>Events observed</th>
<th>Events expected(*)</th>
<th>Sum of ranks(*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
<td>31.51</td>
<td>-.96898006</td>
</tr>
<tr>
<td>1</td>
<td>45</td>
<td>43.49</td>
<td>.96898006</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
<td>75.00</td>
<td>0</td>
</tr>
</tbody>
</table>

(*) sum over calculations within group

\[
\chi^2(1) = 0.19 \\
\text{Pr} > \chi^2 = 0.6618
\]

As with the previous tests, you can also specify the `detail` option to see the within-stratum tests.
The generalized Fleming–Harrington tests

sts test, fh(p q) performs the Harrington and Fleming (1982) class of test statistics. The weight function at each distinct failure time, \( t \), is the product of the Kaplan–Meier survivor estimate at time \( t - 1 \) raised to the \( p \) power and \( 1 - \) the Kaplan–Meier survivor estimate at time \( t - 1 \) raised to the \( q \) power. Thus, when specifying the Fleming and Harrington option, you must specify two nonnegative arguments, \( p \) and \( q \).

When \( p > q \), the test gives more weights to earlier failures than to later ones. When \( p < q \), the opposite is true, and more weight is given to later failures than to earlier ones. When \( p \) and \( q \) are both zero, the weight is 1 at all failure times and the test reduces to the log-rank test.

sts test, fh(p q) works the same way as sts test, logrank. If we specify \( p = 0 \) and \( q = 0 \) we will get the same results as the log-rank test:

```
. sts test posttran, fh(0 0)
```

<p>| Fleming-Harrington test for equality of survivor functions |
|---------------------------------|----------------|----------------|</p>
<table>
<thead>
<tr>
<th>posttran</th>
<th>Events observed</th>
<th>Events expected</th>
<th>Sum of ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
<td>31.20</td>
<td>-1.1995511</td>
</tr>
<tr>
<td>1</td>
<td>45</td>
<td>43.80</td>
<td>1.1995511</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
<td>75.00</td>
<td>0</td>
</tr>
</tbody>
</table>

\[ \text{chi2}(1) = 0.13 \]
\[ \text{Pr}>\text{chi2} = 0.7225 \]

We could, for example, give more weight to later failures than to earlier ones.

```
. sts test posttran, fh(0 3)
```

<p>| Fleming-Harrington test for equality of survivor functions |
|---------------------------------|----------------|----------------|</p>
<table>
<thead>
<tr>
<th>posttran</th>
<th>Events observed</th>
<th>Events expected</th>
<th>Sum of ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
<td>31.20</td>
<td>-.09364975</td>
</tr>
<tr>
<td>1</td>
<td>45</td>
<td>43.80</td>
<td>.09364975</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
<td>75.00</td>
<td>0</td>
</tr>
</tbody>
</table>

\[ \text{chi2}(1) = 0.01 \]
\[ \text{Pr}>\text{chi2} = 0.9139 \]

Similarly to the previous tests, with the strata() option, sts test, fh() performs the stratified test:

```
. sts test posttran, fh(0 3) strata(group)
```

<p>| Stratified Fleming-Harrington test for equality of survivor functions |
|-------------------------------------------------------------|----------------|----------------|</p>
<table>
<thead>
<tr>
<th>posttran</th>
<th>Events observed</th>
<th>Events expected(*)</th>
<th>Sum of ranks(*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
<td>31.51</td>
<td>-.1623318</td>
</tr>
<tr>
<td>1</td>
<td>45</td>
<td>43.49</td>
<td>.1623318</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
<td>75.00</td>
<td>0</td>
</tr>
</tbody>
</table>

\( (*) \text{ sum over calculations within group} \)
\[ \text{chi2}(1) = 0.05 \]
\[ \text{Pr}>\text{chi2} = 0.8266 \]

As with the other tests, you can also specify the detail option to see the within-stratum tests.
The “Cox” test

The term Cox test is our own, and this test is a variation on the log-rank test using Cox regression.

One way of thinking about the log-rank test is as a Cox proportional hazards model on indicator variables for each of the groups. The log-rank test is a test that the coefficients are zero or, if you prefer, that the hazard ratios are one. The log-rank test is, in fact, a score test of that hypothesis performed on a slightly different (partial) likelihood function that handles ties more accurately.

Many researchers think that a (less precise) score test on the precise likelihood function is preferable to a (more precise) likelihood-ratio test on the approximate likelihood function used in Cox regression estimation. In our experience, it makes little difference:

```
. sts test posttran, cox

Cox regression-based test for equality of survival curves

<table>
<thead>
<tr>
<th></th>
<th>Events observed</th>
<th>Events expected</th>
<th>Relative hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
<td>31.20</td>
<td>0.9401</td>
</tr>
<tr>
<td>1</td>
<td>45</td>
<td>43.80</td>
<td>1.0450</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
<td>75.00</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

LR chi2(1) = 0.13
Pr>chi2 = 0.7222
```

By comparison, `sts test, logrank` also reported $\chi^2 = 0.13$, although the significance level was 0.7225, meaning that the $\chi^2$ values differed in the fourth digit. As mentioned by Kalbfleisch and Prentice (2002, 20), a primary advantage of the log-rank test is the ease with which it can be explained to nonstatisticians, because the test statistic is the difference between the observed and expected number of failures within groups.

Our purpose in offering `sts test, cox` is not to promote its use instead of the log-rank test but to provide a test for researchers with sample-weighted data.

If you have sample weights (if you specified `pweight` when you `stset` the data), you cannot run the log-rank or Wilcoxon tests. The Cox regression model, however, has been generalized to sample-weighted data, and Stata’s `stcox` can fit models with such data. In sample-weighted data, the likelihood-ratio statistic is no longer appropriate, but the Wald test based on the robust estimator of variance is.

Thus if we treated these data as sample-weighted data, we would obtain

```
. generate one = 1
. stset t1 [pw=one], id(id) time0(_t0) failure(died) noshow
 id: id
 failure event: died != 0 & died < .
 obs. time interval: (_t0, t1]
 exit on or before: failure
 weight: [pweight=one]

172 total observations
0 exclusions
```

```
172 observations remaining, representing
103 subjects
75 failures in single-failure-per-subject data
31938.1 total analysis time at risk and under observation
 at risk from t = 0
 earliest observed entry t = 0
 last observed exit t = 1799
```
sts test posttran, cox

**Cox regression-based test for equality of survival curves**

<table>
<thead>
<tr>
<th>posttran</th>
<th>Events observed</th>
<th>Events expected</th>
<th>Relative hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30.00</td>
<td>31.20</td>
<td>0.9401</td>
</tr>
<tr>
<td>1</td>
<td>45.00</td>
<td>43.80</td>
<td>1.0450</td>
</tr>
<tr>
<td>Total</td>
<td>75.00</td>
<td>75.00</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Wald chi2(1) = 0.13
Pr>chi2 = 0.7181

sts test, cox now reports the Wald statistic, which is, to two digits, 0.13, just like all the others.

**The trend test**

When the groups to be compared have a natural order, such as increasing or decreasing age groups or drug dosage, you may want to test the null hypothesis that there is no difference in failure rate among the groups versus the alternative hypothesis that the failure rate increases or decreases as you move from one group to the next.

We illustrate this test with a dataset from a carcinogenesis experiment reprinted in Marubini and Valsecchi (1995, 126). Twenty-nine experimental animals were exposed to three levels (0, 1.5, 2.0) of a carcinogenic agent. The time in days to tumor formation was recorded. Here are a few of the observations:

```
. use http://www.stata-press.com/data/r13/marubini, clear
. list time event group dose in 1/9
```

<table>
<thead>
<tr>
<th>time</th>
<th>event</th>
<th>group</th>
<th>dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>47</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>75</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>58</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>136</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>58</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>150</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>43</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

In these data, there are two variables that indicate exposure level. The group variable is coded 1, 2, and 3, indicating a one-unit separation between exposures. The dose variable records the actual exposure dosage. To test the null hypothesis of no difference among the survival experience of the three groups versus the alternative hypothesis that the survival experience of at least one of the groups is different, it does not matter if we use group or dose.
. stset time, fail(event) noshow
    failure event: event != 0 & event < .
obs. time interval: (0, time]
exit on or before: failure

29 total observations
0 exclusions

29 observations remaining, representing
15 failures in single-record/single-failure data
2564 total analysis time at risk and under observation
at risk from t = 0
earliest observed entry t = 0
last observed exit t = 246

. sts test group

Log-rank test for equality of survivor functions

<table>
<thead>
<tr>
<th>group</th>
<th>Events observed</th>
<th>Events expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>6.41</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>6.80</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1.79</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>15.00</td>
</tr>
</tbody>
</table>

chi2(2) = 8.05
Pr>chi2 = 0.0179

. sts test dose

Log-rank test for equality of survivor functions

<table>
<thead>
<tr>
<th>dose</th>
<th>Events observed</th>
<th>Events expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>6.41</td>
</tr>
<tr>
<td>1.5</td>
<td>6</td>
<td>6.80</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1.79</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>15.00</td>
</tr>
</tbody>
</table>

chi2(2) = 8.05
Pr>chi2 = 0.0179

For the trend test, however, the distance between the values is important, so using group or dose will produce different results.
. ststest group, trend

**Log-rank test for equality of survivor functions**

<table>
<thead>
<tr>
<th>group</th>
<th>observed</th>
<th>expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>6.41</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>6.80</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1.79</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>15.00</td>
</tr>
</tbody>
</table>

chisq(2) = 8.05
Pr>chisq = 0.0179

Test for trend of survivor functions
chisq(1) = 5.87
Pr>chisq = 0.0154

. ststest dose, trend

**Log-rank test for equality of survivor functions**

<table>
<thead>
<tr>
<th>dose</th>
<th>observed</th>
<th>expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>6.41</td>
</tr>
<tr>
<td>1.5</td>
<td>6</td>
<td>6.80</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1.79</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>15.00</td>
</tr>
</tbody>
</table>

chisq(2) = 8.05
Pr>chisq = 0.0179

Test for trend of survivor functions
chisq(1) = 3.66
Pr>chisq = 0.0557

Although the above trend test was constructed using the log-rank test, any of the previously mentioned weight functions can be used. For example, a trend test on the data can be performed using the same weights as the Peto–Peto–Prentice test by specifying the peto option.

. ststest dose, trend peto

**Peto-Peto test for equality of survivor functions**

<table>
<thead>
<tr>
<th>dose</th>
<th>observed</th>
<th>expected</th>
<th>Sum of ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>6.41</td>
<td>-1.2792221</td>
</tr>
<tr>
<td>1.5</td>
<td>6</td>
<td>6.80</td>
<td>-1.3150418</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1.79</td>
<td>2.5942639</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>15.00</td>
<td>0</td>
</tr>
</tbody>
</table>

chisq(2) = 8.39
Pr>chisq = 0.0150

Test for trend of survivor functions
chisq(1) = 2.85
Pr>chisq = 0.0914
Stored results

\texttt{sts test} stores the following in \texttt{r()}: 

<table>
<thead>
<tr>
<th>Scalars</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{r(df)}</td>
<td>degrees of freedom</td>
</tr>
<tr>
<td>\texttt{r(df-tr)}</td>
<td>degrees of freedom, trend test</td>
</tr>
<tr>
<td>\texttt{r(chi2)}</td>
<td>( \chi^2 )</td>
</tr>
<tr>
<td>\texttt{r(chi2-tr)}</td>
<td>( \chi^2 ), trend test</td>
</tr>
</tbody>
</table>

Methods and formulas

Let \( t_1 < t_2 < \cdots < t_k \) denote the ordered failure times; let \( d_j \) be the number of failures at \( t_j \) and \( n_j \) be the population at risk just before \( t_j \); and let \( d_{ij} \) and \( n_{ij} \) denote the same things for group \( i, \ i = 1, \ldots, r \).

We are interested in testing the null hypothesis

\[ H_0: \lambda_1(t) = \lambda_2(t) = \cdots = \lambda_r(t) \]

where \( \lambda(t) \) is the hazard function at time \( t \), against the alternative hypothesis that at least one of the \( \lambda_i(t) \) is different for some \( t_j \).

As described in Klein and Moeschberger (2003, 205–216), Kalbfleisch and Prentice (2002, 20–22), and Collett (2003, 48–49), if the null hypothesis is true, the expected number of failures in group \( i \) at time \( t_j \) is \( e_{ij} = n_{ij}d_j/n_j \), and the test statistic

\[ u' = \sum_{j=1}^{k} W(t_j)(d_{1j} - e_{1j}, \ldots, d_{rj} - e_{rj}) \]

is formed. \( W(t_j) \) is a positive weight function defined as zero when \( n_{ij} \) is zero. The various test statistics are obtained by selecting different weight functions, \( W(t_j) \). See the table in the Remarks and examples section of this entry for a list of these weight functions. For the Peto–Peto–Prentice test,

\[ W(t_j) = S(t_j) = \prod_{\ell: t_\ell \leq t_j} \left(1 - \frac{d_\ell}{n_\ell + 1}\right) \]

The variance matrix \( V \) for \( u \) has elements

\[ V_{il} = \sum_{j=1}^{k} \frac{W(t_j)^2 n_{ij}d_j(n_j - d_j)}{n_j(n_j - 1)} \left(\delta_{il} - \frac{n_{ij}}{n_j}\right) \]

where \( \delta_{il} = 1 \) if \( i = l \) and \( \delta_{il} = 0 \), otherwise.

For the unstratified test, statistic \( u'V^{-1}u \) is distributed as \( \chi^2 \) with \( r - 1 \) degrees of freedom.

For the stratified test, let \( u_s \) and \( V_s \) be the results of performing the above calculation separately within stratum, and define \( u = \sum_s u_s \) and \( V = \sum_s V_s \). The \( \chi^2 \) test is given by \( u'V^{-1}u \) redefined in this way.

The “Cox” test is performed by fitting a (possibly stratified) Cox regression using \texttt{stcox} on \( r - 1 \) indicator variables, one for each group with one of the indicators omitted. The \( \chi^2 \) test reported is then the likelihood-ratio test (no \texttt{pweights}) or the Wald test (based on the robust estimate of variance); see [ST] \texttt{stcox}. 
The reported relative hazards are the exponentiated coefficients from the Cox regression renormalized, and the renormalization plays no role in calculating the test statistic. The renormalization is chosen so that the expected-number-of-failures-within-group weighted average of the regression coefficients is 0 (meaning that the hazard is 1). Let $b_i$, $i = 1, \ldots, r - 1$, be the estimated coefficients, and define $b_r = 0$. The constant $K$ is then calculated with

$$K = \sum_{i=1}^{r} e_i b_i / d$$

where $e_i = \sum_j e_{ij}$ is the expected number of failures for group $i$, $d$ is the total number of failures across all groups, and $r$ is the number of groups. The reported relative hazards are $\exp(b_i - K)$.

The trend test assumes that there is natural ordering of the $r$ groups, $r > 2$. Here we are interested in testing the null hypothesis

$$H_0: \lambda_1(t) = \lambda_2(t) = \cdots = \lambda_r(t)$$

against the alternative hypothesis

$$H_a: \lambda_1(t) \leq \lambda_2(t) \leq \cdots \leq \lambda_r(t)$$

The test uses $u$ as previously defined with any of the available weight functions. The test statistic is given by

$$\left( \sum_{i=1}^{r} a_i u_i \right)^2 / a^\prime Va$$

where $a_1 \leq a_2 \leq \cdots \leq a_r$ are scores defining the relationship of interest. A score is assigned to each comparison group, equal to the value of the grouping variable for that group. $a$ is the vector of these scores.

References


---

**Also see**

[ST] `stcox` — Cox proportional hazards model

[ST] `sts` — Generate, graph, list, and test the survivor and cumulative hazard functions

[ST] `sts generate` — Create variables containing survivor and related functions

[ST] `sts graph` — Graph the survivor, hazard, or cumulative hazard function

[ST] `sts list` — List the survivor or cumulative hazard function

[ST] `stset` — Declare data to be survival-time data


### Title

**stset — Declare data to be survival-time data**

#### Syntax

Options for use with stset and streset

Menu Options unique to streset

Remarks and examples

Description Options for st

References Also see

#### Syntax

**Single-record-per-subject survival data**

\[ \text{stset timevar [if] [weight] [, single_options]} \]

\[ \text{streset [if] [weight] [, single_options]} \]

\[ \text{st [, nocmd notable]} \]

\[ \text{stset, clear} \]

**Multiple-record-per-subject survival data**

\[ \text{stset timevar [if] [weight], id(idvar) failure(failvar[==numlist])} \]

\[ \text{multiple_options} \]

\[ \text{streset [if] [weight] [, multiple_options]} \]

\[ \text{streset, {past|future|past future}} \]

\[ \text{st [, nocmd notable]} \]

\[ \text{stset, clear} \]

**single_options**

#### Description

**Main**

- **failure(failvar[==numlist])** failure event
- **noshow** prevent other st commands from showing st setting information

**Options**

- **origin(time exp)** define when a subject becomes at risk
- **scale(#)** rescale time value
- **enter(time exp)** specify when subject first enters study
- **exit(time exp)** specify when subject exits study

**Advanced**

- **if(exp)** select records for which exp is true; recommended rather than if exp
- **time0(varname)** mechanical aspect of interpretation about records in dataset; seldom used

459
### stset — Declare data to be survival-time data

**multiple_options**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
</tr>
<tr>
<td>* id(idvar)</td>
</tr>
<tr>
<td>* failure(failvar[==numlist])</td>
</tr>
<tr>
<td>noshow</td>
</tr>
</tbody>
</table>

**Options**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>origin([varname==numlist] time exp</td>
</tr>
<tr>
<td>scale(#)</td>
</tr>
<tr>
<td>enter([varname==numlist] time exp)</td>
</tr>
<tr>
<td>exit(failure</td>
</tr>
<tr>
<td>[varname==numlist] time exp)</td>
</tr>
</tbody>
</table>

**Advanced**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>if(exp)</td>
</tr>
<tr>
<td>ever(exp)</td>
</tr>
<tr>
<td>never(exp)</td>
</tr>
<tr>
<td>after(exp)</td>
</tr>
<tr>
<td>before(exp)</td>
</tr>
<tr>
<td>time0(varname)</td>
</tr>
</tbody>
</table>

* id() and failure() are required with stset multiple-record-per-subject survival data.

**Examples**

- `. stset ftime` (time measured from 0, all failed)
- `. stset ftime, failure(died)` (time measured from 0, censoring)
- `. stset ftime, failure(died) id(id)` (time measured from 0, censoring & ID)
- `. stset ftime, failure(died==2,3)` (time measured from 0, failure codes)
- `. stset ftime, failure(died) origin(time dob)` (time measured from dob, censoring)

You cannot harm your data by using stset, so feel free to experiment.

**Menu**

Statistics > Survival analysis > Setup and utilities > Declare data to be survival-time data

### Description

st refers to survival-time data, which are fully described below.

stset declares the data in memory to be st data, informing Stata of key variables and their roles in a survival-time analysis. When you stset your data, stset runs various data consistency checks to ensure that what you have declared makes sense. If the data are weighted, you specify the weights when you stset the data, not when you issue the individual st commands.
stset changes how the st dataset is declared. In multiple-record data, streset can also temporarily set the sample to include records from before the time at risk (called the past) and records after failure (called the future). Then typing streset without arguments resets the sample back to the analysis sample.

st displays how the dataset is currently declared. Whenever you type stset or streset, Stata runs or reruns data consistency checks to ensure that what you are now declaring (or declared in the past) makes sense. Thus if you have made any changes to your data or simply wish to verify how things are, you can type streset with no options.

stset, clear is for use by programmers. It causes Stata to forget the st markers, making the data no longer st data to Stata. The data remain unchanged. It is not necessary to stset, clear before doing another stset.

Options for use with stset and streset

Main

- id(idvar) specifies the subject-ID variable; observations with equal, nonmissing values of idvar are assumed to be the same subject. idvar may be string or numeric. Observations for which idvar is missing (., or "") are ignored.
  
  When id() is not specified, each observation is assumed to represent a different subject and thus constitutes a one-record-per-subject survival dataset.
  
  When you specify id(), the data are said to be multiple-record data, even if it turns out that there is only one record per subject. Perhaps they would better be called potentially multiple-record data.
  
  If you specify id(), stset requires that you specify failure().
  
  Specifying id() never hurts; we recommend it because a few st commands, such as stsplit, require an ID variable to have been specified when the dataset was stset.

- failure(failvar[==numlist]) specifies the failure event.
  
  If failure() is not specified, all records are assumed to end in failure. This is allowed with single-record data only.
  
  If failure(failvar) is specified, failvar is interpreted as an indicator variable; 0 and missing mean censored, and all other values are interpreted as representing failure.
  
  If failure(failvar==numlist) is specified, records with failvar taking on any of the values in numlist are assumed to end in failure, and all other records are assumed to be censored.

- noshow prevents other st commands from showing the key st variables at the top of their output.

Options

- origin([varname==numlist] time exp | min) and scale(#) define analysis time; that is, origin() defines when a subject becomes at risk. Subjects become at risk when time = origin(). All analyses are performed in terms of time since becoming at risk, called analysis time.
  
  Let us use the terms time for how time is recorded in the data and $t$ for analysis time. Analysis time $t$ is defined

  $$ t = \frac{\text{time} - \text{origin()}}{\text{scale()}} $$

  $t$ is time from origin in units of scale.
By default, \texttt{origin(time 0)} and \texttt{scale(1)} are assumed, meaning that $t = \textit{time}$. Then you must ensure that \textit{time} in your data is measured as time since becoming at risk. Subjects are exposed at $t = \textit{time} = 0$ and later fail. Observations with $t = \textit{time} \leq 0$ are ignored because information before becoming at risk is irrelevant.

\texttt{origin()} determines when the clock starts ticking. \texttt{scale()} plays no substantive role, but it can be handy for making $t$ units more readable (such as converting days to years).

\texttt{origin(time \textit{exp})} sets the origin to \textit{exp}. For instance, if \textit{time} were recorded as dates, such as 05jun1998, in your data and variable \texttt{expdate} recorded the date when subjects were exposed, you could specify \texttt{origin(time expdate)}. If instead all subjects were exposed on 12nov1997, you could specify \texttt{origin(time mdy(11,12,1997)).}

\texttt{origin(time \textit{exp})} may be used with single- or multiple-record data.

\texttt{origin(varname==numlist)} is for use with multiple-record data; it specifies the origin indirectly. If \textit{time} were recorded as dates in your data, variable \texttt{obsdate} recorded the (ending) date associated with each record, and subjects became at risk upon, say, having a certain operation—and that operation were indicated by \texttt{code==217}—then you could specify \texttt{origin(code==217)}. \texttt{origin(code==217)} would mean, for each subject, that the origin time is the earliest time at which \texttt{code==217} is observed. Records before that would be ignored (because $t < 0$). Subjects who never had \texttt{code==217} would be ignored entirely.

\texttt{origin(varname==numlist time \textit{exp})} sets the origin to the later of the two times determined by \texttt{varname==numlist} and \textit{exp}.

\texttt{origin(min)} sets origin to the earliest time observed, minus 1. This is an odd thing to do and is described in example 10.

\texttt{origin()} is an important concept; see \textit{Key concepts, Two concepts of time}, and \textit{The substantive meaning of analysis time}.

\texttt{scale()} makes results more readable. If you have \textit{time} recorded in days (such as Stata dates, which are really days since 01jan1960), specifying \texttt{scale(365.25)} will cause results to be reported in years.

\texttt{enter([varname==numlist] time \textit{exp})} specifies when a subject first comes under observation, meaning that any failures, were they to occur, would be recorded in the data.

Do not confuse \texttt{enter()} and \texttt{origin()}. \texttt{origin()} specifies when a subject first becomes at risk. In many datasets, becoming at risk and coming under observation are coincident. Then it is sufficient to specify \texttt{origin()}.

\texttt{enter(time \textit{exp}), enter(varname==numlist), and enter(varname==numlist time \textit{exp})} follow the same syntax as \texttt{origin()}. In multiple-record data, both \texttt{varname==numlist} and \textit{time \textit{exp}} are interpreted as the earliest time implied, and if both are specified, the later of the two times is used.

\texttt{exit(failure | [varname==numlist] time \textit{exp})} specifies the latest time under which the subject is both under observation and at risk. The emphasis is on latest; obviously, subjects also exit the risk pool when their data run out.

\texttt{exit(failure) is the default. When the first failure event occurs, the subject is removed from the analysis risk pool, even if the subject has subsequent records in the data and even if some of those subsequent records document other failure events. Specify exit(time .) if you wish to keep all records for a subject after failure. You want to do this if you have multiple-failure data.}

\texttt{exit(varname==numlist), exit(time \textit{exp}), and exit(varname==numlist time \textit{exp})} follow the same syntax as \texttt{origin()} and \texttt{enter()}. In multiple-record data, both \texttt{varname==numlist} and
time \( exp \) are interpreted as the earliest time implied. \texttt{exit} differs from \texttt{origin()} and \texttt{enter()} in that if both are specified, the earlier of the two times is used.

\[
\textbf{Advanced}
\]

\[
\text{\texttt{if(\)}} \texttt{exp}, \text{\texttt{ever(\)}} \texttt{exp}, \text{\texttt{never(\)}} \texttt{exp}, \text{\texttt{after(\)}} \texttt{exp}, \text{\texttt{and before(\)}} \texttt{exp} \texttt{select relevant records.}
\]

\[
\text{\texttt{if(\)}} \texttt{exp} \texttt{selects records for which \texttt{exp} is true. We strongly recommend specifying this \texttt{if()} option rather than \texttt{if \texttt{exp}} following \texttt{stset} or \texttt{streset}. They differ in that \texttt{if \texttt{exp}} removes the data from consideration before calculating beginning and ending times and other quantities. The \texttt{if()} option, on the other hand, sets the restriction after all derived variables are calculated. See \texttt{if()} versus \texttt{if exp}.}
\]

\[
\text{\texttt{if()} may be specified with single- or multiple-record data. The remaining selection options are for use with multiple-record data only.}
\]

\[
\text{\texttt{ever(\)}} \texttt{exp} \texttt{selects only subjects for which \texttt{exp} is ever true.}
\]

\[
\text{\texttt{never(\)}} \texttt{exp} \texttt{selects only subjects for which \texttt{exp} is never true.}
\]

\[
\text{\texttt{after(\)}} \texttt{exp} \texttt{selects records within subject on or after the first time \texttt{exp} is true.}
\]

\[
\text{\texttt{before(\)}} \texttt{exp} \texttt{selects records within subject before the first time \texttt{exp} is true.}
\]

\[
\text{\texttt{time0(\)}} \texttt{varname} \texttt{is seldom specified because most datasets do not contain this information. \texttt{time0()} should be used exclusively with multiple-record data, and even then you should consider whether \texttt{origin()} or \texttt{enter()} would be more appropriate.}
\]

\[
\text{\texttt{time0()} specifies a mechanical aspect of interpretation about the records in the dataset, namely, the beginning of the period spanned by each record. See \textit{Intermediate exit and reentry times (gaps)}.}
\]

**Options unique to streset**

\[
\text{\texttt{past} expands the \texttt{stset} sample to include the entire recorded past of the relevant subjects, meaning that it includes observations before becoming at risk and those excluded because of \texttt{after()}, etc.}
\]

\[
\text{\texttt{future} expands the \texttt{stset} sample to include the records on the relevant subjects after the last record that previously was included, if any, which typically means to include all observations after failure or censoring.}
\]

\[
\text{\texttt{past future} expands the \texttt{stset} sample to include all records on the relevant subjects.}
\]

\[
\text{Typing \texttt{streset} without arguments resets the sample to the analysis sample. See \textit{Past and future records} for more information.}
\]

**Options for st**

\[
\text{\texttt{nocmd} suppresses displaying the last \texttt{stset} command.}
\]

\[
\text{\texttt{notable} suppresses displaying the table summarizing what has been \texttt{stset}.}
\]
Remarks and examples

Remarks are presented under the following headings:

- What are survival-time data?
- Key concepts
- Survival-time datasets
- Using stset
- Two concepts of time
- The substantive meaning of analysis time
- Setting the failure event
- Setting multiple failures
- First entry times
- Final exit times
- Intermediate exit and reentry times (gaps)
- if() versus if exp
- Past and future records
- Using streset
- Performance and multiple-record-per-subject datasets
- Sequencing of events within t
- Weights
- Data warnings and errors flagged by stset
- Using survival-time data in Stata

What are survival-time data?

Survival-time data—what we call st data—document spans of time ending in an event. For instance,

\[ \begin{align*}
  x_1 &= 17 \\
  x_2 &= 22
\end{align*} \]

which indicates \( x_1 = 17 \) and \( x_2 = 22 \) over the time span \( 0 \) to \( 9 \), and \( \text{died} = 1 \). More formally, it means \( x_1 = 17 \) and \( x_2 = 22 \) for \( 0 < t \leq 9 \), which we often write as \( (0, 9] \). However you wish to say it, this information might be recorded by the observation

\[
\begin{array}{ccccc}
  \text{id} & \text{end} & x_1 & x_2 & \text{died} \\
  101 & 9 & 17 & 22 & 1
\end{array}
\]

and we call this single-record survival data.

The data can be more complicated. For instance, we might have

\[ \begin{align*}
  x_1 &= 17 \\
  x_2 &= 22
\end{align*} \] and \[ \begin{align*}
  x_1 &= 12 \\
  x_2 &= 22
\end{align*} \]

meaning

\[ x_1 = 17 \text{ and } x_2 = 22 \text{ during } (0, 4] \]
\[ x_1 = 12 \text{ and } x_2 = 22 \text{ during } (4, 9], \text{ and then } \text{died} = 1. \]

and this would be recorded by the data

\[
\begin{array}{ccccc}
  \text{id} & \text{begin} & \text{end} & x_1 & x_2 & \text{died} \\
  101 & 0 & 4 & 17 & 22 & 0 \\
  101 & 4 & 9 & 12 & 22 & 1
\end{array}
\]

We call this multiple-record survival data.
These two formats allow you to record many different possibilities. The last observation on a person need not be failure,

\[
\begin{array}{cccc}
0 & 9 & x_1=17 & x_2=22 \\
\text{id} & \text{end} & x_1 & x_2 & \text{died} \\
101 & 9 & 17 & 22 & 0
\end{array}
\]

\[
\begin{array}{cccc}
0 & 9 & x_1=17 & x_2=22 \\
\text{id} & \text{end} & x_1 & x_2 & \text{died} \\
101 & 4 & 9 & 12 & 22 & 0
\end{array}
\]

or

\[
\begin{array}{cccc}
0 & 4 & x_1=17 & x_2=22 \\
\text{id} & \text{begin} & x_1 & x_2 & \text{died} \\
101 & 0 & 4 & 17 & 22 & 0
\end{array}
\]

\[
\begin{array}{cccc}
0 & 9 & x_1=17 & x_2=22 \\
\text{id} & \text{begin} & x_1 & x_2 & \text{died} \\
101 & 4 & 9 & 12 & 22 & 0
\end{array}
\]

Multiple-record data might have gaps,

\[
\begin{array}{cccc}
0 & 4 & x_1=17 & x_2=22 \\
\text{id} & \text{begin} & x_1 & x_2 & \text{died} \\
101 & 0 & 4 & 17 & 22 & 0
\end{array}
\]

\[
\begin{array}{cccc}
9 & 14 & x_1=17 & x_2=22 \\
\text{id} & \text{begin} & x_1 & x_2 & \text{died} \\
101 & 9 & 14 & 12 & 22 & 1
\end{array}
\]

or subjects might not be observed from the onset of risk,

\[
\begin{array}{cccc}
0 & 2 & x_1=17 & x_2=22 \\
\text{begin} & \text{end} & x_1 & x_2 & \text{died} \\
2 & 9 & 17 & 22 & 1
\end{array}
\]

and

\[
\begin{array}{cccc}
0 & 1 & x_1=17 & x_2=22 \\
\text{id} & \text{begin} & x_1 & x_2 & \text{died} \\
101 & 1 & 4 & 17 & 22 & 0
\end{array}
\]

\[
\begin{array}{cccc}
0 & 9 & x_1=17 & x_2=22 \\
\text{id} & \text{begin} & x_1 & x_2 & \text{died} \\
101 & 4 & 9 & 12 & 22 & 1
\end{array}
\]
The failure event might not be death but instead something that can be repeated:

```
 1st
infarction
 x1=17
 x2=22
<-------------------------->
 0 4
 9 13
 t
```

```
 2nd
infarction
 x1=10
 x2=22
<-------------------------->

id begin end x1 x2 infarc
101 0 4 17 22 1
101 4 9 12 22 0
101 9 13 10 22 1
```

Our data may be in different time units; rather than $t$ where $t = 0$ corresponds to the onset of risk, we might have time recorded as age,

```
20 29
<-------------------------->

id age0 age1 x1 x2 died
101 20 29 17 22 1
```

or time recorded as calendar dates:

```
 01jan1998 02may1998 15oct1998
<-------------------------->

id bdate edate x1 x2 died
101 01jan1998 02may1998 17 22 0
101 02may1998 15oct1998 12 22 1
```

Finally, we can mix these diagrams however we wish, so we might have time recorded according to the calendar, unobserved periods after the onset of risk, subsequent gaps, and multiple failure events.

The \texttt{st} commands analyze data like these, and the first step is to tell \texttt{st} about your data by using \texttt{stset}. You do not change your data to fit some predefined mold; you describe your data with \texttt{stset}, and the rest of the \texttt{st} commands just do the right thing.

Before we discuss using \texttt{stset}, let’s describe one more style of recording time-to-event data because it is common and is inappropriate for use with \texttt{st}. It is inappropriate, but it is easy to convert to the survival-time form. It is called snapshot data, which are data for which you do not know spans of time but you have information recorded at various points in time:

```
 (unobserved) (unobserved)
<-------------------------->

id t x1 x2 died
101 0 17 22 0
101 4 12 22 0
101 9 . 22 1
```
In this snapshot dataset all we know are the values of $x_1$ and $x_2$ at $t = 0$ and $t = 4$, and we know that the subject died at $t = 9$. Snapshot data can be converted to survival-time data if we are willing to assume that $x_1$ and $x_2$ remained constant between times:

\[
\begin{array}{c}
| x_1=17 & x_2=22 | \text{died} \\
0 & \rightarrow & 4 \\
| x_1=12 & x_2=22 |
\end{array}
\]

The `snapspan` command makes this conversion. If you have snapshot data, first see [ST] `snapspan` to convert it to survival-time data and then use `stset` to tell Stata about the converted data; see example 10 first.

**Key concepts**

*time*, or better, *time units*, is how time is recorded in your data. It might be numbers (such as 0, 1, 2, \ldots, with time = 0 corresponding to some exposure event), a subject’s age, or calendar time.

*events* are things that happen at an instant in time, such as being exposed to an environmental hazard, being diagnosed as myopic, becoming employed, being promoted, becoming unemployed, having a heart attack, and dying.

*failure event* is the event indicating failure as it is defined for analysis. This can be a single or compound event. The failure event might be when variable `dead` is 1, or it might be when variable `diag` is any of 115, 121, or 133.

*at risk* means the subject is at risk of the failure event occurring. For instance, if the failure event is becoming unemployed, a person must be employed. The subject is not at risk before being employed. Once employed, the subject becomes at risk; once again, the subject is no longer at risk once the failure event occurs. If subjects become at risk upon the occurrence of some event, it is called the exposure event. Gaining employment is the exposure event in our example.

*origin* is the time when the subject became at risk. If time is recorded as numbers such as 0, 1, 2, \ldots, with time = 0 corresponding to the exposure event, then origin = 0. Alternatively, origin might be the age of the subject when diagnosed or the date when the subject was exposed. Regardless, origin is expressed in time units.

*scale* is just a fixed number, typically 1, used in mapping time to analysis time $t$.

$t$, or *analysis time*, is $(time - origin)/scale$, meaning the time since onset of being at risk measured in scale units.

$t = 0$ corresponds to the onset of risk, and scale just provides a way to make the units of $t$ more readable. You might have time recorded in days from 01jan1960 and want $t$ recorded in years, in which case scale would be 365.25.

Time is how time is recorded in your data, and $t$ is how time is reported in the analysis.

*under observation* means that, should the failure event occur, it would be observed and recorded in the data. Sometimes subjects are under observation only after they are at risk. This would be the case, for instance, if subjects enrolled in a study after being diagnosed with cancer and if, to enroll in the study, subjects were required to be diagnosed with cancer.
Being under observation does not mean that the subject is necessarily at risk. A subject may come under observation before being at risk, and in fact, a subject under observation may never become at risk.

**entry time** and **exit time** mark when a subject is first and last under observation. The emphasis here is on the words *first* and *last*; entry time and exit time do not record observational gaps; there is only one entry time and one exit time per subject.

Entry time and exit time might be expressed as times (recorded in time units), or they might correspond to the occurrence of some event (such as enrolling in the study).

Often the entry time corresponds to $t = 0$; that is, because $t = (\text{time} - \text{origin}) / \text{scale}$, time $= \text{origin}$, meaning that time equals when the subject became at risk.

Often the exit time corresponds to when the failure event occurs or, failing that, the end of data for the subject.

**delayed entry** means that entry time corresponds to $t > 0$; the subject became at risk before coming under observation.

**ID** refers to a subject identification variable; equal values of ID indicate that the records are on the same subject. An ID variable is required for multiple-record data and is optional, but recommended, with single-record data.

**time0** refers to the beginning time (recorded in time units) of a record. Some datasets have this variable, but most do not. If the dataset does not contain the beginning time for each record, subsequent records are assumed to begin where previous records ended. A time0 variable may be created for these datasets by using the **snapspan** command; see [ST] snapspan. Do not confuse time0—a mechanical aspect of datasets—with entry time—a substantive aspect of analysis.

**gaps** refer to gaps in observation between entry time and exit time. During a gap, a subject is not under observation. Gaps can arise only if the data contain a time0 variable, because otherwise subsequent records beginning when previous records end would preclude there being gaps in the data. Gaps are distinct from delayed entry.

**past history** is a term we use to mean information recorded in the data before the subject was both at risk and under observation. Complex datasets can contain such observations. Say that the dataset contains histories on subjects from birth to death. You might tell st that a subject becomes at risk once diagnosed with a particular kind of cancer. The past history on the subject would then refer to records before the subject was diagnosed.

The word **history** is often dropped, and the term simply becomes **past**. For instance, we might want to know whether the subject smoked in the past.

**future history** is a term meaning information recorded in the data after the subject is no longer at risk. Perhaps the failure event is not so serious as to preclude the possibility of data after failure.

The word **history** is often dropped, and the term simply becomes **future**. Perhaps the failure event is cardiac infarction, and you want to know whether the subject died soon in the future so that you can exclude the subject.

### Survival-time datasets

In survival-time datasets, observations (records) document a span of time. The span might be explicitly indicated, such as

<table>
<thead>
<tr>
<th>begin</th>
<th>end</th>
<th>x1</th>
<th>x2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9</td>
<td>17</td>
<td>22</td>
</tr>
</tbody>
</table>

$\text{<- spans (3,9)}$
or it might be implied that the record begins at 0,

\[
\begin{array}{cccc}
\text{end} & x_1 & x_2 & \text{<- spans (0,9]} \\
9 & 17 & 22 & \\
\end{array}
\]

or it might be implied because there are multiple records per subject:

\[
\begin{array}{cccc}
\text{id} & \text{end} & x_1 & x_2 & \text{<- spans (0,4]} \\
1 & 4 & 17 & 22 & \\
1 & 9 & 12 & 22 & \\
\end{array}
\]

Records may have an event indicator:

\[
\begin{array}{cccc}
\text{begin} & \text{end} & x_1 & x_2 & \text{died} & \text{<- spans (3,9], died at t=9} \\
3 & 9 & 17 & 22 & 1 & \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{end} & x_1 & x_2 & \text{died} & \text{<- spans (0,9], died at t=9} \\
9 & 17 & 22 & 1 & \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{id} & \text{end} & x_1 & x_2 & \text{died} & \text{<- spans (0,4]}, \\
1 & 4 & 17 & 22 & 0 & \text{<- spans (4,9], died at t=9} \\
1 & 9 & 12 & 22 & 1 & \\
\end{array}
\]

The first two examples are called single-record survival-time data because there is one record per subject.

The final example is called multiple-record survival-time data. There are two records for the subject with \text{id} = 1.

Either way, survival-time data document time spans. Characteristics are assumed to remain constant over the span, and the event is assumed to occur at the end of the span.

**Using stset**

Once you have \text{stset} your data, you can use the other \text{st} commands.

If you save your data after \text{stsetting}, you will not have to re-\text{stset} in the future; Stata will remember.

\text{stset} declares your data to be survival-time data. It does not change the data, although it does add a few variables to your dataset.

This means that you can re-\text{stset} your data as often as you wish. In fact, the \text{streset} command encourages this. Using complicated datasets often requires typing long \text{stset} commands, such as

\[
. \text{stset date, fail(event==27 28) origin(event==15) enter(event==22)}
\]

Later, you might want to try \text{fail(event==27)}. You could retype the \text{stset} command, making the substitution, or you could type

\[
. \text{streset, fail(event==27)}
\]

\text{streset} takes what you type, merges it with what you have previously declared with \text{stset}, and performs the combined \text{stset} command.
Example 1: Single-record data

Generators are run until they fail. Here is some of our dataset:

```
. use http://www.stata-press.com/data/r13/kva
(Generator experiment)
. list in 1/3
```

<table>
<thead>
<tr>
<th>failtime</th>
<th>load</th>
<th>bearings</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>140</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>97</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>

The `stset` command for this dataset is

```
. stset failtime
 failure event: (assumed to fail at time=failtime)
 obs. time interval: (0, failtime]
 exit on or before: failure
```

- 12 total observations
- 0 exclusions

- 12 observations remaining, representing
- 12 failures in single-record/single-failure data
- 896 total analysis time at risk and under observation
  - at risk from $t = 0$
  - earliest observed entry $t = 0$
  - last observed exit $t = 140$

When you type `stset timevar`, `timevar` is assumed to be the time of failure. More generally, you will learn, `timevar` is the time of failure or censoring. Here `timevar` is `failtime`.

Example 2: Single-record data with censoring

Generators are run until they fail, but during the experiment, the room flooded, so some generators were run only until the flood. Here are some of our data:

```
. use http://www.stata-press.com/data/r13/kva2
(Generator experiment)
. list in 1/4
```

<table>
<thead>
<tr>
<th>failtime</th>
<th>load</th>
<th>bearings</th>
<th>failed</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>15</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>140</td>
<td>15</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>97</td>
<td>20</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>122</td>
<td>20</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Here the second generator did not fail at time 140; the experiment was merely discontinued then. The `stset` command for this dataset is
. stset failtime, failure(failed)
    failure event:  failed != 0 & failed < .
obs. time interval:  (0, failtime]
exit on or before:  failure

12  total observations
0  exclusions

12  observations remaining, representing
11  failures in single-record/single-failure data
896  total analysis time at risk and under observation
    at risk from t = 0
    earliest observed entry t = 0
    last observed exit t = 140

When you type stset *timevar*, failure(*failvar*), *timevar* is interpreted as the time of failure or censoring, which is determined by the value of *failvar*. *failvar* = 0 and *failvar* = . (missing) indicate censorings, and all other values indicate failure.

Example 3: Multiple-record data

Assume that we are analyzing survival time of patients with a particular kind of cancer. In this dataset, the characteristics of patients vary over time, perhaps because new readings were taken or because the drug therapy was changed. Some of the data are

. list, separator(0)

<table>
<thead>
<tr>
<th>patid</th>
<th>t</th>
<th>died</th>
<th>x1</th>
<th>x2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>90</td>
<td>100</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>90</td>
<td>150</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>91</td>
<td>50</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>92</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>92</td>
<td>150</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6.</td>
<td>92</td>
<td>190</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>93</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(output omitted)

There are two records for patient 90, and *died* is 0 in the first record but 1 in the second. The interpretation of these two records is

- **Interval (0,100]:**  \( x_1 = 1 \) and \( x_2 = 0 \)
- **Interval (100,150]:** \( x_1 = 0 \) and \( x_2 = 0 \)
- **at t = 150:** the patient died

Similarly, here is how you interpret the other records:

- **Patient 91:**
  - **Interval (0, 50]:** \( x_1 = 1 \) and \( x_2 = 1 \)
  - **at t = 50:** the patient died

- **Patient 92:**
  - **Interval (0,100]:** \( x_1 = 0 \) and \( x_2 = 0 \)
  - **Interval (100,150]:** \( x_1 = 0 \) and \( x_2 = 1 \)
  - **Interval (150,190]:** \( x_1 = 0 \) and \( x_2 = 0 \)
  - **at t = 190:** the patient was lost because of censoring
Look again at patient 92’s data:

<table>
<thead>
<tr>
<th>patid</th>
<th>t</th>
<th>died</th>
<th>x1</th>
<th>x2</th>
</tr>
</thead>
<tbody>
<tr>
<td>92</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>92</td>
<td>150</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>92</td>
<td>190</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

died = 0 for the first event. Mechanically, this removes the subject from the data at t = 100—the patient is treated as censored. The next record, however, adds the patient back into the data (at t = 100) with new characteristics.

The stset command for this dataset is

```
. stset t, id(patid) failure(died)
 id: patid
 failure event: died != 0 & died < .
 obs. time interval: (t[_n-1], t]
 exit on or before: failure
```

126 total observations
0 exclusions

126 observations remaining, representing
40 subjects
26 failures in single-failure-per-subject data
2989 total analysis time at risk and under observation

When you have multiple-record data, you specify stset’s id(idvar) option. When you type stset timevar, id(idvar) failure(failvar), timevar denotes the end of the period (just as it does in single-record data). The first record within idvar is assumed to begin at time 0, and later records are assumed to begin where the previous record left off. failvar should contain 0 on all but, possibly, the last record within idvar, unless your data contain multiple failures (in which case you must specify the exit() option; see Setting multiple failures below).

Example 4: Multiple-record data with multiple events

We have the following data on hospital patients admitted to a particular ward:

<table>
<thead>
<tr>
<th>patid</th>
<th>day</th>
<th>sex</th>
<th>x1</th>
<th>x2</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>177</td>
</tr>
<tr>
<td>101</td>
<td>13</td>
<td>1</td>
<td>20</td>
<td>8</td>
<td>286</td>
</tr>
<tr>
<td>101</td>
<td>21</td>
<td>1</td>
<td>16</td>
<td>11</td>
<td>208</td>
</tr>
<tr>
<td>101</td>
<td>24</td>
<td>1</td>
<td>11</td>
<td>17</td>
<td>401</td>
</tr>
<tr>
<td>102</td>
<td>8</td>
<td>0</td>
<td>20</td>
<td>19</td>
<td>204</td>
</tr>
<tr>
<td>102</td>
<td>18</td>
<td>0</td>
<td>19</td>
<td>1</td>
<td>401</td>
</tr>
<tr>
<td>103</td>
<td>etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Variable code records various actions; code 401 indicates being discharged alive, and 402 indicates death. We stset this dataset by typing
. stset day, id(patid) fail(code==402)
   id: patid
failure event: code == 402
obs. time interval: (day[_n-1], day]
exit on or before: failure

243 total observations
   0 exclusions

243 observations remaining, representing
   40 subjects
   15 failures in single-failure-per-subject data
1486 total analysis time at risk and under observation
   at risk from t = 0
   earliest observed entry t = 0
   last observed exit t = 62

When you specify failure(eventvar==#), the failure event is as specified. You may include a
list of numbers following the equal signs. If failure were codes 402 and 403, you could specify
failure(code == 402 403). If failure were codes 402, 403, 404, 405, 406, 407, and 409, you could
specify failure(code == 402/407 409).

Example 5: Multiple-record data recording time rather than t

More reasonably, the hospital data in the above example would not contain days since admission
but would contain admission and current dates. In the dataset below, adday contains the day of
admission, and curday contains the ending date of the record, both recorded as number of days since
the ward opened:

<table>
<thead>
<tr>
<th>patid</th>
<th>adday</th>
<th>curday</th>
<th>sex</th>
<th>x1</th>
<th>x2</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>287</td>
<td>292</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>177</td>
</tr>
<tr>
<td>101</td>
<td>.</td>
<td>300</td>
<td>1</td>
<td>20</td>
<td>8</td>
<td>286</td>
</tr>
<tr>
<td>101</td>
<td>.</td>
<td>308</td>
<td>1</td>
<td>16</td>
<td>11</td>
<td>208</td>
</tr>
<tr>
<td>101</td>
<td>.</td>
<td>311</td>
<td>1</td>
<td>11</td>
<td>17</td>
<td>401</td>
</tr>
<tr>
<td>102</td>
<td>289</td>
<td>297</td>
<td>0</td>
<td>20</td>
<td>19</td>
<td>204</td>
</tr>
<tr>
<td>102</td>
<td>.</td>
<td>307</td>
<td>0</td>
<td>19</td>
<td>1</td>
<td>401</td>
</tr>
<tr>
<td>103</td>
<td>etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This is the same dataset as shown in example 4. Previously, the first record on patient 101 was recorded 5 days after admission. In this dataset, \(292 - 287 = 5\). We would \texttt{stset} this dataset by typing

\[
\texttt{. stset curday, id(patid) fail(code==402) origin(time adday)}
\]

- \texttt{id: patid}
- \texttt{failure event: code == 402}
- \texttt{obs. time interval: (curday\_[n-1], curday)}
- \texttt{exit on or before: failure}
- \texttt{t for analysis: (time-origin)}
- \texttt{origin: time adday}

243 total observations
0 exclusions

243 observations remaining, representing
40 subjects
15 failures in single-failure-per-subject data
1486 total analysis time at risk and under observation

\(t = \frac{\text{timevar} - \text{originvar}}{\text{scale()}}\). In analysis-time units, subjects become at risk at \(t = 0\). See \texttt{Two concepts of time} and \texttt{The substantive meaning of analysis time} below.

\textbf{Example 6: Multiple-record data with time recorded as a date}

Even more reasonably, dates would not be recorded as integers 428, 433, and 453, meaning the number of days since the ward opened. The dates would be recorded as dates:

<table>
<thead>
<tr>
<th>patid</th>
<th>addate</th>
<th>curdate</th>
<th>sex</th>
<th>x1</th>
<th>x2</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>18aug1998</td>
<td>23aug1998</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>177</td>
</tr>
<tr>
<td>101</td>
<td>31aug1998</td>
<td>08sep1998</td>
<td>1</td>
<td>16</td>
<td>11</td>
<td>208</td>
</tr>
<tr>
<td>101</td>
<td>11sep1998</td>
<td>07sep1998</td>
<td>1</td>
<td>11</td>
<td>17</td>
<td>401</td>
</tr>
<tr>
<td>102</td>
<td>20aug1998</td>
<td>28aug1998</td>
<td>0</td>
<td>20</td>
<td>19</td>
<td>204</td>
</tr>
<tr>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

That, in fact, changes nothing. We still type what we previously typed:

\[
\texttt{. stset curdate, id(patid) fail(code==402) origin(time addate)}
\]

Stata dates are, in fact, integers—they are the number of days since 01jan1960—and it is merely Stata’s \%td display format that makes them display as dates.

\textbf{Example 7: Multiple-record data with extraneous information}

Perhaps we wish to study the outcome after a certain operation, said operation being indicated by code 286. Subjects become at risk when the operation is performed. Here we do not type

\[
\texttt{. stset curdate, id(patid) fail(code==402) origin(time addate)}
\]

We instead type

\[
\texttt{. stset curdate, id(patid) fail(code==402) origin(code==286)}
\]
The result of typing this would be to set analysis time \( t \) to

\[ t = \text{curdate} - (\text{the value of curdate when code==286}) \]

Let's work through this for the first patient:

<table>
<thead>
<tr>
<th>patid</th>
<th>addate</th>
<th>curdate</th>
<th>sex</th>
<th>x1</th>
<th>x2</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>18aug1998</td>
<td>23aug1998</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>177</td>
</tr>
<tr>
<td>101</td>
<td>.</td>
<td>31aug1998</td>
<td>1</td>
<td>20</td>
<td>8</td>
<td>286</td>
</tr>
<tr>
<td>101</td>
<td>.</td>
<td>08sep1998</td>
<td>1</td>
<td>16</td>
<td>11</td>
<td>208</td>
</tr>
<tr>
<td>101</td>
<td>.</td>
<td>11sep1998</td>
<td>1</td>
<td>11</td>
<td>17</td>
<td>401</td>
</tr>
</tbody>
</table>

The event 286 occurred on 31aug1998, and thus the values of \( t \) for the four records are

\[ t_1 = \text{curdate}_1 - 31\text{aug}1998 = 23\text{aug}1998 - 31\text{aug}1998 = -8 \]
\[ t_2 = \text{curdate}_2 - 31\text{aug}1998 = 31\text{aug}1998 - 31\text{aug}1998 = 0 \]
\[ t_3 = \text{curdate}_3 - 31\text{aug}1998 = 08\text{sep}1998 - 31\text{aug}1998 = 8 \]
\[ t_4 = \text{curdate}_4 - 31\text{aug}1998 = 11\text{sep}1998 - 31\text{aug}1998 = 11 \]

Information prior to \( t = 0 \) is not relevant because the subject is not yet at risk. Thus the relevant data on this subject are

\[ t \text{ in } (0, 8] \quad \text{sex} = 1, \text{x1} = 16, \text{x2} = 11 \]
\[ t \text{ in } (8, 11] \quad \text{sex} = 1, \text{x1} = 11, \text{x2} = 17, \text{and the subject is censored (code \# 402)} \]

That is precisely the logic that \texttt{stset} went through. For your information, \texttt{stset} quietly creates the variables

\[ _{st} \quad 1 \text{ if the record is to be used, 0 if ignored} \]
\[ _{t0} \quad \text{analysis time when record begins} \]
\[ _{t} \quad \text{analysis time when record ends} \]
\[ _{d} \quad 1 \text{ if failure, 0 if censored} \]

You can examine these variables after issuing the \texttt{stset} command:

\[ . \text{list } _{st} \ _{t0} \ _{t} \ _{d} \]

<table>
<thead>
<tr>
<th>_{st} _{t0} _{t} _{d}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 0 . . .</td>
</tr>
<tr>
<td>2. 0 . . .</td>
</tr>
<tr>
<td>203. 1 0 8 0</td>
</tr>
<tr>
<td>204. 1 8 11 0</td>
</tr>
</tbody>
</table>

Results are just as we anticipated. Do not let the observation numbers bother you; \texttt{stset} sorts the data in a way it finds convenient. Feel free to re-sort the data; if any of the st commands need the data in a different order, they will sort it themselves.

There are two ways of specifying \texttt{origin()}:

\[ \texttt{origin(time timevar) or origin(time exp)} \]
\[ \texttt{origin(eventvar==numlist)} \]

In the first syntax—which is denoted by typing the word time—you directly specify when a subject becomes at risk. In the second syntax—which is denoted by typing a variable name and equal signs—you specify the same thing indirectly. The subject becomes at risk when the specified event occurs (which may be never).
Information prior to `origin()` is ignored. That information composes what we call the past history.

Example 8: Multiple-record data with delayed entry

In another analysis, we want to use the above data to analyze all patients, not just those undergoing a particular operation. In this analysis, subjects become at risk when they enter the ward. For this analysis, however, we need information from a particular test, and that information is available only if the test is administered to the patient. Even if the test is administered, some amount of time passes before that. Assume that when the test is administered, `code==152` is inserted into the patient’s hospital record.

To summarize, we want `origin(time addate)`, but patients do not enter our sample until `code==152`. The way to `stset` these data is

```
. stset curdate, id(patid) fail(code==402) origin(time addate) enter(code==152)
```

Patient 107 has code 152:

<table>
<thead>
<tr>
<th>patid</th>
<th>addate</th>
<th>curdate</th>
<th>sex</th>
<th>x1</th>
<th>x2</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>107</td>
<td>22aug1998</td>
<td>25aug1998</td>
<td>1</td>
<td>9</td>
<td>13</td>
<td>274</td>
</tr>
<tr>
<td>107</td>
<td>28aug1998</td>
<td></td>
<td>1</td>
<td>19</td>
<td>19</td>
<td>152</td>
</tr>
<tr>
<td>107</td>
<td>30aug1998</td>
<td></td>
<td>1</td>
<td>18</td>
<td>12</td>
<td>239</td>
</tr>
<tr>
<td>107</td>
<td>07sep1998</td>
<td></td>
<td>1</td>
<td>12</td>
<td>11</td>
<td>401</td>
</tr>
</tbody>
</table>

In analysis time, \( t = 0 \) corresponds to 22aug1998. The test was not administered, however, until 6 days later. The analysis times for these records are

\[
\begin{align*}
t_1 &= \text{curdate}_1 - \text{22aug1998} = \text{25aug1998} - \text{22aug1998} = 3 \\
t_2 &= \text{curdate}_2 - \text{22aug1998} = \text{28aug1998} - \text{22aug1998} = 6 \\
t_3 &= \text{curdate}_3 - \text{22aug1998} = \text{30aug1998} - \text{22aug1998} = 8 \\
t_4 &= \text{curdate}_4 - \text{22aug1998} = \text{07sep1998} - \text{22aug1998} = 16
\end{align*}
\]

and the data we want in our sample are

\[
\begin{align*}
\text{t in } (6,8] & \quad \text{sex} = 1, \text{x1} = 18, \text{x2} = 12 \\
\text{t in } (8,16] & \quad \text{sex} = 1, \text{x1} = 12, \text{x2} = 11, \text{and patient was censored (code $\neq 402$)}
\end{align*}
\]

The above `stset` command produced this:

```
. list _st _t0 _t _d

 _st _t0 _t _d
 1. 0 . . .
 2. 0 . . .
 39. 1 6 8 0
 40. 1 8 16 0
```
Example 9: Multiple-record data with extraneous information and delayed entry

The `origin()` and `enter()` options can be combined. For instance, we want to analyze patients receiving a particular operation (time at risk begins upon `code == 286`, but patients may not enter the sample before a test is administered, denoted by `code == 152`). We type

```
 . stset curdate, id(patid) fail(code==402) origin(code==286) enter(code==152)
```

If we typed the above commands, it would not matter whether the test was performed before or after the operation.

A patient who had the test and then the operation would enter at analysis time \( t = 0 \).

A patient who had the operation and then the test would enter at analysis time \( t > 0 \), the analysis time being the time the test was performed.

If we wanted to require that the operation be performed after the test, we could type

```
 . stset curdate, id(patid) fail(code==402) origin(code==286) after(code==152)
```

Admittedly, this can be confusing. The way to proceed is to find a complicated case in your data and then list `st `t0 `t `d` for that case after you `stset` the data.

Example 10: Real data

All of our hospital ward examples are artificial in one sense: it is unlikely the data would have come to us in survival-time form:

```
 patid addate curdate sex x1 x2 code
 101 18aug1998 23aug1998 1 10 10 177
 101 . 31aug1998 1 20 8 286
 101 . 08sep1998 1 16 11 208
 101 . 11sep1998 1 11 17 401
 102 20aug1998 28aug1998 0 20 19 204
 102 . 07sep1998 0 19 1 401
 103 etc.
```

Rather, we would have received a snapshot dataset:

```
 patid date sex x1 x2 code
 101 18aug1998 1 10 10 22
 101 23aug1998 . 20 8 177
 101 31aug1998 . 16 11 286
 101 08sep1998 . 11 17 208
 101 11sep1998 . . . 401
 102 20aug1998 0 20 19 22
 102 28aug1998 . 19 1 204
 102 07sep1998 . . . 401
 103 etc.
```

In a snapshot dataset, we have a time (here a date) and values of the variables as of that instant.

This dataset can be converted to the appropriate form by typing

```
 . snapspan patid date code
```
The result would be as follows:

<table>
<thead>
<tr>
<th>patid</th>
<th>date</th>
<th>sex</th>
<th>x1</th>
<th>x2</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>18aug1998</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>22</td>
</tr>
<tr>
<td>101</td>
<td>23aug1998</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>177</td>
</tr>
<tr>
<td>101</td>
<td>31aug1998</td>
<td>.</td>
<td>20</td>
<td>8</td>
<td>286</td>
</tr>
<tr>
<td>101</td>
<td>08sep1998</td>
<td>.</td>
<td>16</td>
<td>11</td>
<td>208</td>
</tr>
<tr>
<td>101</td>
<td>11sep1998</td>
<td>.</td>
<td>11</td>
<td>17</td>
<td>401</td>
</tr>
<tr>
<td>102</td>
<td>20aug1998</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>22</td>
</tr>
<tr>
<td>102</td>
<td>28aug1998</td>
<td>0</td>
<td>20</td>
<td>19</td>
<td>204</td>
</tr>
<tr>
<td>102</td>
<td>07sep1998</td>
<td>.</td>
<td>19</td>
<td>1</td>
<td>401</td>
</tr>
</tbody>
</table>

This is virtually the same dataset with which we have been working, but it differs in two ways:

1. The variable `sex` is not filled in for all the observations because it was not filled in on the original form. The hospital wrote down the sex on admission and then never bothered to document it again.

2. We have no admission date (`addate`) variable. Instead, we have an extra first record for each patient with `code = 22` (22 is the code the hospital uses for admissions).

The first problem is easily fixed, and the second, it turns out, is not a problem because we can vary what we type when we `stset` the data.

First, let's fix the problem with variable `sex`. There are two ways to proceed. One would be simply to fill in the variable ourselves:

```
. by patid (date), sort: replace sex = sex[_n-1] if sex==.
```

We could also perform a phony `stset` that is good enough to set all the data and then use `stfill` to fill in the variable for us. Let's begin with the phony `stset`:

```
. stset date, id(patid) origin(min) fail(code==-1)
 id: patid
 failure event: code == -1
 obs. time interval: (date[_n-1], date]
 exit on or before: failure
 t for analysis: (time-origin)
 origin: min

283 total observations
0 exclusions

283 observations remaining, representing
40 subjects
0 failures in single-failure-per-subject data
2224 total analysis time at risk and under observation
 at risk from t = 0
 earliest observed entry t = 0
 last observed exit t = 89
```

Typing `stset date, id(patid) origin(min) fail(code==-1)` does not produce anything we would want to use for analysis. This is a trick to get the dataset temporarily `stset` so that we can use some `st` data management commands on it.

The first part of the trick is to specify `origin(min)`. This defines the analysis time as $t = 0$, corresponding to the minimum observed value of the time variable minus 1. The time variable is `date` here. Why the minimum minus 1? Because `st` ignores observations for which analysis time $t < 0$. `origin(min)` provides a phony definition of $t$ that ensures $t > 0$ for all observations.
The second part of the trick is to specify `fail(code == -1)`, and you might have to vary what you type. We just wanted to choose an event that we know never happens, thus ensuring that no observations are ignored after failure.

Now that we have the dataset `stset`, we can use the other `st` commands. Do not use the `st` analysis commands unless you want ridiculous results, but one of the `st` data management commands is just what we want:

```
 . stfill sex, forward
 failure _d: code == -1
 analysis time _t: (date-origin)
 origin: min
 id: patid
 replace missing values with previously observed values:
 sex: 203 real changes made
```

Problem one solved.

The second problem concerns the lack of an admission-date variable. That is not really a problem because we have a new first observation with `code = 22` recording the date of admission, so every place we previously coded `origin(time addate)`, we substitute `origin(code == 22)`.

Problem two solved.

We also solved the big problem—converting a snapshot dataset into a survival-time dataset; see `[ST] snapspan`.

---

**Two concepts of time**

The `st` system has two concepts of time. The first is `time` in italics, which corresponds to how time is recorded in your data. The second is analysis time, which we write as `t`. Substantively, analysis time is time at risk. `stset` defines analysis time in terms of `time` via

\[
t = \frac{\text{time} - \text{origin}()}{\text{scale}()}
\]

`t` and `time` can be the same thing, and by default they are because, by default, `origin()` is 0 and `scale()` is 1.

All the `st` analysis commands work with analysis time, `t`.

By default, if you do not specify the `origin()` and `scale()` options, your time variables are expected to be the analysis-time variables. This means that `time = 0` corresponds to when subjects became at risk, and that means, among other things, that observations for which `time < 0` are ignored because survival analysis concerns persons who are at risk, and no one is at risk before `t = 0`.

`origin` determines when the clock starts ticking. If you do not specify `origin()`, `origin(time 0)` is assumed, meaning that `t = time` and that persons are at risk from `t = time = 0`.

`time` and `t` will often differ. `time` might be calendar time and `t` the length of time since some event, such as being born or being exposed to some risk factor. `origin()` sets when `t = 0`. `scale()` merely sets a constant that makes `t` more readable.
The syntax for the `origin()` option makes it look more complicated than it really is

```
origin([varname == numlist] time exp | min)
```

This says that there are four different ways to specify `origin()`:

- `origin(time exp)`
- `origin(varname == numlist)`
- `origin(varname == numlist time exp)`
- `origin(min)`

The first syntax can be used with single- or multiple-record data. It states that the origin is given by `exp`, which can be a constant for all observations, a variable (and hence may vary subject by subject), or even an expression composed of variables and constants. Perhaps the origin is a fixed date or a date recorded in the data when the subject was exposed or when the subject turned 18.

The second and third syntaxes are for use with multiple-record data. The second states that the origin corresponds to the (earliest) time when the designated event occurred. Perhaps the origin is when an operation was performed. The third syntax calculates the origin both ways and then selects the later one.

The fourth syntax does something odd; it sets the origin to the minimum time observed minus 1. This is not useful for analysis but is sometimes useful for playing data management tricks; see example 10 above.

Let’s start with the first syntax. Say that you had the data

```
faildate x1 x2
28dec1997 12 22
12nov1997 15 22
03feb1998 55 22
```

and that all the observations came at risk on the same date, 01nov1997. You could type

```
. stset faildate, origin(time mdy(11,1,1997))
```

Remember that `stset` adds `_t0` and `_t` to your dataset and that they contain the time span for each record, documented in analysis-time units. After typing `stset`, you can list the results:

```
. list faildate x1 x2 _t0 _t
```

<table>
<thead>
<tr>
<th>faildate</th>
<th>x1</th>
<th>x2</th>
<th>_t0</th>
<th>_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>28dec1997</td>
<td>12</td>
<td>22</td>
<td>0</td>
<td>57</td>
</tr>
<tr>
<td>12nov1997</td>
<td>15</td>
<td>22</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>03feb1998</td>
<td>55</td>
<td>22</td>
<td>0</td>
<td>94</td>
</tr>
</tbody>
</table>

Record 1 reflects the period (0, 57] in analysis-time units, which are days here. `stset` calculated the 57 from `28dec1997 - 01nov1997 = 13,876 - 13,819 = 57`. (Dates such as 28dec1997 are really just integers containing the number of days from 01jan1960, and Stata’s `%td` display format makes them display nicely. 28dec1997 is really the number 13,876.)

As another example, we might have data recording exposure and failure dates:

```
expdate faildate x1 x2
07may1998 22jun1998 12 22
02feb1998 11may1998 11 17
```
The way to `stset` this dataset is

```
 . stset faildate, origin(time expdate)
```

and the result, in analysis units, is

```
 . list expdate faildate x1 x2 _t0 _t
```

<table>
<thead>
<tr>
<th>expdate</th>
<th>faildate</th>
<th>x1</th>
<th>x2</th>
<th>_t0</th>
<th>_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>07may1998</td>
<td>22jun1998</td>
<td>12</td>
<td>22</td>
<td>0</td>
<td>46</td>
</tr>
<tr>
<td>02feb1998</td>
<td>11may1998</td>
<td>11</td>
<td>17</td>
<td>0</td>
<td>98</td>
</tr>
</tbody>
</table>

There is nothing magical about dates. Our original data could just as well have been

```
<table>
<thead>
<tr>
<th>expdate</th>
<th>faildate</th>
<th>x1</th>
<th>x2</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>78</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>12</td>
<td>110</td>
<td>11</td>
<td>17</td>
</tr>
</tbody>
</table>
```

and the result would still be the same because $78 - 32 = 46$ and $110 - 12 = 98$.

Specifying an expression can sometimes be useful. Suppose that your dataset has the variable `date` recording the date of event and variable `age` recording the subject’s age as of `date`. You want to make $t = 0$ correspond to when the subject turned 18. You could type `origin(time date-int((age-18)*365.25))`.

```
 . origin(varname == numlist)
```

is for use with multiple-record data. It states when each subject became at risk indirectly; the subject became at risk at the earliest time that `varname` takes on any of the enumerated values. Say that you had

```
<table>
<thead>
<tr>
<th>patid</th>
<th>date</th>
<th>x1</th>
<th>x2</th>
<th>event</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>12nov1997</td>
<td>15</td>
<td>22</td>
<td>127</td>
</tr>
<tr>
<td>101</td>
<td>28dec1997</td>
<td>12</td>
<td>22</td>
<td>155</td>
</tr>
<tr>
<td>101</td>
<td>03feb1998</td>
<td>55</td>
<td>22</td>
<td>133</td>
</tr>
<tr>
<td>101</td>
<td>05mar1998</td>
<td>14</td>
<td>22</td>
<td>127</td>
</tr>
<tr>
<td>101</td>
<td>09apr1998</td>
<td>12</td>
<td>22</td>
<td>133</td>
</tr>
<tr>
<td>101</td>
<td>03jun1998</td>
<td>13</td>
<td>22</td>
<td>101</td>
</tr>
<tr>
<td>102</td>
<td>22nov1997</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>
```

and assume `event = 155` represents the onset of exposure. You might `stset` this dataset by typing

```
 . stset date, id(patid) origin(event==155) ...
```

If you did that, the information for patient 101 before 28dec1997 would be ignored in subsequent analysis. The prior information would not be removed from the dataset; it would just be ignored. Probably something similar would happen for patient 102, or if patient 102 has no record with `event = 155`, all the records on the patient would be ignored.

For analysis time, $t = 0$ would correspond to when event 155 occurred. Here are the results in analysis-time units:

```
<table>
<thead>
<tr>
<th>patid</th>
<th>date</th>
<th>x1</th>
<th>x2</th>
<th>event</th>
<th>_t0</th>
<th>_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>12nov1997</td>
<td>15</td>
<td>22</td>
<td>127</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>101</td>
<td>03feb1998</td>
<td>55</td>
<td>22</td>
<td>133</td>
<td>0</td>
<td>37</td>
</tr>
<tr>
<td>101</td>
<td>05mar1998</td>
<td>14</td>
<td>22</td>
<td>127</td>
<td>37</td>
<td>67</td>
</tr>
<tr>
<td>101</td>
<td>09apr1998</td>
<td>12</td>
<td>22</td>
<td>133</td>
<td>67</td>
<td>102</td>
</tr>
<tr>
<td>101</td>
<td>03jun1998</td>
<td>13</td>
<td>22</td>
<td>101</td>
<td>102</td>
<td>157</td>
</tr>
<tr>
<td>102</td>
<td>22nov1997</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>
```
Patient 101’s second record is excluded from the analysis. That is not a mistake. Records document durations, date reflects the end of the period, and events occur at the end of periods. Thus event 155 occurred at the instant date = 28dec1997, and the relevant first record for the patient is (28dec1997, 03feb1998] in time units, which is \( (0, 37] \) in \( t \) units.

### The substantive meaning of analysis time

In specifying `origin()`, you must ask yourself whether two subjects with identical characteristics face the same risk of failure. The answer is that they face the same risk when they have the same value of \( t = (\text{time} - \text{origin()})/\text{scale()} \) or, equivalently, when the same amount of time has elapsed from `origin()`.

Say that we have the following data on smokers who have died:

<table>
<thead>
<tr>
<th>ddate</th>
<th>x1</th>
<th>x2</th>
<th>reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>11mar1984</td>
<td>23</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>15may1994</td>
<td>21</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>22nov1993</td>
<td>22</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We wish to analyze death due to `reason==2`. However, typing

```
.stset ddate, fail(reason==2)
```

would probably not be adequate. We would be saying that smokers were at risk of death from 01jan1960. Would it matter? It would if we planned on doing anything parametric because parametric hazard functions, except for the exponential, are functions of analysis time, and the location of 0 makes a difference.

Even if we were thinking of performing nonparametric analysis, there would probably be difficulties. We would be asserting that two “identical” persons (in terms of \( x1 \) and \( x2 \)) face the same risk on the same calendar date. Does the risk of death due to smoking really change as the calendar changes?

It would be more reasonable to assume that the risk changes with how long a subject has been smoking and that our data would probably include that date. We would type

```
.stset ddate, fail(reason==2) origin(time smdate)
```

if `smdate` were the name of the date-started-smoking variable. We would now be saying that the risk is equal when the number of days smoked is the same. We might prefer to see \( t \) in years,

```
.stset ddate, fail(reason==2) origin(time smdate) scale(365.25)
```

but that would make no substantive difference.

Consider single-record data on firms that went bankrupt:

<table>
<thead>
<tr>
<th>incorp</th>
<th>bankrupt</th>
<th>x1</th>
<th>x2</th>
<th>btype</th>
</tr>
</thead>
<tbody>
<tr>
<td>22jan1983</td>
<td>11mar1984</td>
<td>23</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>17may1992</td>
<td>15may1994</td>
<td>21</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>03nov1991</td>
<td>22nov1993</td>
<td>22</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Say that we wish to examine the risk of a particular kind of bankruptcy, `btype==2`, among firms that become bankrupt. Typing

```
.stset bankrupt, fail(btype==2)
```
would be more reasonable than it was in the smoking example. It would not be reasonable if we were thinking of performing any sort of parametric analysis, of course, because then location of \( t = 0 \) would matter, but it might be reasonable for semiparametric analysis. We would be asserting that two “identical” firms (with respect to the characteristics we model) have the same risk of bankruptcy when the calendar dates are the same. We would be asserting that the overall state of the economy matters.

It might be reasonable to instead measure time from the date of incorporation:

```
. stset bankrupt, fail(btype==2) origin(time incorp)
```

Understand that the choice of `origin()` is a substantive decision.

### Setting the failure event

You set the failure event by using the `failure()` option.

In single-record data, if `failure()` is not specified, every record is assumed to end in a failure. For instance, with

```
failtime load bearings
1. 100 15 0
2. 140 15 1
```

you would type `stset failtime`, and the first observation would be assumed to fail at time \( t = 100 \); the second, at time \( t = 140 \); and so on.

`failure(varname)` specifies that a failure occurs whenever `varname` is not zero and is not missing. For instance, with

```
failtime load bearings burnout
1. 100 15 0 1
2. 140 15 1 0
3. 97 20 0 1
4. 122 20 1 0
5. 84 25 0 1
6. 100 25 1 1
e tc.
```

```
. stset failtime, failure(burnout)
```

Observations 1, 3, 5, and 6 would be assumed to fail at times 100, 97, 84, and 100, respectively; observations 2 and 4 would be assumed to be censored at times 140 and 122.

Similarly, if the data were

```
failtime load bearings burnout
1. 100 15 0 1
2. 140 15 1 0
3. 97 20 0 2
4. 122 20 1 .
5. 84 25 0 2
6. 100 25 1 3
e tc.
```

the result would be the same. Nonzero, nonmissing values of the failure variable are assumed to represent failures. (Perhaps `burnout` contains a code on how the burnout occurred.)

`failure(varname == numlist)` specifies that a failure occurs whenever `varname` takes on any of the values of `numlist`. In the above example, specifying

```
. stset failtime, failure(burnout==1 2)
```

would treat observation 6 as censored.
. stset failtime, failure(burnout==1 2 .)
would also treat observation 4 as a failure.

. stset failtime, failure(burnout==1/3 6 .)
would treat burnout==1, burnout==2, burnout==3, burnout==6, and burnout==. as representing failures and all other values as representing censorings. (Perhaps we want to examine “failure due to meltdown”, and these are the codes that represent the various kinds of meltdown.)

failure() is treated the same way in both single- and multiple-record data. Consider

<table>
<thead>
<tr>
<th>patno</th>
<th>t</th>
<th>x1</th>
<th>x2</th>
<th>died</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>23</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>21</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>22</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>20</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>22</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>21</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

Typing . stset t, id(patno) failure(died)
would treat

| patno==1 as dying at t==4  
| patno==2 as dying at t==8  
| patno==3 as being censored at t==11

Intervening records on the same subject are marked as “censored”. Technically, they are not really censored if you think about it carefully; they are simply marked as not failing. Look at the data for subject 3:

<table>
<thead>
<tr>
<th>patno</th>
<th>t</th>
<th>x1</th>
<th>x2</th>
<th>died</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9</td>
<td>22</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>21</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

The subject is not censored at t = 9 because there are more data on the subject; it is merely the case that the subject did not die at that time. At t = 9, x1 changed from 22 to 21. The subject is really censored at t = 11 because the subject did not die and there are no more records on the subject.

Typing stset t, id(patno) failure(died) would mark the same persons as dying and the same persons as censored, as in the previous case. If died contained not 0 and 1, but 0 and nonzero, nonmissing codes for the reason for death would be

<table>
<thead>
<tr>
<th>patno</th>
<th>t</th>
<th>x1</th>
<th>x2</th>
<th>died</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>23</td>
<td>11</td>
<td>103</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>21</td>
<td>9</td>
<td>207</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>22</td>
<td>13</td>
<td>207</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>20</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>22</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>21</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Typing . stset t, id(patno) failure(died)
or

. stset t, id(patno) failure(died==103 207)
would yield the same results; subjects 1 and 2 would be treated as dying and subject 3 as censored.
Typing

```
. stset t, id(patno) failure(died==207)
```

would treat subject 2 as dying and subjects 1 and 3 as censored. Thus when you specify the values for the code, the code variable need not ever contain 0. In

```
patno t x1 x2 died
1. 1 4 23 11 103
2. 2 5 21 9 13
3. 2 8 22 13 207
4. 3 7 20 5 11
5. 3 9 22 5 12
6. 3 11 21 5 12
7. 4 ...
```

typing

```
. stset t, id(patno) failure(died==207)
```

treats patient 2 as dying and 1 and 3 as censored. Typing

```
. stset t, id(patno) failure(died==103 207)
```

treats patients 1 and 2 as dying and 3 as censored.

### Setting multiple failures

In multiple-record data, records after the first failure event are ignored unless you specify the `exit()` option. Consider the following data:

```
patno t x1 x2 code
1. 1 4 21 7 14
2. 1 5 21 7 11
3. 1 7 20 7 17
4. 1 8 22 7 22
5. 1 9 22 7 22
6. 1 11 21 7 29
7. 2 ...
```

Perhaps code 22 represents the event of interest—say, the event “visited the doctor”. Were you to type `stset t, id(patno) failure(code == 22)`, the result would be as if the data contained

```
patno t x1 x2 code
1. 1 4 21 7 14
2. 1 5 21 7 11
3. 1 7 20 7 17
```

Records after the first occurrence of the failure event are ignored. If you do not want this, you must specify the `exit()` option. Probably you would want to specify `exit(time .)`, here meaning that subjects are not to exit the risk group until their data run out. Alternatively, perhaps code 142 means “entered the nursing home” and, once that event happens, you no longer want them in the risk group. Then you would code `exit(code == 142)`; see *Final exit times* below.
First entry times

Do not confuse `enter()` with `origin()`. `origin()` specifies when a subject first becomes at risk. `enter()` specifies when a subject first comes under observation. In most datasets, becoming at risk and coming under observation are coincident. Then it is sufficient to specify `origin()` alone, although you could specify both options.

Some persons enter the data after they have been at risk of failure. Say that we are studying deaths due to exposure to substance X and we know the date at which a person was first exposed to the substance. We are willing to assume that persons are at risk from the date of exposure forward. A person arrives at our door who was exposed 15 years ago. Can we add this person to our data? The statistical issue is labeled `left-truncation`, and the problem is that had the person died before arriving at our door, we would never have known about her. We can add her to our data, but we must be careful to treat her subsequent survival time as conditional on having already survived 15 years.

Say that we are examining visits to the widget repair facility, “failure” being defined as a visit (so failures can be repeated). The risk begins once a person buys a widget. We have a woman who bought a widget 3 years ago, and she has no records on when she has visited the facility in the last 3 years. Can we add her to our data? Yes, as long as we are careful to treat her subsequent behavior as already being 3 years after she first became at risk.

The jargon for this is “under observation”. All this means is that any failures would be observed. Before being under observation, failure would not be observed.

If `enter()` is not specified, we assume that subjects are under observation at the time they enter the risk group as specified by `origin()`, 0 if `origin()` is not specified, or possibly `time0()`. To be precise, subject $i$ is assumed to first enter the analysis risk pool at

$$time_i = \max(\text{earliest time0()} \text{ for } i, \text{enter()}, \text{origin()})$$

Say that we have multiple-record data recording “came at risk” (`mycode == 1`), “enrolled in our study” (`mycode == 2`), and “failed due to risk” (`mycode == 3`). We `stset` this dataset by typing

```
. stset time, id(id) origin(mycode==1) enter(mycode==2) failure(mycode==3)
```

The above `stset` correctly handles the came at risk/came under observation problem regardless of the order of events 1, 2, and 3. For instance, if the subject comes under observation before he or she becomes at risk, the subject will be treated as entering the analysis risk pool at the time he or she came at risk.

Say that we have the same data in single-record format: variable `riskdate` documents becoming at risk and variable `enr_date` the date of enrollment in our study. We would `stset` this dataset by typing

```
. stset time, origin(time riskdate) enter(time enr_date) failure(mycode==3)
```

For a final example, let’s return to the multiple-record way of recording our data and say that we started enrolling people in our study on 12jan1998 but that, up until 16feb1998, we do not trust that our records are complete (we had start-up problems). We would `stset` that dataset by typing

```
. stset time, origin(mycode==1) enter(mycode==2 time mdy(2,16,1998))
> fail(mycode==3)
```

`enter(varname=numlist time exp)` is interpreted as

$$\max(\text{time of earliest event in numlist, exp})$$

Thus persons having `mycode == 2` occurring before 16feb1998 are assumed to be under observation from 16feb1998, and those having `mycode == 2` thereafter are assumed to be under observation from the time of `mycode == 2`. 
Final exit times

`exit()` specifies the latest time under which the subject is both under observation and at risk of the failure event. The emphasis is on latest; obviously subjects also exit the data when their data run out.

When you type
```
. stset ..., ... failure(outcome==1/3 5) ...
```
the result is as if you had typed
```
. stset ..., ... failure(outcome==1/3 5) exit(failure) ...
```
which, in turn, is the same as
```
. stset ..., ... failure(outcome==1/3 5) exit(outcome==1/3 5) ...
```

When are people to be removed from the analysis risk pool? When their data end, of course, and when the event 1, 2, 3, or 5 first occurs. How are they to be removed? According to their status at that time. If the event is 1, 2, 3, or 5 at that instant, they exit as a failure. If the event is something else, they exit as censored.

Perhaps events 1, 2, 3, and 5 represent death due to heart disease, and that is what we are studying. Say that `outcome == 99` represents death for some other reason. Obviously, once the person dies, she is no longer at risk of dying from heart disease, so we would want to specify
```
. stset ..., ... failure(outcome==1/3 5) exit(outcome==1/3 5 99) ...
```

When we explicitly specify `exit()`, we must list all the reasons for which a person is to be removed other than simply running out of data. Here it would have been a mistake to specify just `exit(99)` because that would have left persons in the analysis risk pool who died for reasons 1, 2, 3, and 5. We would have treated those people as if they were still at risk of dying.

In fact, it probably would not have mattered had we specified `exit(99)` because, once a person is dead, he or she is unlikely to have any subsequent records anyway. By that logic, we did not even have to specify `exit(99)` because death is death and there should be no records following it.

For other kinds of events, however, `exit()` becomes important. Let’s assume that the failure event is to be diagnosed with heart disease. A person may surely have records following diagnosis, but even so,
```
. stset ..., ... failure(outcome==22) ...
```
would be adequate because, by not specifying `exit()`, we are accepting the default that `exit()` is equivalent to `failure()`. Once outcome 22 occurs, subsequent records on the subject will be ignored—they constitute the future history of the subject.

Say, however, that we wish to treat as censored persons diagnosed with kidney disease. We would type
```
. stset ..., ... failure(outcome==22) exit(outcome==22 29) ...
```
assuming that `outcome = 29` is “diagnosed with kidney disease”. It is now of great importance that we specified `exit(outcome==22 29)` and not just `exit(outcome==29)` because, had we omitted code 22, persons would have remained in the analysis risk pool even after the failure event, that is, being diagnosed with heart disease.

If, in addition, our data were untrustworthy after 22nov1998 (perhaps not all the data have been entered yet), we would type
```
. stset ..., ... failure(outcome==22) exit(outcome==22 29 time > mdy(11,22,1998)) ...
```
If we type \texttt{exit(varname==numlist time exp)}, the exit time is taken to be
\[
\min(\text{time of earliest event in}\ numlist,\ exp)
\]

For some analyses, repeated failures are possible. If you have repeated failure data, you specify the \texttt{exit()} option and include whatever reasons, if any, that would cause the person to be removed. If there are no such reasons and you wish to retain all observations for the person, you type
\[
\texttt{. stset ... ... exit(time .) ...}
\]
\texttt{exit(time .)} specifies that the maximum time a person can be in the risk pool is infinite; thus subjects will not be removed until their data run out.

**Intermediate exit and reentry times (gaps)**

Gaps arise when a subject is temporarily not under observation. The statistical importance of gaps is that, if failure is death and if the person died during such a gap, he would not have been around to be found again. The solution to this is to remove the person from the risk pool during the observational gap.

To determine that you have gaps, your data must provide starting and ending times for each record. Most datasets provide only ending times, making it impossible to know that you have gaps.

You use \texttt{time0()} to specify the beginning times of records. \texttt{time0()} specifies a mechanical aspect of interpreting the records in the dataset, namely, the beginning of the period spanned by each record. Do not confuse \texttt{time0()} with \texttt{origin()}, which specifies when a subject became at risk, or with \texttt{enter()}, which specifies when a subject first comes under observation.

\texttt{time0()} merely identifies the beginning of the time span covered by each record. Say that we had two records on a subject, the first covering the span \((40,49]\) and the second, \((49,57]\):

\[
\begin{array}{c}
\text{record 1} \\
40 \quad 49 \quad 57
\end{array}
\]

A \texttt{time0()} variable would contain

\[
\begin{array}{c}
40 \text{ in record 1} \\
49 \text{ in record 2}
\end{array}
\]

and not, for instance, 40 and 40. A \texttt{time0()} variable varies record by record for a subject.

Most datasets merely provide an end-of-record time value, \texttt{timevar}, which you specify by typing \texttt{stset timevar, ...}. When you have multiple records per subject and you do not specify a \texttt{time0()} variable, \texttt{stset} assumes that each record begins where the previous one left off.

**if() versus if exp**

Both the \texttt{if exp} and \texttt{if(exp)} options select records for which \textit{exp} is true. We strongly recommend specifying the \texttt{if()} option in preference to \texttt{if exp}. They differ in that \texttt{if exp} removes data from consideration before calculating beginning and ending times, and other quantities as well. The \texttt{if()} option, on the other hand, sets the restriction after all derived variables are calculated. To appreciate this difference, consider the following multiple-record data:

\[
\begin{array}{cccccc}
\text{patno} & t & \text{x1} & \text{x2} & \text{code} \\
3 & 7 & 20 & 5 & 14 \\
3 & 9 & 22 & 5 & 23 \\
3 & 11 & 21 & 5 & 29
\end{array}
\]
Consider the difference in results between typing

```
 . stset t if x1!=22, failure(code==14)
```

and

```
 . stset t, if(x1!=22) failure(code==14)
```

The first would remove record 2 from consideration at the outset. In constructing beginning and ending times, `stset` and `streset` would see

```
patno t x1 x2 code
3 7 20 5 14
3 11 21 5 29
```

and would construct the result:

```
x1=20
x2= 5
|<------------------->|
0 7
```

In the second case, the result would be

```
x1=20
x2= 5
|<---------------------|<------------------->|
0 7 9
```

The latter result is correct and the former incorrect because `x1 = 21` is not true in the interval `(7, 9)`.

The only reason to specify `if exp` is to ignore errors in the data—observations that would confuse `stset` and `streset`—without actually dropping the offending observations from the dataset.

You specify the `if()` option to ignore information in the data that are not themselves errors. Specifying `if()` yields the same result as specifying `if exp` on the subsequent `st` commands after the dataset has been `stset`.

**Past and future records**

Consider the hospital ward data that we have seen before:

```
patid addate curdate sex x1 x2 code
101 18aug1998 23aug1998 1 10 10 177
101 . 31aug1998 1 20 8 286
101 . 08sep1998 1 16 11 208
101 . 11sep1998 1 11 17 401
etc.
```

Say that you `stset` this dataset such that you selected the middle two records. Perhaps you typed

```
 . stset curdate, id(patid) origin(time addate) enter(code==286) failure(code==208)
```

The first record for the subject, because it was not selected, is called a *past history record*. Any earlier records that were not selected would also be called past history records.

The last record for the subject, because it was not selected, is called a *future history record*. Any later records that were not selected would also be called future history records.
If you typed
```
.streset, past
```
the first three records for this subject would be selected.

Typing
```
.streset, future
```
would select the last three records for this subject.

If you typed
```
.streset, past future
```
all four records for this subject would be selected.

If you then typed
```
.streset
```
the original two records would be selected, and things would be back just as they were before.

After typing **streset, past; streset, future; or streset, past future**, you would not want to use any analysis commands. **streset** did some strange things, especially with the analysis-time variable, to include the extra records. It would be the wrong sample, anyway.

You might, however, want to use certain data management commands on the data, especially those for creating new variables.

Typically, **streset, past** is of greater interest than the other commands. Past records—records prior to being at risk or excluded for other reasons—are not supposed to play a role in survival analysis. **stset** makes sure they do not. But it is sometimes reasonable to ask questions about them such as, was the subject ever on the drug cisplatin? Has the subject ever been married? Did the subject ever have a heart attack?

To answer questions like that, you sometimes want to dig into the past. Typing **streset, past** makes that easy, and once the past is set, the data can be used with **stgen** and **st.is 2**. You might well type the following:

```
. stset curdate, id(patid) origin(addate) enter(code==286) failure(code==208)
. streset, past
. stgen attack = ever(code==177)
. streset
. stcox attack ...
```

Do not be concerned about doing something inappropriate while having the past or future set; **st** will not let you:

```
. stset curdate, id(patid) origin(time addate) enter(code==286) failure(code==208)
(output omitted)
. streset, past
(output omitted)
. stcox x1
you last streset, past
you must type streset to restore the analysis sample
r(119);
```
Using streset

streset is a useful tool for gently modifying what you have previously stset. Rather than typing the whole stset command, you can type streset followed just by what has changed.

For instance, you might type

```
. stset curdate, id(patid) origin(time addate) enter(code==286) failure(code==208)
```

and then later want to restrict the analysis to subjects who ever have x1>20. You could retype the whole stset command and add ever(x1>20), but it would be easier to type

```
. streset, ever(x1>20)
```

If later you decide you want to remove the restriction, type

```
. streset, ever(.)
```

That is the general rule for resetting options to the default: type ‘.’ as the option’s argument.

Be careful using streset because you can make subtle mistakes. In another analysis with another dataset, consider the following:

```
. stset date, fail(code==2) origin(code==1107)
 ...
. streset date, fail(code==9) origin(code==1422) after(code==1423)
 ...
. streset, fail(code==2) origin(code==1107)
```

If, in the last step, you are trying to get back to the results of the first stset, you will fail. The last streset is equivalent to

```
. stset date, fail(code==9) origin(code==1107) after(code==1423)
```

streset() remembers the previously specified options and uses them if you do not override them. Both stset and streset display the current command line. Make sure that you verify that the command is what you intended.

Performance and multiple-record-per-subject datasets

stset and streset do not drop data; they simply mark data to be excluded from consideration. Some survival-time datasets can be large, although the relevant subsamples are small. In such cases, you can reduce memory requirements and speed execution by dropping the irrelevant observations.

stset and streset mark the relevant observations by creating a variable named _st (it is always named this) containing 1 and 0; _st = 1 marks the relevant observations and _st = 0 marks the irrelevant ones. If you type

```
. drop if _st==0
```

or equivalently

```
. keep if _st==1
```

or equivalently

```
. keep if _st
```

you will drop the irrelevant observations. All st commands produce the same results whether you do this or not. Be careful, however, if you are planning future stsets or stresets. Observations that are irrelevant right now might be relevant later.
One solution to this conundrum is to keep only those observations that are relevant after setting the entire history:

- \texttt{stset date, fail(code==9) origin(code==1422) after(code==1423)}
- \texttt{streset, past future}
- \texttt{keep if \_st}
- \texttt{streset}

As a final note, you may drop the irrelevant observations as marked by \_\texttt{st} = 0, but do not drop the \_\texttt{st} variable itself. The other \texttt{st} commands expect to find variable \_\texttt{st}.

### Sequencing of events within \( t \)

Consider the following bit of data:

<table>
<thead>
<tr>
<th>etime</th>
<th>failtime</th>
<th>fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

Note all the different events happening at time 5: the first observation fails, the second is censored, and the third enters.

What does it mean for something to happen at time 5? In particular, is it at least potentially possible for the second observation to have failed at time 5; that is, was it in the risk group when the first observation failed? How about the third observation? Was it in the risk group, and could it have potentially failed at time 5?

Stata sequences events within a time as follows:

- first, at time \( t \) the failures occur
- then, at time \( t + 0 \) the censorings are removed from the risk group
- finally, at time \( t + 0 + 0 \) the new entries are added to the risk group

Thus, to answer the questions:

Could the second observation have potentially failed at time 5? Yes.

Could the third observation have potentially failed at time 5? No, because it was not yet in the risk group.

By this logic, the following makes no sense:

<table>
<thead>
<tr>
<th>etime</th>
<th>failtime</th>
<th>fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

This would mark a subject as failing before being at risk. It would make no difference if \texttt{fail} were 0—the subject would then be marked as being censored too soon. Either way, \texttt{stset} would flag this as an error. If you had a subject who entered and immediately exited, you would code this as

<table>
<thead>
<tr>
<th>etime</th>
<th>failtime</th>
<th>fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.99</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>
Weights

\texttt{stset} allows you to specify \texttt{fweights}, \texttt{pweights}, and \texttt{iweights}.

\texttt{fweights} are Stata’s frequency or replication weights. Consider the data

\begin{verbatim}
 failtime  load  bearings  count
  100    15     0      3
  140    15     1      2
   97    20     0      1
\end{verbatim}

and the \texttt{stset} command

\begin{verbatim}
 . stset failtime [fw=count]
    failure event: (assumed to fail at time=failtime)
    obs. time interval: (0, failtime]
    exit on or before: failure
    weight: [fweight=count]
\end{verbatim}

\begin{verbatim}
 3  total observations
  0  exclusions
\end{verbatim}

\begin{verbatim}
 3  physical observations remaining, equal to
 6  weighted observations, representing
 6  failures in single-record/single-failure data
677  total analysis time at risk and under observation
    at risk from t = 0
    earliest observed entry t = 0
    last observed exit t = 140
\end{verbatim}

This combination is equivalent to the expanded data

\begin{verbatim}
 failtime  load  bearings
  100    15     0
  100    15     0
  100    15     0
  140    15     1
  140    15     1
   97    20     0
\end{verbatim}

and the command

\begin{verbatim}
 . stset failtime
\end{verbatim}

\texttt{pweights} are Stata’s sampling weights—the inverse of the probability that the subject was chosen from the population. \texttt{pweights} are typically integers, but they do not have to be. For instance, you might have

\begin{verbatim}
 time0  time  died  sex  reps
   0    300    1     0  1.50
   0    250    0     1  4.50
  30    147    1     0  2.25
\end{verbatim}

Here \texttt{reps} is how many patients each observation represents in the underlying population—perhaps when multiplied by 10. The \texttt{stset} command for these data is

\begin{verbatim}
 . stset time [pw=reps], origin(time time0) failure(died)
\end{verbatim}

For variance calculations, the scale of the \texttt{pweights} does not matter. \texttt{reps} in the 3 observations shown could just as well be 3, 9, and 4.5. Nevertheless, the scale of the \texttt{pweights} is used when you ask for counts. For instance, \texttt{stsum} would report the person-time at risk as

\begin{verbatim}
 (300 - 0) 1.5 + (250 - 0) 4.5 + (147 - 30) 2.25 = 1,838.25
\end{verbatim}
for the 3 observations shown. `stsum` would count that $1.5 + 2.25 = 3.75$ persons died, and so the incidence rate for these 3 observations would be $3.75/1838.25 = 0.0020$. The incidence rate is thus unaffected by the scale of the weights. Similarly, the coefficients and confidence intervals reported by, for instance, `streg, dist(exponential)` would be unaffected. The 95% confidence interval for the incidence rate would be $[0.0003, 0.0132]$, regardless of the scale of the weights.

If these 3 observations were examined unweighted, the incidence rate would be 0.0030 and the 95% confidence interval would be $[0.0007, 0.0120]$.

Finally, `stset` allows you to set `iweights`, which are Stata’s “importance” weights, but we recommend that you do not. `iweights` are provided for those who wish to create special effects by manipulating standard formulas. The `st` commands treat `iweights` just as they would `fweights`, although they do not require that the weights be integers, and push their way through conventional variance calculations. Thus results—counts, rates, and variances—depend on the scale of these weights.

### Data warnings and errors flagged by `stset`

When you `stset` your data, `stset` runs various checks to verify that what you are setting makes sense. `stset` refuses to set the data only if, in multiple-record, weighted data, weights are not constant within `ID`. Otherwise, `stset` merely warns you about any inconsistencies that it identifies.

Although `stset` will set the data, it will mark out records that it cannot understand; for instance,

```
. stset curdate, origin(time addate) failure(code==402) id(patid)
 id: patid
 failure event: code == 402
 obs. time interval: (curdate[_n-1], curdate]
 exit on or before: failure
 t for analysis: (time-origin)
 origin: time addate
```

<table>
<thead>
<tr>
<th>243 total observations</th>
<th>PROBABLE ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 event time missing (curdate&gt;=.)</td>
<td>PROBABLE ERROR</td>
</tr>
<tr>
<td>4 multiple records at same instant (curdate[_n-1]==curdate)</td>
<td>PROBABLE ERROR</td>
</tr>
</tbody>
</table>

| 238 observations remaining, representing 40 subjects 15 failures in single failure-per-subject data 1478 total analysis time at risk and under observation |
|-----------------|-----------------|
| at risk from t = 0 | earliest observed entry t = 0 |
| last observed exit t = 62 |

You must ensure that the result, after exclusions, is correct.

The warnings `stset` might issue include

- ignored because patid missing
- event time missing
- entry time missing
- entry on or after exit (etime>t)
- obs. end on or before enter()
- obs. end on or before origin()
- multiple records at same instant (t[_n-1]==t)
- overlapping records (t[_n-1]>entry time)
- weights invalid

`stset` sets `_st = 0` when observations are excluded for whatever reason. Thus observations with any of the above problems can be found among the `_st = 0` observations.
Using survival-time data in Stata

In the examples above, we have shown you how Stata expects survival-time data to be recorded. To summarize:

- Each subject’s history is represented by 1 or more observations in the dataset.
- Each observation documents a span of time. The observation must contain when the span ends (exit time) and may optionally contain when the span begins (entry time). If the entry time is not recorded, it is assumed to be 0 or, in multiple-record data, the exit time of the subject’s previous observation, if there is one. By previous, we mean that the data have already been temporally ordered on exit times within subject. The physical order of the observations in your dataset does not matter.
- Each observation documents an outcome associated with the exit time. Unless otherwise specified with failure(), 0 and missing mean censored, and nonzero means failed.
- Each observation contains other variables (called covariates) that are assumed to be constant over the span of time recorded by the observation.

Data rarely arrive in this neatly organized form. For instance, Kalbfleisch and Prentice (2002, 4–5) present heart transplant survival data from Stanford (Crowley and Hu 1977). These data can be converted into the correct st format in at least two ways. The first method is shown in example 11. A second, shorter, method using the st commands is described in example 3 of [ST] stsplit.

Example 11

Here we will describe the process that uses the standard Stata commands.

. use http://www.stata-press.com/data/r13/stan2, clear
   (Heart transplant data)
. describe
   Contains data from http://www.stata-press.com/data/r13/stan2.dta
   obs: 103 Heart transplant data
   vars: 5 30 Nov 2012 11:14
   size: 1,030

<table>
<thead>
<tr>
<th>variable name</th>
<th>storage type</th>
<th>display format</th>
<th>label</th>
<th>variable label</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>int</td>
<td>%8.0g</td>
<td></td>
<td>Patient Identifier</td>
</tr>
<tr>
<td>died</td>
<td>byte</td>
<td>%8.0g</td>
<td></td>
<td>Survival Status (1=dead)</td>
</tr>
<tr>
<td>stime</td>
<td>float</td>
<td>%8.0g</td>
<td></td>
<td>Survival Time (Days)</td>
</tr>
<tr>
<td>transplant</td>
<td>byte</td>
<td>%8.0g</td>
<td></td>
<td>Heart Transplant</td>
</tr>
<tr>
<td>wait</td>
<td>int</td>
<td>%8.0g</td>
<td></td>
<td>Waiting Time</td>
</tr>
</tbody>
</table>

Sorted by:

The data are from 103 patients selected as transplantation candidates. There is one record on each patient, and the important variables, from an st-command perspective, are

id the patient’s ID number
transplant whether the patient received a transplant
wait when (after acceptance) the patient received the transplant
stime when (after acceptance) the patient died or was censored
died the patient’s status at stime
To better understand, let’s examine two records from this dataset:

```
. list id transplant wait stime died if id==44 | id==16
```

<table>
<thead>
<tr>
<th></th>
<th>id</th>
<th>transplant</th>
<th>wait</th>
<th>stime</th>
<th>died</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>44</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>71</td>
<td>16</td>
<td>1</td>
<td>28</td>
<td>308</td>
<td>1</td>
</tr>
</tbody>
</table>

Patient 44 never did receive a new heart; he or she died 40 days after acceptance while still on the waiting list. Patient 16 did receive a new heart—28 days after acceptance—yet died 308 days after acceptance.

Our goal is to turn this into st data that contain the histories of each of these patients. That is, we want records that appear as

<table>
<thead>
<tr>
<th></th>
<th>id</th>
<th>t0</th>
<th>t1</th>
<th>died</th>
<th>posttran</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>28</td>
<td>308</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>0</td>
<td>40</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

or, even more explicitly, as

<table>
<thead>
<tr>
<th></th>
<th>id</th>
<th>t0</th>
<th>t1</th>
<th>stime</th>
<th>died</th>
<th>posttran</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>28</td>
<td>308</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>0</td>
<td>40</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The new variable, posttran, would be 0 before transplantation and 1 afterward.

Patient 44 would have one record in this new dataset recording that he or she died at time 40 and that posttran was 0 over the entire interval.

Patient 16, however, would have two records: one documenting the duration (0, 28], during which posttran was 0, and one documenting the duration (28, 308], during which posttran was 1.

Our goal is to take the first dataset and convert it into the second, which we can then stset. We make the transformation by using Stata’s other data management commands. One way we could do this is by typing

```
. expand 2 if transplant
(69 observations created)
. by id, sort: gen byte posttran = (_n==2)
. by id: gen t1 = stime if _n==_N
(69 missing values generated)
. by id: replace t1 = wait if _n==1 & transplant
(69 real changes made)
. by id: replace died=0 if _n==1 & transplant
(45 real changes made)
```

expand 2 if transplant duplicated the observations for patients who had transplant ≠ 0. Considering our two sample patients, we would now have the following data:

<table>
<thead>
<tr>
<th></th>
<th>id</th>
<th>transplant</th>
<th>wait</th>
<th>stime</th>
<th>died</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>28</td>
<td>308</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>28</td>
<td>308</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

We would have 1 observation for patient 44 and 2 identical observations for patient 16.
We then by id, sort: gen posttran = (_n==2), resulting in

<table>
<thead>
<tr>
<th>id</th>
<th>transp-t</th>
<th>wait</th>
<th>stime</th>
<th>died</th>
<th>posttran</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>1</td>
<td>28</td>
<td>308</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>28</td>
<td>308</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

This type of trickiness is discussed in [U] 13.7 Explicit subscripting. Statements such as _n==2 produce values 1 (meaning true) and 0 (meaning false), so new variable posttran will contain 1 or 0 depending on whether _n is or is not 2. _n is the observation counter and, combined with by id:, becomes the observation-within-ID counter. Thus we set posttran to 1 on second records and to 0 on all first records.

Finally, we produce the exit-time variable. Final exit time is just stime, and that is handled by the command by id: gen t1 = stime if _n==_N. _n is the observation-within-ID counter and _N is the total number of observations within id, so we just set the last observation on each patient to stime. Now we have

<table>
<thead>
<tr>
<th>id</th>
<th>transp-t</th>
<th>wait</th>
<th>stime</th>
<th>died</th>
<th>posttran</th>
<th>t1</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>1</td>
<td>28</td>
<td>308</td>
<td>1</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>28</td>
<td>308</td>
<td>1</td>
<td>1</td>
<td>308</td>
</tr>
<tr>
<td>44</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>1</td>
<td>0</td>
<td>40</td>
</tr>
</tbody>
</table>

All that is left to do is to fill in t1 with the value from wait on the interim records, meaning replace t1=wait if it is an interim record.

There are many ways we could identify the interim records. In the output above, we did it by

```
. by id: replace t1 = wait if _n==1 & transplant
```

meaning that an interim record is a first record of a person who did receive a transplant. More easily, but with more trickery, we could have just said

```
. replace t1=wait if t1>=.
```

because the only values of t1 left to be filled in are the missing ones. Another alternative would be

```
. by id: replace t1 = wait if _n==1 & _N==2
```

which would identify the first record of two-record pairs. There are many alternatives, but they would all produce the same thing:

<table>
<thead>
<tr>
<th>id</th>
<th>transp-t</th>
<th>wait</th>
<th>stime</th>
<th>died</th>
<th>posttran</th>
<th>t1</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>1</td>
<td>28</td>
<td>308</td>
<td>1</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>28</td>
<td>308</td>
<td>1</td>
<td>1</td>
<td>308</td>
</tr>
<tr>
<td>44</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>1</td>
<td>0</td>
<td>40</td>
</tr>
</tbody>
</table>

There is one more thing we must do, which is to reset died to contain 0 on the interim records:

```
. by id: replace died=0 if _n==1 & transplant
```

The result is

<table>
<thead>
<tr>
<th>id</th>
<th>transp-t</th>
<th>wait</th>
<th>stime</th>
<th>died</th>
<th>posttran</th>
<th>t1</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>1</td>
<td>28</td>
<td>308</td>
<td>0</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>28</td>
<td>308</td>
<td>1</td>
<td>1</td>
<td>308</td>
</tr>
<tr>
<td>44</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>1</td>
<td>0</td>
<td>40</td>
</tr>
</tbody>
</table>
We now have the desired result and are ready to \texttt{stset} our data:

```
. stset t1, failure(died) id(id)
 \hspace{1em} id: id
 \hspace{1em} failure event: died != 0 & died < .
 \hspace{1em} obs. time interval: (t1[_n-1], t1]
 \hspace{1em} exit on or before: failure

172 total observations
2 multiple records at same instant \hspace{1em} \textsc{probable error}
(t1[_n-1]==t1)
170 observations remaining, representing
102 subjects
74 failures in single-failure-per-subject data
31933 total analysis time at risk and under observation
at risk from t = 0
earliest observed entry t = 0
last observed exit t = 1799
```

Well, something went wrong. Two records were excluded. There are few enough data here that we
could just list the dataset and look for the problem, but let’s pretend otherwise. We want to find the
records that, within patient, are marked as exiting at the same time:

```
. by id: gen problem = t1==t1[_n-1]
. sort id died
. list id if problem

id
61. 38

. list id transplant wait stime died posttran t1 if id==38

<table>
<thead>
<tr>
<th>id</th>
<th>transplant</th>
<th>wait</th>
<th>stime</th>
<th>died</th>
<th>posttran</th>
<th>t1</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>38</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>61</td>
<td>38</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>
```

There is no typographical error in these data—we checked that variables \texttt{transplant}, \texttt{wait}, and
\texttt{stime} contain what the original source published. Those variables indicate that patient 38 waited 5
days for a heart transplant, received one on the fifth day, and then died on the fifth day, too.

That makes perfect sense, but not to Stata, which orders events within \(t\) as failures, followed by
censorings, followed by entries. Reading \(t1\), Stata went for this literal interpretation: patient 38 was
censored at time 5 with \texttt{posttran} = 0; then, at time 5, patient 38 died; and then, at time 5, patient
38 reentered the data, but this time with \texttt{posttran} = 1. That made no sense to Stata.

Stata’s sequencing of events may surprise you, but trust us, there are good reasons for it, and
really, the ordering convention does not matter. To fix this problem, we just have to put a little time
between the implied entry at time 5 and the subsequent death:
. replace t1 = 5.1 in 61
   (1 real change made)
. list id transplant wait stime died posttran t1 if id==38

<table>
<thead>
<tr>
<th>id</th>
<th>transplant</th>
<th>wait</th>
<th>stime</th>
<th>died</th>
<th>posttran</th>
<th>t1</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>38</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>61</td>
<td>38</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Now the data make sense both to us and to Stata: until time 5, the patient had posttran = 0; then, at time 5, the value of posttran changed to 1; and then, at time 5.1, the patient died.

. stset t1, id(id) failure(died)
   
   id: id
   failure event: died != 0 & died < .
   obs. time interval: [t1[_n-1], t1]
   exit on or before: failure

172  total observations
   0   exclusions

172  observations remaining, representing
103  subjects
75   failures in single-failure-per-subject data
31938.1  total analysis time at risk and under observation
   at risk from t = 0
   earliest observed entry t = 0
   last observed exit t = 1799
This dataset is now ready for use with all the other \texttt{st} commands. Here is an illustration:

\begin{verbatim}
   . use http://www.stata-press.com/data/r13/stan3, clear
   (Heart transplant data)
   . stset, noshow
   . stsum, by(posttran)

<table>
<thead>
<tr>
<th>posttran</th>
<th>time at risk</th>
<th>incidence</th>
<th>no. of subjects</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5936</td>
<td>.0050539</td>
<td>103</td>
<td>36</td>
<td>149</td>
<td>340</td>
</tr>
<tr>
<td>1</td>
<td>26002.1</td>
<td>.0017306</td>
<td>69</td>
<td>39</td>
<td>96</td>
<td>979</td>
</tr>
<tr>
<td>total</td>
<td>31938.1</td>
<td>.0023483</td>
<td>103</td>
<td>36</td>
<td>100</td>
<td>979</td>
</tr>
</tbody>
</table>

   . stcox age posttran surgery year
   Iteration 0:  log likelihood = -298.31514
   Iteration 1:  log likelihood = -289.7344
   Iteration 2:  log likelihood = -289.53498
   Iteration 3:  log likelihood = -289.53378
   Iteration 4:  log likelihood = -289.53378
   Refining estimates:
   Iteration 0:  log likelihood = -289.53378
   Cox regression -- Breslow method for ties
   No. of subjects = 103 Number of obs = 172
   No. of failures = 75
   Time at risk = 31938.1
   LR chi2(4) = 17.56
   Log likelihood = -289.53378
   Prob > chi2 = 0.0015

|    _t    | Haz. Ratio | Std. Err. |     z   | P>|z|  |    [95% Conf. Interval] |
|----------|------------|-----------|---------|------|-----------------------|
| age      | 1.030224   | .0143201  | 2.14    | 0.032| 1.002536   | 1.058677   |
| posttran | .9787243   | .3032597  | -0.07   | 0.945| .5332291   | 1.796416   |
| surgery  | .3738278   | .163204   | -2.25   | 0.024| .1588759   | .8796      |
| year     | .8873107   | .059808   | -1.77   | 0.076| .7775022   | 1.012628   |
\end{verbatim}

References


Also see

\texttt{[ST] snapspan} — Convert snapshot data to time-span data
\texttt{[ST] stdescribe} — Describe survival-time data
**Syntax**

**Split at designated times**

```
stspli newvar [if], { at(numlist) | every(#) } [stsplitDT_options]
```

**Split at failure times**

```
stspli [if], at(failures) [stsplitFT_options]
```

**Join episodes**

```
stjoin [, censored(numlist)]
```

---

**stsplitDT_options**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>at(numlist)</strong></td>
</tr>
<tr>
<td><strong>every(#)</strong></td>
</tr>
<tr>
<td><strong>after(spec)</strong></td>
</tr>
<tr>
<td><strong>trim</strong></td>
</tr>
<tr>
<td><strong>nopreserve</strong></td>
</tr>
</tbody>
</table>

*Either at(numlist) or every(#) is required with stsplit at designated times.*

---

**stsplitFT_options**

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>at(failures)</strong></td>
</tr>
<tr>
<td><strong>strata(varlist)</strong></td>
</tr>
<tr>
<td><strong>riskset(newvar)</strong></td>
</tr>
<tr>
<td><strong>nopreserve</strong></td>
</tr>
</tbody>
</table>

*at(failures) is required with stsplit at failure times.*

---

You must `stset` your dataset using the `id()` option before using `stsplit` and `stjoin`; see [ST] `stset`. `nopreserve` does not appear in the dialog box.
**Description**

`stsplit` with the `at(numlist)` or `every(#)` option splits episodes into two or more episodes at the implied time points since being at risk or after a time point specified by `after()`. Each resulting record contains the follow-up on one subject through one time band. Expansion on multiple time scales may be obtained by repeatedly using `stsplit`. `newvar` specifies the name of the variable to be created containing the observation’s category. The new variable records the interval to which each new observation belongs and is bottom coded.

`stsplit, at(failures)` performs episode splitting at the failure times (per stratum).

`stjoin` performs the reverse operation, namely, joining episodes back together when such can be done without losing information.

**Options for stsplit**

- `Main`

  `at(numlist)` or `every(#)` is required in syntax one; `at(failures)` is required for syntax two. These options specify the analysis times at which the records are to be split.

  `at(5(5)20)` splits records at $t = 5$, $t = 10$, $t = 15$, and $t = 20$.

  If `at([... max])` is specified, `max` is replaced by a suitably large value. For instance, to split records every five analysis-time units from time zero to the largest follow-up time in our data, we could find out what the largest time value is by typing `summarize _t` and then explicitly typing it into the `at()` option, or we could just specify `at(0(5)max)`.

  `every(#)` is a shorthand for `at(#(#)max)`; that is, episodes are split at each positive multiple of #.

  `after(spec)` specifies the reference time for `at()` or `every()`. Syntax one can be thought of as corresponding to `after(time of onset of risk)`, although you cannot really type this. You could type, however, `after(time=birthdate)` or `after(time=marrydate)`.

  `spec` has syntax

  $$\{time|t|_t\} = \{exp|\min(exp)|\asis(exp)\}$$

  where

  - `time` specifies that the expression be evaluated in the same time units as `timevar` in `stset timevar, ...`. This is the default.
  - `t` and `_t` specify that the expression be evaluated in units of analysis time. `t` and `_t` are synonyms; it makes no difference whether you specify one or the other.
  - `exp` specifies the reference time. For multiepisode data, `exp` should be constant within subject ID. `\min(exp)` specifies that for multiepisode data, the minimum of `exp` be taken within ID.
**Option for stjoin**

censored(numlist) specifies values of the failure variable, failvar, from stset..., failure(failvar...) that indicate “no event” (censoring).

If you are using stjoin to rejoin records after stsplit, you do not need to specify censored(). Just do not forget to drop the variable created by stsplit before typing stjoin. See example 4 below.

Neither do you need to specify censored() if, when you stset your dataset, you specified failure(failvar) and not failure(failvar=...). Then stjoin knows that failvar = 0 and failvar = . (missing) correspond to no event. Two records can be joined if they are contiguous and record the same data and the first record has failvar = 0 or failvar = ., meaning no event at that time.

You may need to specify censored(), and you probably do if, when you stset the dataset, you specified failure(failvar=...). If stjoin is to join records, it needs to know what events do not count and can be discarded. If the only such event is failvar = ., you do not need to specify censored().

**Remarks and examples**

Remarks are presented under the following headings:

- What stsplit does and why
- Using stsplit to split at designated times
- Time versus analysis time
- Splitting data on recorded ages
- Using stsplit to split at failure times

**What stsplit does and why**

stsplt splits records into two or more records on the basis of analysis time or on a variable that depends on analysis time, such as age. stsplit takes data like

```
id _t0 _t x1 x2 _d
1 0 18 12 11 1
```
and produces

\[
\begin{array}{ccccccc}
\text{id} & \_\text{t0} & \_\text{t} & \text{x1} & \text{x2} & \_\text{d} & \text{tcat} \\
1 & 0 & 5 & 12 & 11 & 0 & 0 \\
1 & 5 & 10 & 12 & 11 & 0 & 5 \\
1 & 10 & 18 & 12 & 11 & 1 & 10 \\
\end{array}
\]

or

\[
\begin{array}{ccccccc}
\text{id} & \_\text{t0} & \_\text{t} & \text{x1} & \text{x2} & \_\text{d} & \text{agecat} \\
1 & 0 & 7 & 12 & 11 & 0 & 30 \\
1 & 7 & 17 & 12 & 11 & 0 & 40 \\
1 & 17 & 18 & 12 & 11 & 1 & 50 \\
\end{array}
\]

The above alternatives record the same underlying data: subject 1 had $x_1 = 12$ and $x_2 = 11$ during $0 < t \leq 18$, and at $t = 18$, the subject failed.

The difference between the two alternatives is that the first breaks out the analysis times 0–5, 5–10, and 10–20 (although subject 1 failed before $t = 20$). The second breaks out age 30–40, 40–50, and 50–60. You cannot tell from what is presented above, but at $t = 0$, subject 1 was 33 years old.

In our example, that the subject started with one record is not important. The original data on the subject might have been

\[
\begin{array}{ccccccc}
\text{id} & \_\text{t0} & \_\text{t} & \text{x1} & \text{x2} & \_\text{d} \\
1 & 0 & 14 & 12 & 11 & 0 \\
1 & 14 & 18 & 12 & 9 & 1 \\
\end{array}
\]

and then we would have obtained

\[
\begin{array}{ccccccc}
\text{id} & \_\text{t0} & \_\text{t} & \text{x1} & \text{x2} & \_\text{d} & \text{tcat} \\
1 & 0 & 5 & 12 & 11 & 0 & 0 \\
1 & 5 & 10 & 12 & 11 & 0 & 5 \\
1 & 10 & 14 & 12 & 11 & 0 & 10 \\
1 & 14 & 18 & 12 & 9 & 1 & 10 \\
\end{array}
\]

or

\[
\begin{array}{ccccccc}
\text{id} & \_\text{t0} & \_\text{t} & \text{x1} & \text{x2} & \_\text{d} & \text{agecat} \\
1 & 0 & 7 & 12 & 11 & 0 & 30 \\
1 & 7 & 14 & 12 & 11 & 0 & 40 \\
1 & 14 & 17 & 12 & 9 & 0 & 40 \\
1 & 17 & 18 & 12 & 9 & 1 & 50 \\
\end{array}
\]

Also we could just as easily have produced records with analysis time or age recorded in single-year categories. That is, we could start with

\[
\begin{array}{ccccccc}
\text{id} & \_\text{t0} & \_\text{t} & \text{x1} & \text{x2} & \_\text{d} \\
1 & 0 & 14 & 12 & 11 & 0 \\
1 & 14 & 18 & 12 & 9 & 1 \\
\end{array}
\]

and produce

\[
\begin{array}{ccccccc}
\text{id} & \_\text{t0} & \_\text{t} & \text{x1} & \text{x2} & \_\text{d} & \text{tcat} \\
1 & 0 & 1 & 12 & 11 & 0 & 0 \\
1 & 1 & 2 & 12 & 11 & 0 & 1 \\
1 & 2 & 3 & 12 & 11 & 0 & 2 \\
\end{array}
\]

or

\[
\begin{array}{ccccccc}
\text{id} & \_\text{t0} & \_\text{t} & \text{x1} & \text{x2} & \_\text{d} & \text{agecat} \\
1 & 0 & 1 & 12 & 11 & 0 & 30 \\
1 & 1 & 2 & 12 & 11 & 0 & 31 \\
1 & 2 & 3 & 12 & 11 & 0 & 32 \\
\end{array}
\]
Moreover, we can even do this splitting on more than one variable. Let’s go back and start with

\[
\begin{array}{cccccc}
\text{id} & \_t0 & \_t & x1 & x2 & \_d \\
1 & 0 & 18 & 12 & 11 & 1
\end{array}
\]

Let’s split it into the analysis-time intervals 0–5, 5–10, and 10–20, and let’s split it into 10-year age intervals 30–40, 40–50, and 50–60. The result would be

\[
\begin{array}{cccccccc}
\text{id} & \_t0 & \_t & x1 & x2 & \_d & tcat & agecat \\
1 & 0 & 5 & 12 & 11 & 0 & 0 & 30 \\
1 & 5 & 7 & 12 & 11 & 0 & 5 & 30 \\
1 & 7 & 10 & 12 & 11 & 0 & 5 & 40 \\
1 & 10 & 17 & 12 & 11 & 0 & 10 & 40 \\
1 & 17 & 18 & 12 & 11 & 1 & 10 & 50
\end{array}
\]

Why would we want to do any of this?

We might want to split on a time-dependent variable, such as age, if we want to estimate a Cox proportional hazards model and include current age among the regressors (although we could instead use \texttt{stcox}'s \texttt{tvc()} option) or if we want to make tables by age groups (see [ST] \texttt{strate}).

### Using \texttt{stsplit} to split at designated times

\texttt{stsplit}'s syntax to split at designated times is, ignoring other options,

\[
\begin{align*}
stsplit & \texttt{newvar [if], at(numlist)} \\
stsplit & \texttt{newvar [if], at(numlist) after(spec)}
\end{align*}
\]

\texttt{at()} specifies the analysis times at which records are to be split. Typing \texttt{at(5 10 15)} splits records at the indicated analysis times and separates records into the four intervals 0–5, 5–10, 10–15, and 15+.

In the first syntax, the splitting is done on analysis time, \texttt{t}. In the second syntax, the splitting is done on 5, 10, and 15 analysis-time units after the time given by \texttt{after(spec)}.

In either case, \texttt{stsplit} also creates \texttt{newvar} containing the interval to which each observation belongs. Here \texttt{newvar} would contain 0, 5, 10, and 15; it would contain 0 if the observation occurred in the interval 0–5, 5 if the observation occurred in the interval 5–10, and so on. To be precise,

<table>
<thead>
<tr>
<th>Category</th>
<th>Precise meaning</th>
<th>\texttt{newvar} value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–5</td>
<td>$(-\infty, 5]$</td>
<td>0</td>
</tr>
<tr>
<td>5–10</td>
<td>$(5, 10]$</td>
<td>5</td>
</tr>
<tr>
<td>10–15</td>
<td>$(10, 15]$</td>
<td>10</td>
</tr>
<tr>
<td>15+</td>
<td>$(15, \infty)$</td>
<td>15</td>
</tr>
</tbody>
</table>

If any of the \texttt{at()} numbers are negative (which would be allowed only by specifying the \texttt{after()} option and would be unusual), the first category is labeled one less than the minimum value specified by \texttt{at()}.

Consider the data

\[
\begin{array}{ccccc}
\text{id} & \text{yr0} & \text{yr1} & \text{yrborn} & x1 & \text{event} \\
1 & 1990 & 1995 & 1960 & 5 & 52 \\
2 & 1993 & 1997 & 1964 & 3 & 47
\end{array}
\]

stsplit — Split and join time-span records 505
In these data, subjects became at risk in yr0. The failure event of interest is event = 47, so we stset our dataset by typing

```
. stset yr1, id(id) origin(time yr0) failure(event==47)
(output omitted)
```

and that results in

```
 id _t0 _t yr0 yr1 yrborn x1 event _d
 1 0 5 1990 1995 1960 5 52 0
 2 0 4 1993 1997 1964 3 47 1
```

In the jargon of st, variables _t0 and _t record the span of each record in analysis-time (t) units. Variables yr0 and yr1 also record the time span, but in time units. Variable _d records 1 for failure and 0 otherwise.

Typing stsplit cat, at(2 4 6 8) would split the records on the basis of analysis time:

```
. stsplit cat, at(2 4 6 8)
(3 observations (episodes) created)
```

```
 order id _t0 _t yr0 yr1 yrborn x1 event _d cat
 1. 1 0 2 1990 1992 1960 5 . 0 0
 2. 1 2 4 1990 1994 1960 5 . 0 2
 3. 1 4 5 1990 1995 1960 5 52 0 4
 4. 2 0 2 1993 1995 1964 3 . 0 0
 5. 2 2 4 1993 1997 1964 3 47 1 2
```

The first record, which represented the analysis-time span (0,5], was split into three records: (0,2], (2,4], and (4,5]. The yrborn and x1 values from the single record were duplicated in (0,2], (2,4], and (4,5]. The original event variable was changed to missing at t = 2 and t = 4 because we do not know the value of event; all we know is that event is 52 at t = 5. The _d variable was correspondingly set to 0 for t = 2 and t = 4 because we do know, at least, that the subject did not fail.

stsplit also keeps your original time variables up to date in case you want to streset or re-stset your dataset. yr1 was updated, too.

Now let’s go back to our original dataset after we stset it but before we split it,

```
 id _t0 _t yr0 yr1 yrborn x1 event _d
 1 0 5 1990 1995 1960 5 52 0
 2 0 4 1993 1997 1964 3 47 1
```

and consider splitting on age. In 1990, subject 1 is age 1990 – yrborn = 1990 – 1960 = 30, and subject 2 is 29. If we type

```
. stsplit acat, at(30 32 34) after(time=yrborn)
```

we will split the data according to

<table>
<thead>
<tr>
<th>Age</th>
<th>Called acat</th>
</tr>
</thead>
<tbody>
<tr>
<td>age &lt;= 30</td>
<td>acat=0</td>
</tr>
<tr>
<td>30 &lt; age &lt;= 32</td>
<td>acat=30</td>
</tr>
<tr>
<td>32 &lt; age &lt;= 34</td>
<td>acat=32</td>
</tr>
<tr>
<td>34 &lt; age</td>
<td>acat=34</td>
</tr>
</tbody>
</table>
The result will be

```
 id _t0 _t yr0 yr1 yrborn x1 event _d acat
 1 0 2 1990 1992 1960 5 . 0 30
 1 2 4 1990 1994 1960 5 . 0 32
 1 4 5 1990 1995 1960 5 52 0 34
 2 0 1 1993 1994 1964 3 . 0 0
 2 1 3 1993 1996 1964 3 . 0 30
 2 3 4 1993 1997 1964 3 47 1 32
```

The original record on subject 1 corresponding to (0, 5] was split into (0, 2], (2, 4], and (4, 5] because those are the \( t \) values at which age becomes 32 and 34.

You can `stsplit` the data more than once. Now having these data, if we typed

```
 . stsplit cat, at(2 4 6 8)
```

the result would be

```
 id _t0 _t yr0 yr1 yrborn x1 event _d acat cat
 1 0 2 1990 1992 1960 5 . 0 30 0
 1 2 4 1990 1994 1960 5 . 0 32 2
 1 4 5 1990 1995 1960 5 52 0 34 4
 2 0 1 1993 1994 1964 3 . 0 0 0
 2 1 3 1993 1995 1964 3 . 0 30 0
 2 2 3 1993 1996 1964 3 . 0 30 2
 2 3 4 1993 1997 1964 3 47 1 32 2
```

Whether we typed

```
 . stsplit acat, at(30 32 34) after(time=yrborn)
 . stsplit cat, at(2 4 6 8)
```

or

```
 . stsplit cat, at(2 4 6 8)
 . stsplit acat, at(30 32 34) after(time=yrborn)
```

would make no difference.

### Time versus analysis time

Be careful using the `after()` option if, when you `stset` your dataset, you specified `stset`'s `scale()` option. We say be careful, but actually we mean be appreciative, because `stsplit` will do just what you would expect if you did not think too hard.

When you split a record on a time-dependent variable, `at()` is still specified in analysis-time units, meaning units of time/scale().

For instance, if your original data recorded time as Stata dates, that is, number of days since 1960,

```
 id date0 date1 birthdate x1 event
 1 14apr1993 27mar1995 12jul1959 5 52
 ...
```

and you previously `stset` your dataset by typing

```
 . stset date1, id(id) origin(time date0) scale(365.25) ...
```

and you now wanted to split on the age implied by `birthdate`, you would specify the split points in years since birth:

```
 . stsplit agecat, at(20(5)60) after(time=birthdate)
```

at(20(5)60) means to split the records at the ages, measured in years, of 20, 25, \ldots, 60.
When you \texttt{stset} your dataset, you basically told \texttt{st} how you recorded times (you recorded them as dates) and how to map such times (dates) into analysis time. That was implied by what you typed, and all of \texttt{st} remembers that. Typing
\begin{verbatim}
   . stsplit agecat, at(20(5)60) after(time=birth)
\end{verbatim}
tells \texttt{stsplit} to split the data on 20, 25, ..., 60 analysis-time units after birthdate for each subject.

### Splitting data on recorded ages

Recorded ages can sometimes be tricky. Consider the data
\begin{verbatim}
id  yr0  yr1  age  x1  event
1  1980 1996  30   5   52
...
\end{verbatim}

When was \texttt{age} = 30 recorded—1980 or 1996? Put aside that question because things are about to get worse. Say that you \texttt{stset} this dataset so that \texttt{yr0} is the \texttt{origin()},
\begin{verbatim}
id  _t0  _t  yr0  yr1  age  x1  event
1  0   16  1980 1996  30   5   52
...
\end{verbatim}
and then split on analysis time by typing \texttt{stsplit cat, at(5(5)20)}. The result would be
\begin{verbatim}
id  _t0  _t  yr0  yr1  age  x1  event
1  0   5   1980 1985  30   5   .
1  5   10  1980 1990  30   5   .
1 15   16  1980 1996  30   5   52
\end{verbatim}
Regardless of the answer to the question on when age was measured, \texttt{age} is most certainly not 30 in the newly created records, although you might argue that age at baseline was 30 and that is what you wanted, anyway.

The only truly safe way to deal with ages is to convert them back to birthdates at the outset. Here we would, early on, type
\begin{verbatim}
   . gen bdate = yr1 - age
   (if age was measured at yr1)
\end{verbatim}
or
\begin{verbatim}
   . gen bdate = yr0 - age
   (if age was measured at yr0)
\end{verbatim}

In fact, \texttt{stsplit} tries to protect you from making age errors. Suppose that you did not do as we just recommended. Say that age was measured at \texttt{yr1}, and you typed, knowing that \texttt{stsplit} wants a date,
\begin{verbatim}
   . stsplit acat, at(20(5)50) after(time= yr1-age)
\end{verbatim}
on these already \texttt{stsplit} data. \texttt{stsplit} will issue the error message “after() should be constant within id”. To use the earliest date, you need to type
\begin{verbatim}
   . stsplit acat, at(20(5)50) after(time= min(yr1-age))
\end{verbatim}

Nevertheless, be aware that when you \texttt{stsplit} data, if you have recorded ages in your data, and if the records were not already split to control for the range of those ages, then age values, just like all the other variables, are carried forward and no longer reflect the age of the newly created record.
Example 1: Splitting on age

Consider the data from a heart disease and diet survey. The data arose from a study described more fully in Morris, Marr, and Clayton (1977) and analyzed in Clayton and Hills (1993). (Their results differ slightly from ours because the dataset has been updated.)

```
use http://www.stata-press.com/data/r13/diet
(Diet data with dates)
describe
Contains data from http://www.stata-press.com/data/r13/diet.dta
obs: 337 Diet data with dates
vars: 11 1 May 2013 19:01
size: 16,513

storage display value
variable name type format label variable label
id float %9.0g Subject identity number
fail int %8.0g Outcome (CHD = 1 3 13)
job int %8.0g Occupation
month byte %8.0g month of survey
energy float %9.0g Total energy (1000kcal/day)
height float %9.0g Height (cm)
weight float %9.0g Weight (kg)
hienergy float %9.0g Indicator for high energy
doe double %td Date of entry
dox double %td Date of exit
dob double %td Date of birth
```

In this dataset, the outcome variable, `fail`, has been coded as 0, 1, 3, 5, 12, 13, 14, and 15. Codes 1, 3, and 13 indicated coronary heart disease (CHD), other nonzero values code other events such as cancer, and 0 is used to mean “no event” at the end of the study.

The variable `hienergy` is coded 1 if the total energy consumption is more than 2.75 Mcal and 0 otherwise.

We would like to expand the data, using age as the time scale with 10-year age bands. We do this by first `stset`ting the dataset, specifying the date of birth as the origin.

```
. stset dox, failure(fail) origin(time dob) enter(time doe) scale(365.25) id(id)
 id: id
 failure event: fail != 0 & fail < .
ob. time interval: (dox[_n-1], dox]
 enter on or after: time doe
 exit on or before: failure
 t for analysis: (time-origin)/365.25
 origin: time dob

 337 total observations
 0 exclusions
```

```
337 observations remaining, representing
337 subjects
80 failures in single-failure-per-subject data
4603.669 total analysis time at risk and under observation
at risk from t = 0
earliest observed entry t = 30.07529
last observed exit t = 69.99863
```
The origin is set to date of birth, making time-since-birth analysis time, and the scale is set to 365.25, so that time since birth is measured in years.

Let's list a few records and verify that the analysis-time variables \(_t0\) and \(_t\) are indeed recorded as we expect:

```
. list id dob doe dox fail _t0 _t if id==1 | id==34

| id | dob | doe | dox | fail | _t0 | _t
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>04jan1915</td>
<td>16aug1964</td>
<td>01dec1976</td>
<td>0</td>
<td>49.615332</td>
<td>61.908282</td>
</tr>
<tr>
<td>34</td>
<td>12jun1899</td>
<td>16apr1959</td>
<td>31dec1966</td>
<td>3</td>
<td>59.841205</td>
<td>67.550992</td>
</tr>
</tbody>
</table>
```

We see that patient 1 was 49.6 years old at time of entry into our study and left at age 61.9. Patient 34 entered the study at age 59.8 and exited the study with CHD at age 67.6.

Now we can split the data by age:

```
. stsplit ageband, at(40(10)70)
(418 observations (episodes) created)
```

`stsplit` added 418 observations to the dataset in memory and generated a new variable, `ageband`, which identifies each observation's age group.

```
. list id _t0 _t ageband fail height if id==1 | id==34

<table>
<thead>
<tr>
<th>id</th>
<th>_t0</th>
<th>_t</th>
<th>ageband</th>
<th>fail</th>
<th>height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49.615332</td>
<td>50</td>
<td>40</td>
<td>.</td>
<td>175.387</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>60</td>
<td>50</td>
<td>.</td>
<td>175.387</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>61.908282</td>
<td>60</td>
<td>0</td>
<td>175.387</td>
</tr>
<tr>
<td>61</td>
<td>59.841205</td>
<td>60</td>
<td>50</td>
<td>3</td>
<td>177.8</td>
</tr>
</tbody>
</table>
```

The single record for the subject with \(id = 1\) has expanded to three records. The first refers to the age band 40–49, coded 40, and the subject spends \(_t - _t0 = 0.384668\) years in this band. The second refers to the age band 50–59, coded 50, and the subject spends 10 years in this band, and so on. The follow-up in each of the three bands is censored (\(\text{fail} = .\)). The single record for the subject with \(id = 34\) is expanded to two age bands; the follow-up for the first band was censored (\(\text{fail} = .\)), and the follow-up for the second band ended in CHD (\(\text{fail} = 3\)).

The values for variables that do not change with time, such as `height`, are simply repeated in the new records. This can lead to much larger datasets after expansion. Dropping unneeded variables before using `split` may be necessary.

---

**Example 2: Splitting on age and time in study**

To use `stsplit` to expand the records on two time scales simultaneously, such as age and time in study, we can first expand on the age scale as described in example 1, and then on the time-in-study scale with the command.
By splitting the data by using two time scales, we partitioned the data into time cells corresponding to a Lexis diagram as described, for example, in Clayton and Hills (1993). Also see Keiding (1998) for an overview of Lexis diagrams. Each new observation created by splitting the data records the time that the individual spent in a Lexis cell. We can obtain the time spent in the cell by calculating the difference $t - t_0$. For example, the subject with id = 1 spent 0.384668 years (50 - 49.615332) in the cell corresponding to age 40–49 and study time 0–5, and 4.615332 years (54.615332 - 50) in the cell for age 50–59 and study time 0–5.

We can also do these expansions in reverse order, that is, split first on study time and then on age.

---

**Example 3: Explanatory variables that change with time**

In the previous examples, time, in the form of age or time in study, is the explanatory variable to be studied or controlled for, but in some studies other explanatory variables also vary with time. The *stsplit* command can sometimes be used to expand the records so that in each new record such an explanatory variable is constant over time. For example, in the Stanford heart data (see [ST] *stset*), we would like to split the data and generate the explanatory variable *posttran*, which takes the value 0 before transplantation and 1 thereafter. The follow-up must therefore be divided into time before transplantation and time after.

We first generate for each observation an entry time and an exit time that preserve the correct follow-up time in such a way that the time of transplants is the same for all individuals. By summarizing *wait*, the time to transplant, we obtain its maximum value of 310. By selecting a value greater than this maximum, say, 320, we now generate two new variables:

```
use http://www.stata-press.com/data/r13/stanford, clear
(Heart transplant data)
generate enter = 320 - wait
generate exit = 320 + stime
```

We have created a new artificial time scale where all transplants are coded as being performed at time 320. By defining *enter* and *exit* in this manner, we maintain the correct total follow-up time for each patient. We now *stset* and *stsplit* the data:
stset exit, enter(time enter) failure(died) id(id)
    id: id
    failure event: died != 0 & died < .
obs. time interval: (exit[_n-1], exit]
enter on or after: time enter
exit on or before: failure

103 total observations
0 exclusions

103 observations remaining, representing
103 subjects
75 failures in single-failure-per-subject data
34589.1 total analysis time at risk and under observation
at risk from t = 0
earliest observed entry t = 10
last observed exit t = 2119

stsplit posttran, at(0,320)
(69 observations (episodes) created)
.replace posttran=0 if transplant==0
(34 real changes made)
.replace posttran=1 if posttran==320
(69 real changes made)

We replaced posttran in the last command so that it is now a 0/1 indicator variable. We can now generate our follow-up time, t1, as the difference between our analysis-time variables, list the data, and stset the dataset.

.generate t1 = _t - _t0
.list id enter exit _t0 _t posttran if id==16 | id==44

<table>
<thead>
<tr>
<th>id</th>
<th>enter</th>
<th>exit</th>
<th>_t0</th>
<th>_t</th>
<th>posttran</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>44</td>
<td>320</td>
<td>360</td>
<td>320</td>
<td>0</td>
</tr>
<tr>
<td>110</td>
<td>16</td>
<td>292</td>
<td>320</td>
<td>292</td>
<td>0</td>
</tr>
<tr>
<td>111</td>
<td>16</td>
<td>292</td>
<td>628</td>
<td>320</td>
<td>1</td>
</tr>
</tbody>
</table>

.stset t1, failure(died) id(id)
    id: id
    failure event: died != 0 & died < .
obs. time interval: (t1[_n-1], t1]
exit on or before: failure

172 total observations
0 exclusions

172 observations remaining, representing
103 subjects
75 failures in single-failure-per-subject data
31938.1 total analysis time at risk and under observation
at risk from t = 0
earliest observed entry t = 0
last observed exit t = 1799
Using stsplit to split at failure times

To split data at failure times, you would use `stsplit` with the following syntax, ignoring other options:

\[
\text{stsplit } [\text{if}], \text{ at(failures)}
\]

This form of episode splitting is useful for Cox regression with time-varying covariates. Splitting at the failure times is useful because of a property of the maximum partial-likelihood estimator for a Cox regression model: the likelihood is evaluated only at the times at which failures occur in the data, and the computation depends only on the risk pools at those failure times. Changes in covariates between failure times do not affect estimates for a Cox regression model. Thus, to fit a model with time-varying covariates, all you have to do is define the values of these time-varying covariates at all failure times at which a subject was at risk (Collett 2003, chap. 8). After splitting at failure times, you define time-varying covariates by referring to the system variable \texttt{t} (analysis time) or the `timevar` variable used to `stset` the data.

After splitting at failure times, all \texttt{st} commands still work fine and produce the same results as before splitting. To fit parametric models with time-varying covariates, it does not suffice to specify covariates at failure times. Stata can fit “piecewise constant” models by manipulating data using `stsplit`, `at()` or `every()`.

Example 4: Splitting on failure times to test the proportional-hazards assumption

Collett (2003, 187–190) presents data on 26 ovarian cancer patients who underwent two different chemotherapy protocols after a surgical intervention. Here are a few of the observations:

```
. use http://www.stata-press.com/data/r13/ocancer, clear
. list patient time cens treat age rdisea in 1/6, separator(0)
```

<table>
<thead>
<tr>
<th>patient</th>
<th>time</th>
<th>cens</th>
<th>treat</th>
<th>age</th>
<th>rdisea</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>66</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>38</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>72</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>53</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>43</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>59</td>
<td>2</td>
</tr>
</tbody>
</table>

The `treat` variable indicates the chemotherapy protocol administered, `age` records the age of the patient at the beginning of the treatment, and `rdisea` records each patient’s residual disease after surgery. After `stsetting` this dataset, we fit a Cox proportional-hazards regression model on `age` and `treat` to ascertain the effect of treatment, controlling for age.
. stset time, failure(cens) id(patient)
  id: patient
  failure event: cens != 0 & cens < .
  obs. time interval: (time[_n-1], time]
  exit on or before: failure

  26 total observations
  0 exclusions

  26 observations remaining, representing
  26 subjects
  12 failures in single-failure-per-subject data
  15588 total analysis time at risk and under observation

  at risk from t = 0
  earliest observed entry t = 0
  last observed exit t = 1227

. stcox age treat, nolog nohr
  failure _d: cens
  analysis time _t: time
  id: patient

  Cox regression -- no ties
  No. of subjects = 26  Number of obs = 26
  No. of failures = 12
  Time at risk = 15588
  LR chi2(2) = 15.82
  Log likelihood = -27.073767  Prob > chi2 = 0.0004

_t	Coef.  Std. Err.  z  P>	z	[95% Conf. Interval]		
age	0.1465698	0.0458537	3.20	0.001	0.0566982 0.2364415
treat	-0.7959324	0.6329411	-1.26	0.209	-2.036474 0.4446094

One way to test the proportional-hazards assumption is to include in the model a term for the interaction between age and time at risk, which is a continuously varying covariate. This can be easily done by first splitting the data at the failure times and then generating the interaction term.

. stsplit, at(failures)
  (12 failure times)
  (218 observations (episodes) created)
. generate tage = age * _t
. stcox age treat tage, nolog nohr
  failure _d: cens
  analysis time _t: time
  id: patient

  Cox regression -- no ties
  No. of subjects = 26  Number of obs = 244
  No. of failures = 12
  Time at risk = 15588
  LR chi2(3) = 16.36
  Log likelihood = -26.806607  Prob > chi2 = 0.0010

_t	Coef.  Std. Err.  z  P>	z	[95% Conf. Interval]		
age	0.2156499	0.1126093	1.92	0.055	-0.0050602 0.43636
treat	-0.6635945	0.6695492	-0.99	0.322	-1.975887 0.6486978
tage| -0.0002031 | 0.0002832| -0.72| 0.473 | -0.0007582 0.000352 |
Other time-varying interactions of age and time at risk could be generated. For instance,

-generate lntage = age * ln(_t)
generate dage = age * (_t >= 500)

Although in most analyses in which we include interactions we also include main effects, if we include in a Cox regression a multiplicative interaction between analysis time (or any transformation) and some covariate, we should not include the analysis time as a covariate in \texttt{stcox}. The analysis time is constant within each risk set, and hence, its effect is not identified.

\textbf{Technical note}

If our interest really were just in performing this test of the proportional-hazards assumption, we would not have had to use \texttt{stsplit} at all. We could have just typed

\begin{verbatim}
  . stcox age treat, tvc(age)
\end{verbatim}

to have fit a model including \texttt{t*age}, and if we wanted instead to include \texttt{ln(t)*age} or \texttt{age*t} ≥ 500, we could have typed

\begin{verbatim}
  . stcox age treat, tvc(age) texp(ln(_t))
  . cstoc age treat, tvc(age) texp(_t >= 500)
\end{verbatim}

Still, it is worth understanding how \texttt{stsplit} could be used to obtain the same results for instances when \texttt{stcox}’s \texttt{tvc()} and \texttt{texp()} options are not rich enough to handle the desired specification.

\textbf{Technical note}

Assume that we want to control for \texttt{rdisea} as a stratification variable. If the data are already split at all failure times, we can proceed with

\begin{verbatim}
  . stcox age treat tage, strata(rdisea)
\end{verbatim}

If the data are not yet split, and memory is scarce, then we could just split the data at the failure times within the respective stratum. That is, with the original data in memory, we could type

\begin{verbatim}
  . stset time, failure(cens) id(patient)
  . stsplit, at(failures) strata(rdisea)
  . generate tage = age * _t
  . stcox treat age tage, strata(rdisea)
\end{verbatim}

This would save memory by reducing the size of the split dataset.

\textbf{Technical note}

Of course, the above model could also be obtained by typing

\begin{verbatim}
  . stcox age treat, tvc(age) strata(rdisea)
\end{verbatim}

without splitting the data.
Example 5: Cox regression versus conditional logistic regression

Cox regression with the "exact partial" method of handling ties is tightly related to conditional logistic regression. In fact, we can perform Cox regression via `clogit`, as illustrated in the following example using Stata's cancer data. First, let's fit the Cox model.

```
. use http://www.stata-press.com/data/r13/cancer, clear
(Patient Survival in Drug Trial)
. generate id = _n
. stset studytim, failure(died) id(id)
 id: id
 failure event: died != 0 & died < .
 obs. time interval: (studytime[_n-1], studytime]
 exit on or before: failure
 48 total observations
 0 exclusions
48 observations remaining, representing
48 subjects
31 failures in single-failure-per-subject data
744 total analysis time at risk and under observation
 at risk from t = 0
 earliest observed entry t = 0
 last observed exit t = 39
. stcox age drug, nolog nohr exactp
 failure _d: died
 analysis time _t: studytime
 id: id
Cox regression -- exact partial likelihood
No. of subjects = 48 Number of obs = 48
No. of failures = 31 LR chi2(2) = 38.13
Time at risk = 744 Prob > chi2 = 0.0000
Log likelihood = -73.10556

| _t | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------|--------|-----------|-----------|--------|---------------------------|
| age | .1169906 | .0374955 | 3.12 | 0.002 | .0435008,.1904805 |
| drug | -1.664873 | .3437487 | -4.84 | 0.000 | -2.338608, -.9911376 |
```

We will now perform the same analysis by using `clogit`. To do this, we first split the data at failure times, specifying the `riskset()` option so that a risk set identifier is added to each observation. We then fit the conditional logistic regression, using `_d` as the outcome variable and the risk set identifier as the grouping variable.
Example 6: Joining data that have been split with stsplit

Let's return to the first example. We split the diet data into age bands, using the following commands:

```
. use http://www.stata-press.com/data/r13/diet, clear
(Diet data with dates)
. stset dox, failure(fail) origin(time dob) enter(time doe) scale(365.25) id(id)
(output omitted)
. stsplit ageband, at(40(10)70)
(418 observations (episodes) created)
```

We can rejoin the data by typing stjoin:

```
. stjoin
(option censored(0) assumed)
(0 obs. eliminated)
```

Nothing happened! stjoin will combine records that are contiguous and record the same data. Here, when we split the data, stsplit created the new variable `ageband`, and that variable takes on different values across the split observations. Remember to drop the variable that stsplit creates:

```
. drop ageband
. stjoin
(option censored(0) assumed)
(418 obs. eliminated)
```
Wilhelm Lexis (1837–1914) was born near Aachen in Germany. He studied law, mathematics, and science at the University of Bonn and developed interests in the social sciences during a period in Paris. Lexis held posts at universities in Strassburg (now Strasbourg, in France), Dorpat (now Tartu, in Estonia), Freiburg, Breslau (now Wroclaw, in Poland), and Göttingen. During this peripatetic career, he carried out original work in statistics on the analysis of dispersion, foreshadowing the later development of chi-squared and analysis of variance.

Acknowledgments

\texttt{stsplit} and \texttt{stjoin} are extensions of \texttt{lexis} by David Clayton of the Cambridge Institute for Medical Research and Michael Hills (retired) of the London School of Hygiene and Tropical Medicine (Clayton and Hills 1995). The original \texttt{stsplit} and \texttt{stjoin} commands were written by Jeroen Weesie of the Department of Sociology at Utrecht University, The Netherlands (Weesie 1998a, 1998b), as was the revised \texttt{stsplit} command.

References


Also see

[ST] \texttt{stset} — Declare data to be survival-time data
Syntax

stsum [if] [in] [ , by(varlist) nosh]

You must stset your data before using stsum; see [ST] stset.

by is allowed; see [D] by.

fweights, iweights, and pweights may be specified using stset; see [ST] stset.

Menu

Statistics > Survival analysis > Summary statistics, tests, and tables > Summarize survival-time data

Description

stsum presents summary statistics: time at risk; incidence rate; number of subjects; and the 25th, 50th, and 75th percentiles of survival time.

stsum can be used with single- or multiple-record or single- or multiple-failure st data.

Options

by(varlist) requests separate summaries for each group along with an overall total. Observations are in the same group if they have equal values of the variables in varlist. varlist may contain any number of string or numeric variables.

noshow prevents stsum from showing the key st variables. This option is seldom used because most people type stset, show or stset, noshow to set whether they want to see these variables mentioned at the top of the output of every st command; see [ST] stset.

Remarks and examples

Remarks are presented under the following headings:

Single-failure data
Multiple-failure data
Here is an example of `stsum` with single-record survival data:

```
use http://www.stata-press.com/data/r13/page2
stset, noshow
stsum
```

<table>
<thead>
<tr>
<th>incidence</th>
<th>no. of subjects</th>
<th>Survival time</th>
</tr>
</thead>
<tbody>
<tr>
<td>time at risk</td>
<td></td>
<td>25%</td>
</tr>
<tr>
<td>total</td>
<td>9118</td>
<td>40</td>
</tr>
</tbody>
</table>

```
stsum, by(group)
```

<table>
<thead>
<tr>
<th>group</th>
<th>incidence</th>
<th>no. of subjects</th>
<th>Survival time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>time at risk</td>
<td></td>
<td>25%</td>
</tr>
<tr>
<td>1</td>
<td>4095</td>
<td>19</td>
<td>190</td>
</tr>
<tr>
<td>2</td>
<td>5023</td>
<td>21</td>
<td>232</td>
</tr>
<tr>
<td>total</td>
<td>9118</td>
<td>40</td>
<td>198</td>
</tr>
</tbody>
</table>

`stsum` works equally well with multiple-record survival data. Here is a summary of the multiple-record Stanford heart transplant data introduced in [ST] `stset`:

```
use http://www.stata-press.com/data/r13/stan3
(stan3: Heart transplant data)
stsum failure _d: died
analysis time _t: t1
id: id
```

<table>
<thead>
<tr>
<th>incidence</th>
<th>no. of subjects</th>
<th>Survival time</th>
</tr>
</thead>
<tbody>
<tr>
<td>time at risk</td>
<td></td>
<td>25%</td>
</tr>
<tr>
<td>total</td>
<td>31938.1</td>
<td>103</td>
</tr>
</tbody>
</table>

`stsum` with the `by()` option may produce results with multiple-record data that, at first, you may think are in error.

```
stsum, by(posttran) noshow
```

<table>
<thead>
<tr>
<th>posttran</th>
<th>incidence</th>
<th>no. of subjects</th>
<th>Survival time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>time at risk</td>
<td></td>
<td>25%</td>
</tr>
<tr>
<td>0</td>
<td>5936</td>
<td>103</td>
<td>36</td>
</tr>
<tr>
<td>1</td>
<td>26002.1</td>
<td>69</td>
<td>39</td>
</tr>
<tr>
<td>total</td>
<td>31938.1</td>
<td>103</td>
<td>36</td>
</tr>
</tbody>
</table>

For the time at risk, $5,936 + 26,002.1 = 31,938.1$, but, for the number of subjects, $103 + 69 \neq 103$. The `posttran` variable is not constant for the subjects in this dataset:

```
stset, noshow
stvary posttran
```

<table>
<thead>
<tr>
<th>subjects for whom the variable is</th>
</tr>
</thead>
<tbody>
<tr>
<td>variable</td>
</tr>
<tr>
<td>posttran</td>
</tr>
</tbody>
</table>

In this dataset, subjects have one or two records. All subjects were eligible for heart transplantation. They have one record if they die or are lost because of censoring before transplantation, and they...
have two records if the operation was performed. Then the first record records their survival up to transplantation and the second records their subsequent survival. posttran is 0 in the first record and 1 in the second.

Thus all 103 subjects have records with posttran = 0, and when stsum reported results for this group, it summarized the pretransplantation survival. The incidence of death was 0.005, and median survival time was 149 days.

The posttran = 1 line of stsum’s output summarizes the posttransplantation survival: 69 patients underwent transplantation, incidence of death was 0.002, and median survival time was 96 days. For these data, this is not 96 more days, but 96 days in total. That is, the clock was not reset at transplantation. Thus, without attributing cause, we can describe the differences between the groups as an increased hazard of death at early times followed by a decreased hazard later.

### Multiple-failure data

If you simply type stsum with multiple-failure data, the reported survival time is the survival time to the first failure, assuming that the hazard function is not indexed by number of failures.

Here we have some multiple-failure data:

```
. use http://www.stata-press.com/data/r13/mfail2
. stset t, id(id) failure(d) time0(t0) exit(time .) noshow
 id: id
 failure event: d != 0 & d < .
 obs. time interval: (t0, t]
 exit on or before: time .
. stsum
```

<table>
<thead>
<tr>
<th>time at risk</th>
<th>incidence rate</th>
<th>no. of subjects</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>435444</td>
<td>.0018556</td>
<td>926</td>
<td>201</td>
<td>420</td>
</tr>
</tbody>
</table>

To understand this output, let’s also obtain output for each failure separately:

```
. stgen nf = nfailures()
. stsum, by(nf)
```

<table>
<thead>
<tr>
<th>time at risk</th>
<th>incidence rate</th>
<th>no. of subjects</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>435444</td>
<td>.0018556</td>
<td>926</td>
<td>201</td>
<td>420</td>
</tr>
</tbody>
</table>

The stgen command added, for each subject, a variable containing the number of previous failures. For a subject, up to and including the first failure, nf is 0. Then nf is 1 up to and including the second failure, and then it is 2, and so on; see \[ST\] stgen.

The first line of the output, corresponding to nf = 0, states that among those who had experienced no failures yet, the incidence rate for (first) failure is 0.0020. The distribution of the time to the first failure is as shown.

Similarly, the second line, corresponding to nf = 1, is for those who have already experienced one failure. The incidence rate for (second) failures is 0.0018, and the distribution of time of (second) failures is as shown.
When we simply typed `stsum`, we obtained the same information shown as the total line of the more detailed output. The total incidence rate is easy to interpret, but what is the “total” survival-time distribution? It is an estimate of the distribution of the time to the first failure assuming that the hazard function $h(t)$ is the same across failures—that the second failure is no different from the first failure. This is an odd definition of “same” because the clock, $t$, is not reset in $h(t)$. What is the hazard of a failure—any failure—at time $t$? The answer is $h(t)$.

Another definition of “same” would have it that the hazard of a failure is given by $h(\tau)$, where $\tau$ is the time since last failure—that the process repeats. These definitions are different unless $h(\cdot)$ is a constant function of $t$ ($\tau$).

So let’s examine these multiple-failure data under the process-replication idea. The key variables in these st data are `id`, `t0`, `t`, and `d`:

```
. st
-> stset t, id(id) failure(d) time0(t0) exit(time .) noshow
 id: id
 failure event: d != 0 & d < .
 obs. time interval: (t0, t]
 exit on or before: time .
```

Our goal is, for each subject, to reset `t0` and `t` to 0 after every failure event. We are going to have to trick Stata, or at least trick `stset`, because it will not let us set data where the same subject has multiple records summarizing the overlapping periods. So, the trick is to create a new `id` variable that is different for every `ID–nf` combination (remember, `nf` is the variable we previously created that records the number of prior failures). Then all the “new” subjects can have their clocks start at time 0:

```
. egen newid = group(id nf)
. sort newid t
. by newid: replace t = t - t0[1]
 (808 real changes made)
. by newid: gen newt0 = t0 - t0[1]
. stset t, failure(d) id(newid) time0(newt0)
 id: newid
 failure event: d != 0 & d < .
 obs. time interval: (newt0, t]
 exit on or before: failure
```

```
1734 total observations
 0 exclusions

1734 observations remaining, representing
1734 subjects
808 failures in single-failure-per-subject data
435444 total analysis time at risk and under observation
 at risk from t = 0
 earliest observed entry t = 0
 last observed exit t = 797
```

`stset` no longer thinks that we have multiple-failure data. Whereas with `id`, subjects had multiple failures, `newid` gives a unique identity to each `ID–nf` combination. Each “new” subject has at most one failure.
. stsum, by(nf)
  
  failure _d: d
  analysis time _t: t
  id: newid

<table>
<thead>
<tr>
<th>nf</th>
<th>time at risk</th>
<th>incidence rate</th>
<th>no. of subjects</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>263746</td>
<td>.0020057</td>
<td>926</td>
<td>196</td>
<td>399</td>
<td>604</td>
</tr>
<tr>
<td>1</td>
<td>121890</td>
<td>.0018131</td>
<td>529</td>
<td>194</td>
<td>384</td>
<td>580</td>
</tr>
<tr>
<td>2</td>
<td>38807</td>
<td>.0014946</td>
<td>221</td>
<td>210</td>
<td>444</td>
<td>562</td>
</tr>
<tr>
<td>3</td>
<td>11001</td>
<td>0</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>435444</td>
<td>.0018556</td>
<td>1734</td>
<td>201</td>
<td>404</td>
<td>602</td>
</tr>
</tbody>
</table>

Compare this table with the one we previously obtained. The incidence rates are the same, but the survival times differ because now we measure the times from one failure to the next. Previously we measured the time from a fixed point. The time between events in these data appears to be independent of event number.

Technical note

The method shown for converting multiple-failure data to replicated-process single-event failure data is completely general. The generic outline of the conversion process is

```
 . stgen nf = nfailures()
 . egen newid = group(id nf)
 . sort newid
 . by newid: replace t = t - t0[1]
 . by newid: gen newt0 = t0 - t0[1]
 . stset t, failure(d) id(newid) t0(newt0)
```

where id, t, t0, and d are the names of your key survival-time variables.

Once you have done this to your data, you need exercise only one caution. If, in fitting models with stcox, streg, etc., you wish to obtain robust estimates of variance, you should include the vce(cluster id) option.

When you specify the vce(robust) option, stcox, streg, etc., assume that you mean vce(cluster stset_id_variable), which, here, will be vce(cluster newid). The data, however, are really more clustered than that. Two “subjects” with different newid values may, in fact, be the same real subject. vce(cluster id) is what is appropriate.

Stored results

stsum stores the following in r():

Scalars
- r(p25): 25th percentile
- r(p50): 50th percentile
- r(p75): 75th percentile
- r(risk): time at risk
- r(ir): incidence rate
- r(N_sub): number of subjects
Methods and formulas

The 25th, 50th, and 75th percentiles of survival times are obtained from \( S(t) \), the Kaplan–Meier product-limit estimate of the survivor function. The 25th percentile, for instance, is obtained as the minimum value of \( t \) such that \( S(t) \leq 0.75 \).

Also see

[ST] stci — Confidence intervals for means and percentiles of survival time
[ST] stdescribe — Describe survival-time data
[ST] stgen — Generate variables reflecting entire histories
[ST] stir — Report incidence-rate comparison
[ST] stptime — Calculate person-time, incidence rates, and SMR
[ST] sts — Generate, graph, list, and test the survivor and cumulative hazard functions
[ST] stset — Declare data to be survival-time data
[ST] stvary — Report variables that vary over time
Title

**sttocc — Convert survival-time data to case–control data**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Menu</th>
<th>Description</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Syntax</strong></td>
<td><strong>Menu</strong></td>
<td><strong>Description</strong></td>
<td><strong>Options</strong></td>
</tr>
<tr>
<td>sttocc [varlist] [, options]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>options</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Main</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>match(matchvarlist)</td>
<td>match cases and controls on analysis time and specified categorical variables; default is to match on analysis time only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>number(#)</td>
<td>use # controls for each case; default is number(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nodots</td>
<td>suppress displaying dots during calculation</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Options</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>generate(case set time)</td>
<td>new variable names; default is _case, _set, and _time</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You must stset your data before using sttocc; see [ST] stset.

fweights, iweights, and pweights may be specified using stset; see [ST] stset.

---

**Menu**

Statistics > Survival analysis > Setup and utilities > Convert survival-time data to case-control data

**Description**

*sttocc* generates a nested case–control study dataset from a cohort-study dataset by sampling controls from the risk sets. For each case, the controls are chosen randomly from those members of the cohort who are at risk at the failure time of the case. That is, the resulting case–control sample is matched with respect to analysis time—the time scale used to compute risk sets. The following variables are added to the dataset:

- _case_ coded 0 for controls, 1 for cases
- _set_ case–control ID; matches cases and controls that belong together
- _time_ analysis time of the case’s failure

The names of these three variables can be changed by specifying the `generate()` option. `varlist` defines variables that, in addition to those used in the creation of the case–control study, will be retained in the final dataset. If `varlist` is not specified, all variables are carried over into the resulting dataset.

When the resulting dataset is analyzed as a matched case–control study, odds ratios will estimate corresponding rate-ratio parameters in the proportional hazards model for the cohort study.

Randomness in the matching is obtained using Stata’s `runiform()` function. To ensure that the sample truly is random, you should set the random-number seed; see [R] set seed.
Options

Main

match(matchvarlist) specifies more categorical variables for matching controls to cases. When match() is not specified, cases and controls are matched with respect to time only. If match(matchvarlist) is specified, the cases will also be matched by matchvarlist.

number(#) specifies the number of controls to draw for each case. The default is 1, even though this is not a sensible choice.

nodots requests that dots not be placed on the screen at the beginning of each case–control group selection. By default, dots are displayed to show progress.

Options

generate(case set time) specifies variable names for the three new variables; the default is _case, _set, and _time.

Remarks and examples

Nested case–control studies are an attractive alternative to full Cox regression analysis, particularly when time-varying explanatory variables are involved. They are also attractive when some explanatory variables involve laborious coding. For example, you can create a file with a subset of variables for all subjects in the cohort, generate a nested case–control study, and go on to code the remaining data only for those subjects selected.

In the same way as with Cox regression, the results of the analysis are critically dependent on the choice of analysis time (time scale). The choice of analysis time may be calendar time—so that controls would be chosen from subjects still being monitored on the date that the case fails—but other time scales, such as age or time in study, may be more appropriate in some studies. Remember that the analysis time set in selecting controls is implicitly included in the model in subsequent analysis.

match() requires that controls also be matched to the case with respect to other categorical variables, such as sex. This produces an analysis closely mirroring stratified Cox regression. If we wanted to match on calendar time and 5-year age bands, we could first type stsplit ageband ... to create the age bands and then specify match(ageband) on the sttocc command. Analyzing the resulting data as a matched case–control study would estimate rate ratios in the underlying cohort that are controlled for calendar time (very finely) and age (less finely). Such analysis could be carried out by Mantel–Haenszel (odds ratio) calculations, for example, using mhodds, or by conditional logistic regression using clogit.

When ties occur between entry times, censoring times, and failure times, the following convention is adopted:

Entry time < Failure time < Censoring time

Thus censored subjects and subjects entering at the failure time of the case are included in the risk set and are available for selection as controls. Tied failure times are broken at random. See Clayton and Hills (1997) for more information.

Example 1: Creating a nested case–control study

Using the diet data introduced in example 1 of [ST] stsplit, we will illustrate the use of sttocc, letting age be analysis time. Controls are chosen from subjects still being monitored at the age at which the case fails.
. use http://www.stata-press.com/data/r13/diet
   (Diet data with dates)
. stset dox, failure(fail) enter(time doe) id(id) origin(time dob) scale(365.25)
    id: id
    failure event: fail != 0 & fail < .
    obs. time interval: (dox[_n-1], dox]
    enter on or after: time doe
    exit on or before: failure
    t for analysis: (time-origin)/365.25
    origin: time dob

     337  total observations
     0   exclusions

     337  observations remaining, representing
     337  subjects
     80   failures in single-failure-per-subject data
     4603.669 total analysis time at risk and under observation
                  at risk from t =    0
                  earliest observed entry t = 30.07529
                  last observed exit t = 69.99863

. set seed 9123456
. sttocc, match(job) n(5) nodots
    failure _d: fail
    analysis time _t: (dox-origin)/365.25
    origin: time dob
    enter on or after: time doe
    id: id
    matching for: job
There were 2 tied times involving failure(s)
 - failures assumed to precede censorings,
 - tied failure times split at random
There are 80 cases
Sampling 5 controls for each case

The above two commands create a new dataset in which there are five controls per case, matched on job, with the age of the subjects when the case failed recorded in the variable _time. The case indicator is given in _case and the matched set number, in _set. Because we did not specify the optional varlist, all variables are carried over into the new dataset.

We can verify that the controls were correctly selected:

   . gen ageentry=(doe-dob)/365.25
   . gen ageexit=(dox-dob)/365.25
   . sort _set _case id
. list _set id _case _time ageentry ageexit job, sepby(_set)

<table>
<thead>
<tr>
<th>_set</th>
<th>id</th>
<th>_case</th>
<th>_time</th>
<th>ageentry</th>
<th>ageexit</th>
<th>job</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>37</td>
<td>0</td>
<td>42.57358</td>
<td>35.2115</td>
<td>52.67351</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>57</td>
<td>0</td>
<td>42.57358</td>
<td>40.04107</td>
<td>56.5859</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>86</td>
<td>0</td>
<td>42.57358</td>
<td>38.14921</td>
<td>54.10815</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>92</td>
<td>0</td>
<td>42.57358</td>
<td>36.67625</td>
<td>52.38877</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>42.57358</td>
<td>36.15332</td>
<td>46.86653</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>90</td>
<td>1</td>
<td>42.57358</td>
<td>31.4141</td>
<td>42.57358</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>203</td>
<td>0</td>
<td>47.8987</td>
<td>41.26215</td>
<td>61.22108</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>213</td>
<td>0</td>
<td>47.8987</td>
<td>47.23614</td>
<td>67.02532</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>219</td>
<td>0</td>
<td>47.8987</td>
<td>41.86721</td>
<td>61.74127</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>313</td>
<td>0</td>
<td>47.8987</td>
<td>41.50582</td>
<td>57.05133</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>316</td>
<td>0</td>
<td>47.8987</td>
<td>40.68994</td>
<td>56.23545</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>196</td>
<td>1</td>
<td>47.8987</td>
<td>45.46475</td>
<td>47.8987</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>57</td>
<td>0</td>
<td>47.964408</td>
<td>40.04107</td>
<td>56.5859</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>71</td>
<td>0</td>
<td>47.964408</td>
<td>47.52909</td>
<td>64.57221</td>
</tr>
<tr>
<td>479</td>
<td>80</td>
<td>136</td>
<td>0</td>
<td>68.596851</td>
<td>58.41205</td>
<td>69.99863</td>
</tr>
<tr>
<td>480</td>
<td>80</td>
<td>108</td>
<td>1</td>
<td>68.596851</td>
<td>55.72074</td>
<td>68.59686</td>
</tr>
</tbody>
</table>

(output omitted)

The controls do indeed belong to the appropriate risk set. The controls in each set enter at an age that is less than the age of the case at failure, and they exit at an age that is greater than the age of the case at failure. To estimate the effect of high energy, use `clogit`, just as you would for any matched case–control study:

. clogit _case hienergy, group(_set) or
Iteration 0: log likelihood = -142.31278
Iteration 1: log likelihood = -142.31276
Iteration 2: log likelihood = -142.31276
Conditional (fixed-effects) logistic regression
Number of obs = 480
LR chi2(1) = 2.06
Prob > chi2 = 0.1516
Log likelihood = -142.31276
Pseudo R2 = 0.0072

|   _case | Odds Ratio | Std. Err. |     z  |   P>|z| |    [95% Conf. Interval] |
|---------|------------|-----------|-------|-------|-------------------------|
| hienergy| .7026801   | .1734294  | -1.43 | 0.153 | .433183 1.13984 |

Acknowledgments

The original version of `sttocc` was written by David Clayton of the Cambridge Institute for Medical Research and Michael Hills (retired) of the London School of Hygiene and Tropical Medicine.

References

Also see

[ST] stbase — Form baseline dataset
[ST] stdescribe — Describe survival-time data
[ST] stsplit — Split and join time-span records
sttoct — Convert survival-time data to count-time data

Syntax

```
sttoct newfailvar newcensvar [newentvar] [, options]
```

## Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>by(varlist)</code></td>
<td>reflect counts by group, where groups are defined by observations with equal values of <code>varlist</code></td>
</tr>
<tr>
<td><code>replace</code></td>
<td>proceed with transformation, even if current data are not saved</td>
</tr>
<tr>
<td><code>noshow</code></td>
<td>do not show st setting information</td>
</tr>
</tbody>
</table>

You must `stset` your data before using `sttoct`; see [ST] stset.

weights, iweights, and pweights may be specified using `stset`; see [ST] stset.

There is no dialog-box interface for `sttoct`.

## Description

`sttoct` converts survival-time (st) data to count-time (ct) data; see [ST] ct. At present, there is absolutely no reason that you would want to do this.

## Options

- `by(varlist)` specifies that counts reflect counts by group where the groups are defined by observations with equal values of `varlist`.
- `replace` specifies that it is okay to proceed with the transformation, even though the current dataset has not been saved on disk.
- `noshow` prevents `sttoct` from showing the key st variables. This option is seldom used because most people type `stset, show` or `stset, noshow` to set whether they want to see these variables mentioned at the top of every st command; see [ST] stset.

## Remarks and examples

`sttoct` is a never-used command that is included only for completeness. The definition of ct data is found in [ST] ct. In the current version of Stata, all you can do with ct data is convert the data to st data (which thus provides access to Stata’s survival analysis capabilities to those with ct data), so there is little point in converting st data to ct data.

The converted dataset will contain

- `varlist` from `by(varlist)`, if specified
- `t` the exit-time variable previously `stset`
- `newfailvar` number of failures at `t`
- `newcensvar` number of censored at `t` (after failures)
- `newentvar` if specified, number of entries at `t` (after censorings)
The resulting dataset will be `ctset` automatically.

There are two forms of the `sttoct` command:

1. `sttoct failvar censvar, ...`
2. `sttoct failvar censvar entvar, ...`

That is, specifying `entvar` makes a difference.

**Case 1: entvar not specified**

This is possible only if

a. the risk is not recurring;

b. the original `st` data are single-record data, or if the data are multiple-record data, all subjects enter at time 0 and have no gaps thereafter; and

c. if `by(varlist)` is specified, subjects do not have changing values of the variables in `varlist` over their histories.

If you do not specify `entvar`, `sttoct` verifies that (a), (b), and (c) are true. If the assumptions are true, `sttoct` converts your data and counts each subject only once. That is, in multiple-record data, all thrashing (censoring followed by immediate reenter with different covariates) is removed.

**Case 2: entvar specified**

Any kind of survival-time data can be converted to count-time data with an entry variable. You can convert your data in this way whether assumptions (a), (b), and (c) are true or not.

When you specify a third variable, thrashing is not removed, even if it could be—even if assumptions (a), (b), and (c) are true.

**Also see**

[ST] `ct` — Count-time data

[ST] `st_is` — Survival analysis subroutines for programmers

[ST] `sttocc` — Convert survival-time data to case–control data
**Title**

```
stvary — Report variables that vary over time
```

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Menu</th>
<th>Description</th>
<th>Option</th>
<th>Remarks and examples</th>
<th>Stored results</th>
<th>Reference</th>
<th>Also see</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Syntax</strong></td>
<td><strong>Menu</strong></td>
<td><strong>Description</strong></td>
<td><strong>Option</strong></td>
<td><strong>Remarks and examples</strong></td>
<td><strong>Stored results</strong></td>
<td><strong>Reference</strong></td>
<td><strong>Also see</strong></td>
</tr>
<tr>
<td><code>stvary [varlist] [if] [in] [, noshow]</code></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>You must <code>stset</code> your data before using <code>stvary</code>; see [ST] <code>stset</code>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>by is allowed; see [D] <code>by</code>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>fweights</code>, <code>iweights</code>, and <code>pweights</code> may be specified using <code>stset</code>; see [ST] <code>stset</code>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Menu**

Statistics > Survival analysis > Setup and utilities > Report variables that vary over time

**Description**

`stvary` is for use with multiple-record datasets, for which `id()` has been `stset`. It reports whether values of variables within subject vary over time and reports their pattern of missing values. Although `stvary` is intended for use with multiple-record st data, it may be used with single-record data as well, but this produces little useful information.

`stvary` ignores weights, even if you have set them. `stvary` summarizes the variables in the computer or data sense of the word.

**Option**

```
Main
```  
noshow prevents `stvary` from showing the key st variables. This option is seldom used because most people type `stset`, `show` or `stset`, `noshow` to set whether they want to see these variables mentioned at the top of the output of every st command; see [ST] `stset`.

**Remarks and examples**

Consider a multiple-record dataset. A subject’s sex, presumably, does not change, but his or her age might. `stvary` allows you to verify that values vary in the way that you expect:
. use http://www.stata-press.com/data/r13/stan3
(Heart transplant data)
. stvary
   failure _d: died
   analysis time _t: t1
   id: id

subjects for whom the variable is
never always sometimes
variable constant varying missing missing missing
year 103 0 103 0 0
age 103 0 103 0 0
stime 103 0 103 0 0
surgery 103 0 103 0 0
transplant 103 0 103 0 0
wait 103 0 103 0 0
posttran 34 69 103 0 0

That 103 values for year are “constant” does not mean that year itself is a constant—it means merely that, for each subject, the value of year does not change across the records. Whether the values of year vary across subjects is still an open question.

Now look at the bottom of the table: posttran is constant over time for 34 subjects and varies for the remaining 69.

Below we have another dataset, and we will examine just two of the variables:
. use http://www.stata-press.com/data/r13/stvaryex
. stvary sex drug

subjects for whom the variable is
never always sometimes
variable constant varying missing missing missing
sex 119 1 119 3 1
drug 121 2 123 0 0

Clearly, there are errors in the sex variable; for 119 of the subjects, sex does not change over time, but for one, it does. Also we see that we do not know the sex of three of the patients, but for another, we sometimes know it and sometimes do not. The latter must be a simple data-construction error. As for drug, we see that for two of our patients, the drug administered varied over time. Perhaps this is an error, or perhaps those two patients were treated differently from all the rest.

Stored results

stvary stores the following in r():

Scalars
r(cons) number of subjects for whom variable is constant when not missing
r(varies) number of subjects for whom nonmissing values vary
r(never) number of subjects for whom variable is never missing
r(always) number of subjects for whom variable is always missing
r(miss) number of subjects for whom variable is sometimes missing
Reference


Also see

[ST] stdescribe — Describe survival-time data
[ST] stfill — Fill in by carrying forward values of covariates
[ST] stset — Declare data to be survival-time data
**Glossary**

**accelerated failure-time model.** A model in which everyone has, in a sense, the same survivor function, \( S(\tau) \), and an individual’s \( \tau_j \) is a function of his or her characteristics and of time, such as \( \tau_j = t \ast \exp(\beta_0 + \beta_1 x_{1j} + \beta_2 x_{2j}) \).

**accretion period or recruitment period or accrual.** The accrual period (or recruitment period) is the period during which subjects are being enrolled (recruited) into a study. Also see follow-up period.

**administrative censoring.** Administrative censoring is the right-censoring that occurs when the study observation period ends. All subjects complete the course of the study and are known to have experienced either of two outcomes at the end of the study: survival or failure. This type of censoring should not be confused with withdrawal and loss to follow-up. Also see censored, censoring, left-censoring, and right-censoring.

**AFT, accelerated failure time.** See accelerated failure-time model.

**analysis time.** Analysis time is like time, except that 0 has a special meaning: \( t = 0 \) is the time of onset of risk, the time when failure first became possible.

Analysis time is usually not what is recorded in a dataset. A dataset of patients might record calendar time. Calendar time must then be mapped to analysis time.

The letter \( t \) is reserved for time in analysis-time units. The term time is used for time measured in other units.

The origin is the time corresponding to \( t = 0 \), which can vary subject to subject. Thus \( t = \text{time} - \text{origin} \).

**at risk.** A subject is at risk from the instant the first failure event becomes possible and usually stays that way until failure, but a subject can have periods of being at risk and not at risk.

**attributable fraction.** An attributable fraction is the reduction in the risk of a disease or other condition of interest when a particular risk factor is removed.

**baseline.** In survival analysis, baseline is the state at which the covariates, usually denoted by the row vector \( x \), are zero. For example, if the only measured covariate is systolic blood pressure, the baseline survivor function would be the survivor function for someone with zero systolic blood pressure. This may seem ridiculous, but covariates are usually centered so that the mathematical definition of baseline (covariate is zero) translates into something meaningful (mean systolic blood pressure).

**boundary kernel.** A boundary kernel is a special kernel used to smooth hazard functions in the boundaries of the data range. Boundary kernels are applied when the epan2, biweight, or rectangle kernel() is specified with stcurve, hazard or sts graph, hazard.

**case–control studies.** In case–control studies, cases meeting a fixed criterion are matched to noncases ex post to study differences in possible covariates. Relative sample sizes are usually fixed at 1:1 or 1:2 but sometimes vary once the survey is complete. In any case, sample sizes do not reflect the distribution in the underlying population.

**cause-specific hazard.** In a competing-risks analysis, the cause-specific hazard is the hazard function that generates the events of a given type. For example, if heart attack and stroke are competing events, then the cause-specific hazard for heart attacks describes the biological mechanism behind heart attacks independently of that for strokes. Cause-specific hazards can be modeled using Cox regression, treating the other events as censored.
censored, censoring, left-censoring, and right-censoring. An observation is left-censored when the exact time of failure is not known; it is merely known that the failure occurred before \( t_l \). Suppose that the event of interest is becoming employed. If a subject is already employed when first interviewed, his outcome is left-censored.

An observation is right-censored when the time of failure is not known; it is merely known that the failure occurred after \( t_r \). If a patient survives until the end of a study, the patient’s time of death is right-censored.

In common usage, censored without a modifier means right-censoring.

Also see truncation, left-truncation, and right-truncation.

CIF. See cumulative incidence function.

cohort studies. In cohort studies, a group that is well defined is monitored over time to track the transition of noncases to cases. Cohort studies differ from incidence studies in that they can be retrospective as well as prospective.

competing risks. Competing risks models are survival-data models in which the failures are generated by more than one underlying process. For example, death may be caused by either heart attack or stroke. There are various methods for dealing with competing risks. One direct way is to duplicate failures for one competing risk as censored observations for the other risk and stratify on the risk type. Another is to directly model the cumulative incidence of the event of interest in the presence of competing risks. The former method uses \( \text{stcox} \) and the latter, \( \text{stcrreg} \).

confounding. In the analysis of epidemiological tables, factor or interaction effects are said to be confounded when the effect of one factor is combined with that of another. For example, the effect of alcohol consumption on esophageal cancer may be confounded with the effects of age, smoking, or both. In the presence of confounding, it is often useful to stratify on the confounded factors that are not of primary interest, in the above example, age and smoking.

count-time data. See ct data.

covariates. Covariates are the explanatory variables that appear in a model. For instance, if survival time were to be explained by age, sex, and treatment, then those variables would be the covariates. Also see time-varying covariates.

cross-sectional or prevalence studies. Cross-sectional studies sample distributions of healthy and diseased subjects in the population at one point in time.

crude estimate. A crude estimate has not been adjusted for the effects of other variables. Disregarding a stratification variable, for example, yields a crude estimate.

crude estimate. ct stands for count time. ct data are an aggregate organized like a life table. Each observation records a time, the number known to fail at that time, the number censored, and the number of new entries. See \([ST]\) ctset.

cumulative hazard. See hazard, cumulative hazard, and hazard ratio.

cumulative incidence estimator. In a competing-risks analysis, the cumulative incidence estimator estimates the cumulative incidence function (CIF). Assume for now that you have one event of interest (type 1) and one competing event (type 2). The cumulative incidence estimator for type 1 failures is then obtained by

\[
\widehat{\text{CIF}}_1(t) = \sum_{j: t_j \leq t} \widehat{h}_1(t_j) \widehat{S}(t_{j-1})
\]
with
\[ \hat{S}(t) = \prod_{j: t_j \leq t} \left\{ 1 - \hat{h}_1(t_j) - \hat{h}_2(t_j) \right\} \]

The \( t_j \) index the times at which events (of any type) occur, and \( \hat{h}_1(t_j) \) and \( \hat{h}_2(t_j) \) are the cause-specific hazard contributions for type 1 and type 2, respectively. \( \hat{S}(t) \) estimates the probability that you are event free at time \( t \).

The above generalizes to multiple competing events in the obvious way.

**cumulative incidence function.** In a competing-risks analysis, the cumulative incidence function, or CIF, is the probability that you will observe the event of primary interest before a given time. Formally,
\[ \text{CIF}(t) = P(T \leq t \text{ and event type of interest}) \]
for time-to-failure, \( T \).

**cumulative subhazard.** See subhazard, cumulative subhazard, and subhazard ratio.

**DFBETA.** A DFBETA measures the change in the regressor’s coefficient because of deletion of that subject. Also see partial DFBETA.

**effect size.** The effect size is the size of the clinically significant difference between the treatments being compared, often expressed as the hazard ratio (or the log of the hazard ratio) in survival analysis.

**event.** An event is something that happens at an instant in time, such as being exposed to an environmental hazard, being diagnosed as myopic, or becoming employed.

The failure event is of special interest in survival analysis, but there are other equally important events, such as the exposure event, from which analysis time is defined.

In st data, events occur at the end of the recorded time span.

**event of interest.** In a competing-risks analysis, the event of interest is the event that is the focus of the analysis, that for which the cumulative incidence in the presence of competing risks is estimated.

**exponential test.** The exponential test is the parametric test comparing the hazard rates, \( \lambda_1 \) and \( \lambda_2 \), (or log hazards) from two independent exponential (constant only) regression models with the null hypothesis \( H_0: \lambda_2 - \lambda_1 = 0 \) (or \( H_0: \ln(\lambda_2) - \ln(\lambda_1) = \ln(\lambda_2/\lambda_1) = 0 \)).

**failure event.** Survival analysis is really time-to-failure analysis, and the failure event is the event under analysis. The failure event can be death, heart attack, myopia, or finding employment. Many authors—including Stata—write as if the failure event can occur only once per subject, but when we do, we are being sloppy. Survival analysis encompasses repeated failures, and all of Stata’s survival analysis features can be used with repeated-failure data.

**follow-up period or follow-up.** The (minimum) follow-up period is the period after the last subject entered the study until the end of the study. The follow-up defines the phase of a study during which subjects are under observation and no new subjects enter the study. If \( T \) is the total duration of a study, and \( R \) is the accrual period of the study, then follow-up period \( f \) is equal to \( T - R \). Also see accrual period.

**frailty.** In survival analysis, it is often assumed that subjects are alike—homogeneous—except for their observed differences. The probability that subject \( j \) fails at time \( t \) may be a function of \( j \)’s covariates and random chance. Subjects \( j \) and \( k \), if they have equal covariate values, are equally likely to fail.
Frailty relaxes that assumption. The probability that subject \( j \) fails at time \( t \) becomes a function of \( j \)'s covariates and \( j \)'s unobserved frailty value, \( \nu_j \). Frailty \( \nu \) is assumed to be a random variable. Parametric survival models can be fit even in the presence of such heterogeneity.

Shared frailty refers to the case in which groups of subjects share the same frailty value. For instance, subjects 1 and 2 may share frailty value \( \nu \) because they are genetically related. Both parametric and semiparametric models can be fit under the shared-frailty assumption.

**future history.** Future history is information recorded after a subject is no longer at risk. The word history is often dropped, and the term becomes simply future. Perhaps the failure event is cardiac infarction, and you want to know whether the subject died soon in the future, in which case you might exclude the subject from analysis.

Also see past history.

**gaps.** Gaps refers to gaps in observation between entry time and exit time; see under observation.

**hazard, cumulative hazard, and hazard ratio.** The hazard or hazard rate at time \( t \), \( h(t) \), is the instantaneous rate of failure at time \( t \) conditional on survival until time \( t \). Hazard rates can exceed 1. Say that the hazard rate were 3. If an individual faced a constant hazard of 3 over a unit interval and if the failure event could be repeated, the individual would be expected to experience three failures during the time span.

The cumulative hazard, \( H(t) \), is the integral of the hazard function \( h(t) \), from 0 (the onset of risk) to \( t \). It is the total number of failures that would be expected to occur up until time \( t \), if the failure event could be repeated. The relationship between the cumulative hazard function, \( H(t) \), and the survivor function, \( S(t) \), is

\[
S(t) = \exp\{-H(t)\}
\]

\[
H(t) = -\ln\{S(t)\}
\]

The hazard ratio is the ratio of the hazard function evaluated at two different values of the covariates: \( h(t|\mathbf{x})/h(t|\mathbf{x}_0) \). The hazard ratio is often called the relative hazard, especially when \( h(t|\mathbf{x}_0) \) is the baseline hazard function.

**hazard contributions.** Hazard contributions are the increments of the estimated cumulative hazard function obtained through either a nonparametric or semiparametric analysis. For these analysis types, the estimated cumulative hazard is a step function that increases every time a failure occurs. The hazard contribution for that time is the magnitude of that increase.

Because the time between failures usually varies from failure to failure, hazard contributions do not directly estimate the hazard. However, one can use the hazard contributions to formulate an estimate of the hazard function based on the method of smoothing.

**ID variable.** An ID variable identifies groups; equal values of an ID variable indicate that the observations are for the same group. For instance, a stratification ID variable would indicate the strata to which each observation belongs.

When an ID variable is referred to without modification, it means subjects, and usually this occurs in multiple-record st data. In multiple-record data, each physical observation in the dataset represents a time span, and the ID variable ties the separate observations together:

<table>
<thead>
<tr>
<th>idvar</th>
<th>t0</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>
ID variables are usually numbered 1, 2, ..., but that is not required. An ID variable might be numbered 1, 3, 7, 22, ..., or −5, −4, ..., or even 1, 1.1, 1.2, ....

**incidence** and **incidence rate.** Incidence is the number of new failures (for example, number of new cases of a disease) that occur during a specified period in a population at risk (for example, of the disease).

Incidence rate is incidence divided by the sum of the length of time each individual was exposed to the risk.

Do not confuse incidence with prevalence. Prevalence is the fraction of a population that has the disease. Incidence refers to the rate at which people contract a disease, whereas prevalence is the total number actually sick at a given time.

**incidence studies, longitudinal studies,** and **follow-up studies.** Whichever word is used, these studies monitor a population for a time to track the transition of noncases into cases. Incidence studies are prospective. Also see **cohort studies.**

**Kaplan–Meier product-limit estimate.** This is an estimate of the survivor function, which is the product of conditional survival to each time at which an event occurs. The simple form of the calculation, which requires tallying the number at risk and the number who die and at each time, makes accounting for censoring easy. The resulting estimate is a step function with jumps at the event times.

**left-censoring.** See *censored, censoring, left-censoring,* and *right-censoring.*

**left-truncation.** See *truncation, left-truncation,* and *right-truncation.*

**life table.** Also known as a mortality table or actuarial table, a life table is a table that shows for each analysis time the fraction that survive to that time. In mortality tables, analysis time is often age.

**likelihood displacement value.** A likelihood displacement value is an influence measure of the effect of deleting a subject on the overall coefficient vector. Also see *partial likelihood displacement value.*

**LMAX value.** An LMAX value is an influence measure of the effect of deleting a subject on the overall coefficient vector and is based on an eigensystem analysis of efficient score residuals. Also see *partial LMAX value.*

**loss to follow-up.** Subjects are lost to follow-up if they do not complete the course of the study for reasons unrelated to the event of interest. For example, loss to follow-up occurs if subjects move to a different area or decide not to longer participate in a study. Loss to follow-up should not be confused with administrative censoring. If subjects are lost to follow-up, the information about the outcome these subjects would have experienced at the end of the study, had they completed the study, is unavailable. Also see *withdrawal, administrative censoring,* and *follow-up period or follow-up.*

**matched case–control study.** Also known as a retrospective study, a matched case–control study is a study in which persons with positive outcomes are each matched with one or more persons with negative outcomes but with similar characteristics.

**multiarm trial.** A multiarm trial is a trial comparing survivor functions of more than two groups.

**multiple-record st data.** See *st data.*

**odds** and **odds ratio.** The odds in favor of an event are \( o = p/(1−p) \), where \( p \) is the probability of the event. Thus if \( p = 0.2 \), the odds are 0.25, and if \( p = 0.8 \), the odds are 4.

The log of the odds is \( \ln(o) = \logit(p) = \ln\{p/(1−p)\} \), and logistic-regression models, for instance, fit \( \ln(o) \) as a linear function of the covariates.
The odds ratio is a ratio of two odds: $o_1/o_0$. The individual odds that appear in the ratio are usually for an experimental group and a control group, or two different demographic groups.

**offset variable** and **exposure variable**. An offset variable is a variable that is to appear on the right-hand side of a model with coefficient 1:

$$y_j = \text{offset}_j + b_0 + b_1x_j + \cdots$$

In the above, $b_0$ and $b_1$ are to be estimated. The offset is not constant. Offset variables are often included to account for the amount of exposure. Consider a model where the number of events observed over a period is the length of the period multiplied by the number of events expected in a unit of time:

$$n_j = T_je(X_j)$$

When we take logs, this becomes

$$\log(n_j) = \log(T_j) + \log\{e(X_j)\}$$

$\ln(T_j)$ is an offset variable in this model.

When the log of a variable is an offset variable, the variable is said to be an exposure variable. In the above, $T_j$ is an exposure variable.

**partial DFBETA**. A partial DFBETA measures the change in the regressor’s coefficient because of deletion of that individual record. In single-record data, the partial DFBETA is equal to the DFBETA. Also see **DFBETA**.

**partial likelihood displacement value**. A partial likelihood displacement value is an influence measure of the effect of deleting an individual record on the coefficient vector. For single-record data, the partial likelihood displacement value is equal to the likelihood displacement value. Also see **likelihood displacement value**.

**partial LMAX value**. A partial LMAX value is an influence measure of the effect of deleting an individual record on the overall coefficient vector and is based on an eigensystem analysis of efficient score residuals. In single-record data, the partial LMAX value is equal to the LMAX value. Also see **LMAX value**.

**past history**. Past history is information recorded about a subject before the subject was both at risk and under observation. Consider a dataset that contains information on subjects from birth to death and an analysis in which subjects became at risk once diagnosed with a particular kind of cancer. The past history on the subject would then refer to records before the subjects were diagnosed.

The word *history* is often dropped, and the term becomes simply *past*. For instance, we might want to know whether a subject smoked in the past.

Also see **future history**.

**penalized log-likelihood function**. This is a log-likelihood function that contains an added term, usually referred to as a roughness penalty, that reduces its value when the model overfits the data. In Cox models with frailty, such functions are used to prevent the variance of the frailty from growing too large, which would allow the individual frailty values to perfectly fit the data.

**power**. The power of a test is the probability of correctly rejecting the null hypothesis when it is false. It is often denoted as $1 - \beta$ in statistical literature, where $\beta$ is the type II error probability. Commonly used values for power are 80% and 90%. Also see **type I error** and **type II error**.

**prevented fraction**. A prevented fraction is the reduction in the risk of a disease or other condition of interest caused by including a protective risk factor or public-health intervention.
proportional hazards model. This is a model in which, between individuals, the ratio of the instantaneous failure rates (the hazards) is constant over time.

prospective study. Also known as a prospective longitudinal study, a prospective study is a study based on observations over the same subjects for a given period.

right-censoring. See censored, censoring, left-censoring, and right-censoring.

right-truncation. See truncation, left-truncation, and right-truncation.

risk factor. This is a variable associated with an increased or decreased risk of failure.

risk pool. At a particular point in time, this is the subjects at risk of failure.

risk ratio. In a log-linear model, this is the ratio of probability of survival associated with a one-unit increase in a risk factor relative to that calculated without such an increase, that is, \( R(x + 1)/R(x) \). Given the exponential form of the model, \( R(x + 1)/R(x) \) is constant and is given by the exponentiated coefficient.

semiparametric model. This is a model that is not fully parameterized. The Cox proportional hazards model is such a model:

\[
h(t) = h_0(t) \exp(\beta_1 x_1 + \cdots + \beta_k x_k)
\]

In the Cox model, \( h_0(t) \) is left unparameterized and not even estimated. Meanwhile, the relative effects of covariates are parameterized as \( \exp(\beta_1 x_1 + \cdots + \beta_k x_k) \).

shape parameter. A shape parameter governs the shape of a probability distribution. One example is the parameter \( p \) of the Weibull model.

single-record st data. See st data.

singleton-group data. A singleton is a frailty group that contains only 1 observation. A dataset containing only singletons is known as singleton-group data.

SMR. See standardized mortality (morbidity) ratio.

snapshot data. Snapshot data are those in which each record contains the values of a set of variables for a subject at an instant in time. The name arises because each observation is like a snapshot of the subject.

In snapshot datasets, one usually has a group of observations (snapshots) for each subject. Snapshot data must be converted to st data before they can be analyzed. This requires making assumptions about what happened between the snapshots. See [ST] snapspan.

spell data. Spell data are survival data in which each record represents a fixed period, consisting of a begin time, an end time, possibly a censoring/failure indicator, and other measurements (covariates) taken during that specific period.

st data. st stands for survival time. In survival-time data, each observation represents a span of survival, recorded in variables \( t_0 \) and \( t \). For instance, if in an observation \( t_0 \) were 3 and \( t \) were 5, the span would be \((t_0, t] \), meaning from just after \( t_0 \) up to and including \( t \).

Sometimes variable \( t_0 \) is not recorded; \( t_0 \) is then assumed to be 0. In such a dataset, an observation that had \( t = 5 \) would record the span \((0, 5] \).

Each observation also includes a variable \( d \), called the failure variable, which contains 0 or nonzero (typically, 1). The failure variable records what happened at the end of the span: 0, the subject was still alive (had not yet failed) or 1, the subject died (failed).

Sometimes variable \( d \) is not recorded; \( d \) is then assumed to be 1. In such a dataset, all time-span observations would be assumed to end in failure.
Finally, each observation in an st dataset can record the entire history of a subject or each can record a part of the history. In the latter case, groups of observations record the full history. One observation might record the period \((0,5]\) and the next, \((5,8]\). In such cases, there is a variable \texttt{ID} that records the subject for which the observation records a time span. Such data are called multiple-record st data. When each observation records the entire history of a subject, the data are called single-record st data. In the single-record case, the \texttt{ID} variable is optional.

See \texttt{[ST] stset}.

**standardized mortality (morbidity) ratio.** Standardized mortality (morbidity) ratio (SMR) is the observed number of deaths divided by the expected number of deaths. It is calculated using indirect standardization: you take the population of the group of interest—say, by age, sex, and other factors—and calculate the expected number of deaths in each cell (expected being defined as the number of deaths that would have been observed if those in the cell had the same mortality as some other population). You then take the ratio to compare the observed with the expected number of deaths. For instance,

<table>
<thead>
<tr>
<th>Age</th>
<th>(1) Population of group</th>
<th>(2) Deaths per 100,000 in general pop.</th>
<th>(1)\times(2) Expected # of deaths</th>
<th>(4) Observed deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>25–34</td>
<td>95,965</td>
<td>105.2</td>
<td>100.9</td>
<td>92</td>
</tr>
<tr>
<td>34–44</td>
<td>78,280</td>
<td>203.6</td>
<td>159.4</td>
<td>180</td>
</tr>
<tr>
<td>44–54</td>
<td>52,393</td>
<td>428.9</td>
<td>224.7</td>
<td>242</td>
</tr>
<tr>
<td>55–64</td>
<td>28,914</td>
<td>964.6</td>
<td>278.9</td>
<td>312</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>763.9</td>
<td>826</td>
</tr>
</tbody>
</table>

\[
\text{SMR} = \frac{826}{763.9} = 1.08
\]

**stratified model.** A stratified survival model constrains regression coefficients to be equal across levels of the stratification variable, while allowing other features of the model to vary across strata.

**stratified test.** A stratified test is performed separately for each stratum. The stratum-specific results are then combined into an overall test statistic.

**subhazard, cumulative subhazard, and subhazard ratio.** In a competing-risks analysis, the hazard of the subdistribution (or subhazard for short) for the event of interest (type 1) is defined formally as

\[
\bar{h}_1(t) = \lim_{\delta \to 0} \left\{ \frac{P(t < T \leq t + \delta \text{ and event type 1})}{\delta} \bigg| T > t \text{ or } (T \leq t \text{ and not event type 1}) \right\}
\]

Less formally, think of this hazard as that which generates failure events of interest while keeping subjects who experience competing events “at risk” so that they can be adequately counted as not having any chance of failing.

The cumulative subhazard \(\bar{H}_1(t)\) is the integral of the subhazard function \(\bar{h}_1(t)\), from 0 (the onset of risk) to \(t\). The cumulative subhazard plays a very important role in competing-risks analysis. The cumulative incidence function (CIF) is a direct function of the cumulative subhazard:

\[
\text{CIF}_1(t) = 1 - \exp\{-\bar{H}_1(t)\}
\]
The subhazard ratio is the ratio of the subhazard function evaluated at two different values of the covariates: \( \frac{\tilde{h}_1(t|x)}{h_1(t|x_0)} \). The subhazard ratio is often called the relative subhazard, especially when \( \tilde{h}_1(t|x_0) \) is the baseline subhazard function.

**survival-time data.** See *st data.*

**survivor function.** Also known as the survivorship function and the survival function, the survivor function, \( S(t) \), is 1) the probability of surviving beyond time \( t \), or equivalently, 2) the probability that there is no failure event prior to \( t \), 3) the proportion of the population surviving to time \( t \), or equivalently, 4) the reverse cumulative distribution function of \( T \), the time to the failure event: \( S(t) = \Pr(T > t) \). Also see *hazard.*

**thrashing.** Subjects are said to thrash when they are censored and immediately reenter with different covariates.

**time-varying covariates.** Time-varying covariates appear in a survival model whose values vary over time. The values of the covariates vary, not the effect. For instance, in a proportional hazards model, the log hazard at time \( t \) might be \( b \times \text{age}_t + c \times \text{treatment}_t \). Variable age might be time varying, meaning that as the subject ages, the value of age changes, which correspondingly causes the hazard to change. The effect \( b \), however, remains constant.

Time-varying variables are either continuously varying or discretely varying.

In the continuously varying case, the value of the variable \( x \) at time \( t \) is \( x_t = x_o + f(t) \), where \( f() \) is some function and often is the identity function, so that \( x_t = x_o + t \).

In the discretely varying case, the value of \( x \) changes at certain times and often in no particular pattern:

<table>
<thead>
<tr>
<th>idvar</th>
<th>( t0 )</th>
<th>( t )</th>
<th>( bp )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>5</td>
<td>150</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>7</td>
<td>130</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>9</td>
<td>135</td>
</tr>
</tbody>
</table>

In the above data, the value of \( bp \) is 150 over the period \((0, 5]\), then 130 over \((5, 7]\), and 135 over \((7, 9]\).

**truncation, left-truncation, and right-truncation.** In survival analysis, truncation occurs when subjects are observed only if their failure times fall within a certain observational period of a study. Censoring, on the other hand, occurs when subjects are observed for the whole duration of a study, but the exact times of their failures are not known; it is known only that their failures occurred within a certain time span.

Left-truncation occurs when subjects come under observation only if their failure times exceed some time \( t_l \). It is only because they did not fail before \( t_l \) that we even knew about their existence. Left-truncation differs from left-censoring in that, in the censored case, we know that the subject failed before time \( t_l \), but we just do not know exactly when.

Imagine a study of patient survival after surgery, where patients cannot enter the sample until they have had a post-surgical test. The patients’ survival times will be left-truncated. This is a “delayed entry” problem, one common type of left-truncation.

Right-truncation occurs when subjects come under observation only if their failure times do not exceed some time \( t_r \). Right-truncated data typically occur in registries. For example, a cancer registry includes only subjects who developed a cancer by a certain time, and thus survival data from this registry will be right-truncated.
**type I error** or **false-positive result.** The type I error of a test is the error of rejecting the null hypothesis when it is true. The probability of committing a type I error, significance level of a test, is often denoted as $\alpha$ in statistical literature. One traditionally used value for $\alpha$ is 5%. Also see **type II error** and **power.**

**type I study.** A type I study is a study in which all subjects fail (or experience an event) by the end of the study; that is, no censoring of subjects occurs.

**type II error** or **false-negative result.** The type II error of a test is the error of not rejecting the null hypothesis when it is false. The probability of committing a type II error is often denoted as $\beta$ in statistical literature. Commonly used values for $\beta$ are 20% or 10%. Also see **type I error** and **power.**

**type II study.** A type II study is a study in which there are subjects who do not fail (or do not experience an event) by the end of the study. These subjects are known to be censored.

**under observation.** A subject is under observation when failure events, should they occur, would be observed (and so recorded in the dataset). Being under observation does not mean that a subject is necessarily at risk. Subjects usually come under observation before they are at risk. The statistical concern is with periods when subjects are at risk but not under observation, even when the subject is (later) known not to have failed during the hiatus.

In such cases, since failure events would not have been observed, the subject necessarily had to survive the observational hiatus, and that leads to bias in statistical results unless the hiatus is accounted for properly.

Entry time and exit time record when a subject first and last comes under observation, between which there may be observational gaps, but usually there are not. There is only one entry time and one exit time for each subject. Often, entry time corresponds to analysis time $t = 0$, or before, and exit time corresponds to the time of failure.

Delayed entry means that the entry time occurred after $t = 0$.

**withdrawal.** Withdrawal is the process under which subjects withdraw from a study for reasons unrelated to the event of interest. For example, withdrawal occurs if subjects move to a different area or decide to no longer participate in a study. Withdrawal should not be confused with administrative censoring. If subjects withdraw from the study, the information about the outcome those subjects would have experienced at the end of the study, had they completed the study, is unavailable. Also see **loss to follow-up** and **administrative censoring.**
Subject and author index

This is the subject and author index for the Survival Analysis and Epidemiological Tables Reference Manual. Readers interested in topics other than survival analysis should see the combined subject index (and the combined author index) in the Glossary and Index.

A

Aalen, O. O., [ST] stcrreg postestimation, [ST] sts
Aalen–Nelson cumulative hazard, see Nelson–Aalen cumulative hazard
Abbraia-García, L., [ST] epitab
Abrams, K. R., [ST] streg
Abrahamson, J. H., [ST] epitab
Abrahamson, Z. H., [ST] epitab
actuarial tables, see life tables
adjusted Kaplan–Meier survivor function, [ST] sts administrative censoring, [ST] Glossary
AFT, see accelerated failure-time model
Agresti, A., [ST] epitab
AIC, see Akaike information criterion
Aisbett, C. W., [ST] stcox
Agresti, A., [ST] epitab
Aisbett, C. W., [ST] stcox, [ST] streg
Akaike, H., [ST] streg
Akaike information criterion, [ST] streg
Allison, P. D., [ST] discrete
analysis time, [ST] Glossary
Andersen, P. K., [ST] stcox, [ST] stcrreg
Anderson, M. L., [ST] stcrreg
Andersson, T. M.–L., [ST] stcox
association test, [ST] epitab
at risk, [ST] Glossary
at-risk table, [ST] sts graph
attributable fraction, [ST] epitab, [ST] Glossary
attributable proportion, [ST] epitab

B

Baldus, W. P., [ST] stcrreg
baseline, [ST] Glossary
baseline dataset, [ST] stbase
baseline hazard and survivor functions, [ST] stcox, [ST] stcox PH-assumption tests, [ST] stcrreg
Bellocco, R., [ST] epitab
Beyersman, J., [ST] stcrreg
Boice, J. D., Jr., [ST] epitab
Borgan, Ø., [ST] stcrreg
Boswell, T. M., [ST] streg postestimation
Bottai, M., [ST] epitab, [ST] streg
boundary kernel, [ST] Glossary
Box–Steffensmeier, J. M., [ST] stcox, [ST] streg
Brody, H., [ST] epitab
Brown, B. W., [ST] sts graph
Brown, C. C., [ST] epitab
Buchholz, A., [ST] stcrreg

C

Califf, R. M., [ST] stcox postestimation
Carlin, J. B., [ST] epitab
Carnes, B. A., [ST] streg
Carter, S. L., [ST] stcox, [ST] streg
case–cohort data, [ST] sttcoc
case–control data, [ST] epitab, [ST] sttcoc
case–control study, [ST] Glossary
categorical data, [ST] epitab
cause–specific hazard, [ST] Glossary
c ci command, [ST] epitab
cci command, [ST] epitab
censored, [ST] Glossary
censored observations, [ST] st
Chiang, C. L., [ST] itable
chi-squared, test of independence, [ST] epitab
Chow, S.-C., [ST] stpower, [ST] stpower exponential
CIF, see cumulative incidence function
Clark, V. A., [ST] itable
Clerc-Urmès, I., [ST] sts
clinical trial, [ST] stpower
cluster estimator of variance,
competing-risks regression, [ST] stcrreg
Cox proportional hazards model, [ST] stcox
parametric survival models, [ST] streg
cluster sampling, [ST] stcox, [ST] streg
cumulative hazard ratio, see \texttt{csi} command, [ST] \texttt{cs} command, [ST] \texttt{ct} data, [ST] Glossary
cumulative estimate, [ST] \texttt{stpower}
cumulative hazard function, [ST] \texttt{stcox}
Cummings, P., [ST] \texttt{epitab}
cross-sectional study, [ST] Glossary
Cox–Snell residual, [ST] \texttt{stcox} postestimation
Cox, D. R., [ST] \texttt{epitab}
Cox proportional hazards model, [ST] \texttt{stcox}
Coviello, V., [ST] \texttt{streg}, [ST] \texttt{streg} postestimation, [ST] \texttt{stcc}
Cox–Snell residual, [ST] \texttt{stcox} postestimation
Cumming, J., [ST] \texttt{epitab}
Cumming, J., [ST] \texttt{stcox}
Cumming, J., [ST] \texttt{stcrreg}
cumulative data, [ST] \texttt{stpower exponential}
cumulative incident data, see cumulative incidence data
data, case–cohort, see case–cohort data
discrete survival, see discrete survival data
duration analysis, see survival analysis
duration analysis, see survival analysis
duration analysis, see survival analysis

data, cumulative incidence data, see cumulative incidence data
data, discrete survival, see discrete survival data
data, experimental data
data, nested case–control, see nested case–control data
data, single-failure st, see survival analysis
data, single-record st, see survival analysis
data, time-span data
dimensional analysis, see survival analysis

data, multiple-failure st, see multiple-failure st data
data, multiple-record st, see multiple-record st data

data, time-span, see time-span data
data, \texttt{count-time}
data, multiple-record st data

data, multiple-failure st data

data, \texttt{single-record st}

data, \texttt{single-failure st}

data, \texttt{excess fraction}

data, \texttt{etiological fraction}

data, \texttt{event of interest}

data, \texttt{event}

data, \texttt{time-span}

data, \texttt{cumulative hazard function}

data, \texttt{cumulative incidence data}
F

Fagerland, M. F., [ST] epitab
failure event, [ST] Glossary
failure tables, [ST] ltable
failure time, see survival analysis
false-negative result, see type II error
false-positive result, see type I error
Feiveson, A. H., [ST] stpower
Feltbower, R., [ST] epitab
Fibrinogen Studies Collaboration, [ST] stcox
postestimation
filling in values, [ST] stfill
Fine, J. P., [ST] stcrreg
Fiocco, M., [ST] stcrreg, [ST] stcrreg postestimation
Fisher, R. A., [ST] streg
Fisher’s exact test, [ST] epitab
Fleiss, J. L., [ST] epitab
follow-up period, [ST] Glossary
follow-up studies, see incidence studies
Foulkes, M. A., [ST] stpower, [ST] stpower cox,
[ST] stpower exponential
fourfold tables, [ST] epitab
frailty, see shared frailty
Freedman, L. S., [ST] stpower, [ST] stpower cox,
[ST] stpower exponential, [ST] stpower logrank
Freeman, J. L., [ST] epitab
Fyler, D. C., [ST] epitab
Fyles, A., [ST] stcrreg, [ST] stcrreg postestimation
G

Gail, M. H., [ST] stcrreg, [ST] stpower, [ST] stpower exponential,
[ST] stbase
gaps, [ST] stbase, [ST] stdescribe, [ST] stgen,
Garrett, J. M., [ST] stcox PH-assumption tests
generate, sts subcommand, [ST] stcox
Gart, J. J., [ST] epitab
gauvreau, K., [ST] ltable, [ST] sts
gen, [ST] stset, [ST] stcox
generalized gamma survival regression, [ST] streg
George, S. L., [ST] stpower, [ST] stpower exponential
Geskus, R. B., [ST] stcrreg, [ST] stcrreg
Gompertz survival regression, [ST] streg
Gönen and Heller’s K, [ST] stcox postestimation
Gönen, M., [ST] stcox postestimation
Gooley, T. A., [ST] stcrreg
Gould, W. W., [ST] survival analysis, [ST] stcox,
[ST] stcrreg, [ST] stcrreg postestimation,
[ST] sttdescribe, [ST] stpower, [ST] stpower exponential,
[ST] stpower logrank, [ST] streg,
Grambsch, P. M., [ST] stcox, [ST] stcox PH-
assumption tests, [ST] stcox postestimation,
[ST] stcrreg
graph, adjusted Kaplan–Meier survivor curves, [ST] sts
baseline hazard and survivor, [ST] stcox, [ST] sts
cumulative hazard function, [ST] stcurve, [ST] sts
generate, [ST] stcox postestimation
hazard function, [ST] ltable, [ST] stcurve, [ST] sts
generate, [ST] stcox postestimation
Kaplan–Meier survivor curves, [ST] stcox PH-
assumption tests, [ST] sts, [ST] ststs graph
log-log curve, [ST] stcox PH-assumption tests
survivor function, [ST] stcurve, [ST] sts
generate, [ST] stcox postestimation
graph, [ST] sts subcommand, [ST] stcox
generate, [ST] stcox
Gray, R. J., [ST] stcox
Greenhouse, J. B., [ST] epitab
Greenhouse, S. W., [ST] epitab
Greenland, S., [ST] epitab
Greenwood, M., [ST] ltable, [ST] sts
Greenwood confidence intervals, [ST] sts
Gross, A. J., [ST] ltable
Grzebyk, M., [ST] sts
postestimation, [ST] sttdescribe, [ST] stpower,
[ST] stpower exponential, [ST] stpower
logrank, [ST] streg, [ST] stcrreg postestimation,
[ST] stset, [ST] stsplit, [ST] stvary,
[ST] survival analysis

H

Haenszel, W., [ST] epitab, [ST] strate, [ST] sts test
Haldane, J. B. S., [ST] epitab
Halley, E., [ST] ltable
Hankey, B., [ST] strate
Harley, J. B., [ST] stpower cox
Harrell, F. E., Jr., [ST] stcox postestimation
Harrell’s C, [ST] stcox postestimation
Harrington, D. P., [ST] stcox, [ST] sts test
Harrison, J. M., [ST] stcrreg
Hassell, J. F., [ST] sts
Hastorf, A. H., [ST] epitab
hazard contributions, [ST] Glossary
hazard function, [ST] sts, [ST] sts generate, [ST] sts graph
list, [ST] Glossary
hazard ratio, [ST] Glossary
minimal detectable difference, [ST] stpower
minimal effect size, [ST] stpower
hazard tables, [ST] ltable
He, X., [ST] stcox PH-assumption tests
Hédelin, G., [ST] sts
Hedley, D., [ST] stcrreg, [ST] stcrreg postestimation
Heinonen, O. P., [ST] epitab
Heller, G., [ST] stcox postestimation
Hempel, S., [ST] epitab
Henry-Amar, M., [ST] epitab
Hertz, S., [ST] stsplit
heterogeneity test, [ST] epitab
Hilgard, E. R., [ST] epitab
Hill, A. B., [ST] epitab
Hill, W. G., [ST] epitab
Hofman, A. F., [ST] stcrreg
Hogben, L. T., [ST] sts
Holmgren, J., [ST] epitab
homogeneity test, [ST] epitab
Hooker, P. F., [ST] streg
Hossain, K. M., [ST] epitab
Hougaard, P., [ST] streg
Hu, M., [ST] stcox, [ST] stset
Huber/White/sandwich estimator of variance, see robust,
Huber/White/sandwich estimator of variance
Huq, M. I., [ST] epitab
ID variable, [ST] Glossary
incidence, [ST] Glossary
incidence rate, [ST] Glossary
independence test, [ST] epitab
influence statistics, see DFBETA, see LMAX value
iri command, [ST] epitab
iri command, [ST] epitab
J
Jenkins, S. P., [ST] discrete, [ST] stcox
Jewell, N. P., [ST] epitab
Jick, H., [ST] epitab
Johnson, S., [ST] epitab
joining time-span records, [ST] stsplit
Jones, B. S., [ST] stcox, [ST] streg
Jørgensen, R. A., [ST] stcrreg
K
Kaplan–Meier
survivor function, [ST] ltable, [ST] stcox PH-assumption tests, [ST] sts
Keiding, N., [ST] stcrreg, [ST] stsplit
Khan, M. R., [ST] epitab
Kimber, A. C., [ST] streg
Kleinbaum, D. G., [ST] epitab
Kraakel, H., [ST] itable
Krall, J. M., [ST] stpower cox
Kreidberg, M. B., [ST] epitab
Kupper, L. L., [ST] epitab
L
Lane-Claypon, J. E., [ST] epitab
Lange, S. M., [ST] stcrreg
Langholz, B., [ST] sttocc
Lash, T. L., [ST] epitab
Latouche, A., [ST] stcrreg
Lavoir, P. W., [ST] stpower, [ST] stpower cox
Lawless, J. F., [ST] ltable, [ST] stpower
Lee, E. T., [ST] streg
Lee, K. L., [ST] stcox postestimation
Lee, P., [ST] streg
left-censoring, [ST] Glossary
left-truncation, see truncation
Leisenring, W., [ST] stcrreg
LeSage, G., [ST] stcrreg
Levin, B., [ST] epitab
Levin, W., [ST] stcrreg, [ST] stcrreg postestimation
Lexis, W. H., [ST] stsplit
lexis command, [ST] stsplit
lexis diagram, [ST] stsplit
likelihood displacement value, [ST] stcox postestimation, [ST] Glossary
Lilienfeld, D. E., [ST] epitab
Lin, D. Y., [ST] stcox, [ST] stcrreg
Lindor, K. D., [ST] stcrreg
list, stsubcommand, [ST] sts list
Liu, J.-P., [ST] stpower
LMAX value, [ST] stcox postestimation, [ST] Glossary
Lo, S.-H., [ST] sts
log-log plot, [ST] stcox PH-assumption tests
logistic survival regression, [ST] streg
lognormal survival regression, [ST] streg
log-rank,
  power, [ST] stpower logrank
  sample size, [ST] stpower logrank
  test, [ST] stpower logrank, [ST] sts test
logrank, stpower subcommand, [ST] stpower logrank
longitudinal studies, see incidence studies
López-Vizcaíno, M. E., [ST] epitab
loss to follow-up, [ST] Glossary
ltable command, [ST] ltable
Ludwig, J., [ST] stcrreg
Lunn, M., [ST] stcrreg

M

MacMahon, B., [ST] epitab
Madigan, D., [ST] sts
Manchul, L., [ST] stcrreg, [ST] stcrreg postestimation
Mander, A. P., [ST] stsplit
Mansuy, R., [ST] stcox postestimation
Mantel–Cox method, [ST] strate
Mantel–Haenszel method, [ST] strate
test, [ST] epitab, [ST] stir
Marchenko, Y. V., [ST] stcox, [ST] stcrreg,
  [ST] stcrreg postestimation, [ST] stdescribe,
  [ST] stpower, [ST] stpower exponential,
  [ST] stpower logrank, [ST] streg, [ST] stset,
  [ST] stsplit, [ST] stvary, [ST] survival analysis
Mark, D. B., [ST] stcox postestimation
Markel, H., [ST] epitab
Marks, H. M., [ST] sts
Marr, J. W., [ST] stsplit
Martin, W., [ST] epitab
martingale residual, [ST] stcox postestimation, [ST] streg postestimation
Mazliak, L., [ST] stcox postestimation
mcc command, [ST] epitab
mci command, [ST] epitab
McCulloch, C. A., [ST] stcox
McGilchrist, C. A., [ST] stcox, [ST] streg
McNeil, D., [ST] stcrreg
McNemar, Q., [ST] epitab
McNemar’s chi-squared test, [ST] epitab
Meyer, B. D., [ST] discrete
mhodds command, [ST] epitab
Miettinen, O. S., [ST] epitab
Milosevic, M., [ST] stcrreg, [ST] stcrreg postestimation
minimal
detectable difference, hazard ratio, [ST] stpower
effect size, hazard ratio, [ST] stpower
Moeschberger, M. L., [ST] stci, [ST] stcox, [ST] stcox postestimation,
Monson, R. R., [ST] epitab, [ST] epitab
Morgenstern, H., [ST] epitab, [ST] epitab
Mori, M., [ST] stcrreg
Morris, J. N., [ST] stsplit
Morrow, A., [ST] epitab
mortality table, see life tables
Müller, H.-G., [ST] sts graph
multiarm trial, [ST] stpower, [ST] Glossary
[ST] stcurve, [ST] stdescribe, [ST] stfill,
[ST] streg, [ST] streg postestimation, [ST] sts,
[ST] sts generate, [ST] sts graph, [ST] sts list,
multiple-record st data, [ST] stbase, [ST] stci,
[ST] stcox, [ST] stcox postestimation,
[ST] stcrreg, [ST] stcrreg postestimation,
[ST] stcurve, [ST] stdescribe, [ST] stiff,
[ST] streg, [ST] streg postestimation, [ST] sts,
[ST] sts generate, [ST] sts graph, [ST] sts list,
Murtaugh, P. A., [ST] stcrreg

N

Nardi, G., [ST] epitab
Neff, R. K., [ST] epitab
Nelson, W., [ST] stcrreg postestimation, [ST] sts
Nelson–Aalen cumulative hazard, [ST] sts, [ST] sts
generate, [ST] sts graph, [ST] sts list
nested case–control data, [ST] sttocc
Newson, R. B., [ST] stcox postestimation
nonparametric analysis, survival analysis,
Kaplan–Meier curves, [ST] sts graph
log rank and other tests of equality, [ST] sts test
Nelson–Aalen curves, [ST] sts graph

O

Oakes, D., [ST] ltable, [ST] stcox, [ST] stcox PH-
assumption tests, [ST] stpower, [ST] streg,
[ST] sts
odds, [ST] Glossary
odds ratio, [ST] epitab, [ST] Glossary
offset variable, [ST] Glossary
Olshansky, S. J., [ST] streg
Orsini, N., [ST] epitab, [ST] streg

P

Pagano, M., [ST] ltable, [ST] sts
Paik, M. C., [ST] epitab
Paneth, N., [ST] epitab
parametric survival models, [ST] streg
Parmar, M. K. B., [ST] stcox, [ST] stpower,
[ST] stpower cox, [ST] streg
Parner, E. T., [ST] stcox
partial DFBETA, [ST] stcox postestimation,
partial likelihood displacement value, [ST] Glossary
partial LMAX value, [ST] Glossary
Pasquini, J., [ST] epitab
past history, [ST] stset, [ST] Glossary
Pearce, M. S., [ST] epitab
penalized log-likelihood function, [ST] stcox,
[ST] Glossary
Pepe, M. S., [ST] stcrreg
P´erez-Santiago, M. I., [ST] epitab
person-time, [ST] stptime
Peto, J., [ST] sts test
ptest, estat subcommand, [ST] stcox PH-
assumption tests
Pike, M. C., [ST] ltable, [ST] streg
Pintilie, M., [ST] stcrreg, [ST] stcrreg postestimation
Pitblado, J. S., [ST] sts
Plummer, W. D., Jr., [ST] epitab
Poisson regression, [ST] stcox
pooled estimates, [ST] epitab
population attributable risk, [ST] epitab
postestimation command, [ST] stcurve
power, [ST] Glossary
Cox proportional hazards regression, [ST] stpower,
[ST] stpower cox
exponential survival, [ST] stpower, [ST] stpower
exponential
exponential test, [ST] stpower, [ST] stpower
exponential
log-rank, [ST] stpower, [ST] stpower logrank
[ST] stcox PH-assumption tests, [ST] stcox
test, [ST] stset
prevalence studies, see cross-sectional study
prevented fraction, [ST] epitab, [ST] Glossary
proportional hazards model, [ST] Glossary, also see
Cox proportional hazards model
prospective study, [ST] epitab, [ST] Glossary, also see
incidence studies
Pryor, D. B., [ST] stcox postestimation
Putter, H., [ST] stcrreg, [ST] stcrreg postestimation

R

Rachman, S., [ST] epitab
Radmacher, R. D., [ST] stpower
Ramalheiro, C., [ST] ltable
rate ratio, [ST] epitab, [ST] stir, [ST] stptime,
[ST] stsum
recruitment period, see accrual period
regression diagnostics, [ST] stcox PH-assumption
tests, [ST] stcox postestimation, [ST] stcrreg
postestimation, [ST] streg postestimation
regression, competing risks, [ST] stcrreg
Reid, N. M., [ST] stcox
Reilly, M., [ST] epitab
relative risk, [ST] epitab
reliability, [ST] discrete, [ST] ltable, [ST] st,
[ST] stcox, [ST] stcrreg, [ST] streg,
[ST] survival analysis
residuals, [ST] stcox postestimation, [ST] stcrreg
postestimation, [ST] streg postestimation
Richter, J. R., [ST] stpower
right-censoring, [ST] Glossary
right-truncation, [ST] Glossary
Rip, M., [ST] epitab
risk
difference, [ST] epitab
pool, [ST] stcox, [ST] sterg, [ST] stset,
[ST] Glossary
Robins, J. M., [ST] epitab
robust, Huber/White/sandwich estimator of variance
competing-risks regression, [ST] sterg
Cox proportional hazards model, [ST] stcox
parametric survival models, [ST] streg
Rogers, W. H., [ST] stcox PH-assumption tests,
[ST] stcox postestimation
Rosati, R. A., [ST] stcox postestimation
Rossi, S. S., [ST] sterg
Rothman, K. J., [ST] epitab
Royston, P., [ST] epitab, [ST] stcox, [ST] stcox PH-
assumption tests, [ST] stpower, [ST] stpower
cox, [ST] streg
Rubinstein, L. V., [ST] stpower, [ST] stpower
exponential
Rutherford, M. J., [ST] stptime
S
Salim, A., [ST] epitab
sample size,
Cox proportional hazards regression, [ST] stpower,
[ST] stpower cox
exponential survival, [ST] stpower, [ST] stpower
exponential
exponential test, [ST] stpower, [ST] stpower
exponential
log-rank, [ST] stpower, [ST] stpower logrank
sandinwich/Huber/White estimator of variance, see robust,
Huber/White/sandwich estimator of variance
Santner, T. J., [ST] stpower, [ST] stpower exponential
Sasiemen, P., [ST] stcox
Savage, I. R., [ST] sts test
Schleselman, J. J., [ST] epitab
Schoenfeld, D. A., [ST] stcox, [ST] stcox
postestimation, [ST] stpower, [ST] stpower
cox, [ST] stpower exponential, [ST] stpower
logrank, [ST] streg
Schoenfeld residual, [ST] stcox PH-assumption
tests, [ST] stcox postestimation, [ST] stcrreg
postestimation
Schumacher, M., [ST] stcrreg
Schwartzman, S., [ST] stcox postestimation
Scott, D. A., [ST] stcox, [ST] stcrreg
Scotto, M. G., [ST] streg
Sears, R. R., [ST] epitab
semiparametric model, [ST] stcox, [ST] stcrreg,
[ST] Glossary
Serachitopol, D. M., [ST] sts graph
Shafer, G., [ST] stcox postestimation
Shao, J., [ST] stpower, [ST] stpower exponential
shape parameter, [ST] streg, [ST] stcox PH-assumption
tests
Shapiro, S., [ST] epitab
shared frailty, [ST] streg, [ST] stcox postestimation,
[ST] stcrreg PH-assumption tests
Shiboski, S. C., [ST] stcox
SHR, see subhazard ratio
Simon, R., [ST] stpower
single-failure st data, see survival analysis
single-record st data, see survival analysis
singleton-group data, [ST] stcox, [ST] stcox PH-
assumption tests
Skovlund, E., [ST] stpower, [ST] stpower cox
Slone, D., [ST] epitab
Smith, R. L., [ST] streg
SMR, see standardized mortality ratio
Smythe, B., [ST] sts
snapshot data, [ST] stsnapspan, [ST] stset,
[ST] stpower exponential
stsnapspan command, [ST] stsnapspan
tests, [ST] streg postestimation
Snow, J., [ST] epitab
specification test, [ST] stcox, [ST] stcox PH-assumption
tests, [ST] stcox postestimation,
[ST] stsplit
spell data, [ST] stcox PH-assumption tests
splitting time-span records, [ST] stsplit
st command, [ST] stset
st_ct, [ST] st_is
st data, [ST] st, [ST] stcox PH-assumption
tests
st_is 2, [ST] st_is
st_show, [ST] st_is
standard errors, robust,
see robust, Huber/White/sandwich estimator of variance
standardized
mortality ratio, [ST] epitab, [ST] stptime,
[ST] stcox PH-assumption tests
stpower exponential
rates, [ST] epitab
stbase command, [ST] stbase
stci command, [ST] stci
stcox command, [ST] stcox, [ST] stcox PH-
assumption tests, [ST] stcox postestimation,
[ST] stcrreg
stcoxkm command, [ST] stcox PH-assumption tests
stcrreg command, [ST] stcrreg, [ST] stcrreg
postestimation, [ST] stcurve
stcurve command, [ST] stcurve
stdescribe command, [ST] stdescribe
Sterne, J. A. C., [ST] stcox
Stewart, J., [ST] ltable
stfill command, [ST] stfill
stgen command, [ST] stgen
stir command, [ST] stir
stjoin command, [ST] stjoin
stmc command, [ST] ststrate
stmh command, [ST] ststrate
Stoll, B. J., [ST] epitab
Stolley, P. D., [ST] epitab
Storer, B. E., [ST] stcrreg
stphplot command, [ST] stcox PH-assumption tests
stpower
  - cox command, [ST] stpower, [ST] stpower cox
  - exponential command, [ST] stpower, [ST] stpower exponential
logrank command, [ST] stpower, [ST] stpower logrank
stptime command, [ST] stptime
strate command, [ST] strate
table, [ST] epitab
tabodds command, [ST] epitab
Taboada, J., [ST] epitab
Talbot, B. M., [ST] epitab
Tambussi, G., [ST] epitab
Tan, S. B., [ST] stpower
Tan, S. H., [ST] epitab
Tang, S. B., [ST] stpower
sts test command, [ST] stset
sts test command, [ST] stset
stsum command, [ST] stsum
sttocc command, [ST] sttocc
sttocc command, [ST] sttocc
sttocc command, [ST] sttocc
subhazard, [ST] Glossary, also see cumulative subhazard function
subhazard ratio, [ST] Glossary, also see cumulative subhazard function
survey sampling, see cluster sampling
survival clinical trial, [ST] stpower
survival data, see survival analysis
type I study, \([ST]\) stpower, \([ST]\) stpower cox,
\([ST]\) stpower exponential, \([ST]\) stpower logrank, \([ST]\) Glossary

type II error, \([ST]\) stpower, \([ST]\) stpower cox,
\([ST]\) stpower exponential, \([ST]\) stpower logrank, \([ST]\) Glossary

type II study, \([ST]\) stpower, \([ST]\) stpower cox,
\([ST]\) stpower exponential, \([ST]\) stpower logrank, \([ST]\) Glossary

\[\text{U}\]

under observation, \([ST]\) cttost, \([ST]\) st, \([ST]\) stset,
\([ST]\) Glossary

University Group Diabetes Program, \([ST]\) epitab

Uthoff, V. A., \([ST]\) stpower cox

\[\text{V}\]

Vach, W., \([ST]\) sterreg

Væth, M., \([ST]\) stpower, \([ST]\) stpower cox

Valsecchi, M. G., \([ST]\) sterreg, \([ST]\) stpower,
\([ST]\) stpower logrank, \([ST]\) sts test

variables, generating, \([ST]\) stgen

variance, Huber/White/sandwich estimator, see robust,

Huber/White/sandwich estimator of variance

varying variables, \([ST]\) stvary

Vidmar, S., \([ST]\) epitab

Vinten-Johansen, P., \([ST]\) epitab

Vittinghoff, E., \([ST]\) stcox

\[\text{W}\]

Walker, A. M., \([ST]\) epitab

Walker, S., \([ST]\) sts test

Wang, H., \([ST]\) stpower, \([ST]\) stpower exponential

Wang, J.-L., \([ST]\) sts graph

Wang, J. W., \([ST]\) streg

Wang, Z., \([ST]\) epitab

Ware, J. H., \([ST]\) sts test

Warren, K., \([ST]\) epitab

Weesie, J., \([ST]\) stsplit

Wei, L. J., \([ST]\) stcox, \([ST]\) sterreg

Weibull, W., \([ST]\) streg

Weibull distribution, \([ST]\) streg

Weibull survival regression, \([ST]\) streg

West, S., \([ST]\) epitab

White, I. R., \([ST]\) sts test

White/Huber/sandwich estimator of variance, see robust,

Huber/White/sandwich estimator of variance

Whitemore, G. A., \([ST]\) stcox PH-assumption tests

Wiesner, R. H., \([ST]\) sterreg

Wilcoxon, F., \([ST]\) sts test

Wilcoxon test (Wilcoxon–Breslow, Wilcoxon–Gehan,

Wilcoxon–Mann–Whitney), \([ST]\) sts test

Wilkinson, L., \([ST]\) st

withdrawal, \([ST]\) Glossary

Wittes, J., \([ST]\) stpower

X

Xia, T., \([ST]\) stcox PH-assumption tests

Y

Yen, S., \([ST]\) epitab