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Description
The methods and formulas for the gsem command are presented below.

Remarks and examples stata.com

Remarks are presented under the following headings:
Introduction
Families of distributions

The Bernoulli family
The binomial family
The ordinal family
The multinomial family
The Poisson family
The negative binomial family
The gamma family
The Gaussian family
Reliability

Link functions
The logit link
The probit link
The complementary log-log link
The log link
The identity link

The likelihood
Gauss–Hermite quadrature
Adaptive quadrature
Laplacian approximation

Postestimation
Empirical Bayes
Other predictions

Introduction
gsem fits generalized linear models with latent variables via maximum likelihood. Here is a table

identifying the family/link combinations that gsem allows.

logit probit cloglog log identity

Bernoulli x x x
binomial x x x
ordinal x x x
multinomial x
Poisson x
negative binomial x
gamma x
Gaussian x x
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Log-likelihood calculations for fitting any model with latent variables require integrating out
the latent variables. One widely used modern method is to directly estimate the integral required to
calculate the log likelihood by Gauss–Hermite quadrature or some variation thereof. gsem implements
four different methods for numerically evaluating the integrals.

1. Gauss–Hermite quadrature (GHQ)

2. Mean-variance adaptive quadrature (MVAGH)

3. Mode-curvature adaptive quadrature (MCAGH)

4. Laplacian approximation

The default method is MVAGH. The numerical integration method for MVAGH is based on Rabe-
Hesketh, Skrondal, and Pickles (2005), and the other numerical integration methods described in this
manual entry are based on Skrondal and Rabe-Hesketh (2004, chap. 6.3).

Families of distributions
gsem implements the most commonly used distribution families associated with generalized linear

models. gsem also implements distributions for ordinal and multinomial outcomes.

In this manual entry, observed endogenous variables are also known as generalized responses
or generalized outcomes, but we will simply refer to them as responses or outcomes. The random
variable corresponding to a given response will be denoted by Y . An observed value of Y will be
denoted by y, and the expected value of Y by µ. For the ordinal and multinomial families, we will
refer to a linear prediction, denoted by z, instead of the expected value.

The Bernoulli family

The Bernoulli family is a binary response model. The response Y is assumed to take on the values
0 or 1; however, gsem allows any nonzero and nonmissing value to mean 1.

The log of the conditional probability mass function is

log f(y|µ) = y logµ+ (1− y) log(1− µ)

where µ is also known as the probability of a success. The default link for the Bernoulli family is
the logit link.

The binomial family

The binomial family is a count response model and generalizes the Bernoulli family by taking
the sum of k independent Bernoulli outcomes. The response Y is assumed to take on the values
0, 1, . . . , k.
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The log of the conditional probability mass function is

log f(y|µ) = log{Γ(k + 1)} − log{Γ(y + 1)} − log{Γ(k − y + 1)}
+ y logµ+ (1− y) log(1− µ)

where µ is the expected value for a single Bernoulli outcome. The default link for the binomial family
is the logit link.

The ordinal family

The ordinal family is a discrete response model. The response Y is assumed to take on one of k
unique values. The actual values are irrelevant except that higher values are assumed to correspond to
“higher” outcomes. Without loss of generality, we will assume that Y takes on the values 1, . . . , k.
The ordinal family with k outcomes has cutpoints κ0, κ1, . . . , κk, where κ0 = −∞, κy < κy+1,
and κk = +∞.

Given a linear prediction z, the probability that a random response Y takes the value y is

Pr(Y = y|z) = Pr(Y ∗ < κy − z)− Pr(Y ∗ < κy−1 − z)

where Y ∗ is the underlying stochastic component for Y . The distribution for Y ∗ is determined by
the link function. gsem allows logit, probit, and cloglog for the ordinal family. The logit
link assigns Y ∗ the extreme value distribution that is synonymous with the logit link for Bernoulli
outcomes. The probit link assigns Y ∗ the standard normal distribution that is synonymous with the
probit link for Bernoulli outcomes. The cloglog link assigns Y ∗ the distribution that is synonymous
with the complementary log-log link for Bernoulli outcomes. The default link for the ordinal family
is the logit link.

The multinomial family

The multinomial family is a discrete response model. The response Y is assumed to take on one of
k unique values. The actual values are irrelevant and order does not matter; however, gsem requires
that the values are nonnegative integers. Without loss of generality, we will assume that Y takes
on the values 1, . . . , k. Each of the k outcomes has its own linear prediction. For the model to be
identified, one of the outcomes is chosen to be the base or reference. The linear prediction for the
base outcome is constrained to be 0 for all observations. Without loss of generality, we will assume
the base outcome is the first outcome. Let zi be the prediction for outcome i, where z1 = 0 for the
base outcome.

Given the k linear predictions z′ = (z1, z2, . . . , zk), the log of the conditional probability mass
function is

log f(y|z) = zy − log

{
k∑
i=1

exp(zi)

}

The only link allowed for the multinomial family is the logit link.
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The Poisson family

The Poisson family is a count-data response model. The response Y is assumed to take on
nonnegative integer values.

The log of the conditional probability mass function is

log f(y|µ) = −µ+ y logµ− log Γ(y + 1)

The only link allowed for the Poisson family is the log link.

The negative binomial family

The negative binomial family is another count-data response model. It is commonly thought of as
a Poisson family with overdispersion. gsem allows two parameterizations for the dispersion in this
family: mean dispersion and constant dispersion.

The log of the conditional probability mass function is

log f(y|µ, α) = log{Γ(y +m)} − log{Γ(y + 1)} − log{Γ(m)}
+m log p+ y log(1− p)

where m and p depend on the form of dispersion.

The only link allowed for the negative binomial family is the log link.

For mean dispersion, we have

m = 1/α

p =
1

1 + αµ

where µ is the expected value of Y and α is the scale parameter. gsem fits α in the log scale.

For constant dispersion, we have

m = exp(logµ− log δ)

p =
1

1 + δ

where µ is the expected value of Y and δ is the scale parameter. gsem fits δ in the log scale.

The gamma family

The gamma family is a continuous response model. The response Y is assumed to be a nonnegative
real value.

The log of the conditional probability density function is

log f(y|µ, s) = − log Γ(s−2)−
(

logµ+ 2 log s+
y

µ

)
s−2 + (s−2 − 1) log y

where µ is the expected value of Y and s is the scale parameter. gsem fits s in the log scale.

The only link allowed for the gamma family is the log link.
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The Gaussian family

The Gaussian family is a continuous response model and is synonymous with the normal distribution.

When the Gaussian family is specified with the identity link but no censoring, gsem fits this
family by using a single multivariate density function and allows the following two special features:

1. gsem can fit covariances between the Gaussian error variables.

2. gsem can fit paths between Gaussian responses, including nonrecursive systems.

The log of the conditional probability density function is

log f(y|µ,Σ) = −1

2

{
d log 2π + log |Σ|+ (y− µ)′Σ−1(y− µ)

}
where d is the dimension of the observed response vector y, µ is the mean of the responses, and Σ
is the variance matrix of their unexplained errors.

When the Gaussian family is specified with the log link or censoring, the two special features
described above no longer apply. In addition, the multivariate density function is no longer used.
Instead, for each response using the log link, the log of the conditional probability density function
corresponds to the formula above with d = 1. For censored responses, the log likelihood corresponds
to the one in the Methods and formulas for [R] intreg.

Reliability

For a given Gaussian response variable with the identity link, the reliability Y may be specified
as p or 100× p%. The variance of Y ’s associated error variable is then constrained to (1− p) times
the observed variance of Y .

Link functions

Except for the ordinal and multinomial families, the link function defines the transformation between
the mean and the linear prediction for a given response. If Y is the random variable corresponding
to an observed response variable y, then the link function performs the transformation

g(µ) = z

where µ = E(Y ) and z is the linear prediction. In practice, the likelihood evaluator function uses
the inverse of the link function to map the linear prediction to the mean.

The logit link

The logit link is

g(µ) = log µ− log(1− µ)

and its inverse is

µ = g−1(z) =
1

1 + ez

http://www.stata.com/manuals13/rintreg.pdf#rintregMethodsandformulas
http://www.stata.com/manuals13/rintreg.pdf#rintreg
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The probit link

The probit link is

g(µ) = Φ−1(µ)

and its inverse is

µ = g−1(z) = Φ(z)

where Φ(·) is the cumulative distribution function for the standard normal distribution and Φ−1(·) is
its inverse.

The complementary log-log link

The complementary log-log link is

g(µ) = log{− log(1− µ)}

and its inverse is

µ = g−1(z) = 1− exp{− exp(z)}

The log link

The log link is

g(µ) = logµ

and its inverse is

µ = g−1(z) = ez

The identity link

The identity link is g(µ) = µ.

The likelihood
gsem fits generalized linear models with latent variables via maximum likelihood. The likelihood

for the specified model is derived under the assumption that each response variable is independent and
identically distributed across the estimation sample. The response variables are also assumed to be
independent of each other. These assumptions are conditional on the latent variables and the observed
exogenous variables.



methods and formulas for gsem — Methods and formulas 7

The likelihood is computed by integrating out the latent variables. Let θ be the vector of model
parameters, y be the vector of observed response variables, x be the vector of observed exogenous
variables, and u be the r×1 vector of latent variables. Then the marginal likelihood looks something
like

L(θ) =

∫
<r

f(y|x,u, θ)φ(u|µu,Σu)∂u

where < denotes the set of values on the real line, <r is the analog in r-dimensional space, θ is a
vector of the unique model parameters, f(·) is the conditional probability density function for the
observed response variables, φ(·) is the multivariate normal density for u, µu is the expected value of
u, and Σu is the covariance matrix for u. All auxiliary parameters are fit directly without any further
parameterization, so we simply acknowledge that the auxiliary parameters are among the elements of
θ.

The y variables are assumed to be independent, conditionally on x and u, so f(·) is the product of
the individual conditional densities. One exception to this is when y contains two or more Gaussian
response variables with the identity link, in which case the Gaussian responses are actually modeled
using a multivariate normal density to allow for correlated errors and nonrecursive systems among
Gaussian responses. This one exception does not change how the integral is numerically evaluated,
so we make no effort to represent this distinction in the formulas.

For a single-level model with n response variables, the conditional joint density function for a
given observation is

f(y|x,u, θ) =

n∏
i=1

fi(yi|x,u, θ)

For a two-level model, the likelihood is computed at the cluster level, so the conditional density is
also a product of the observation-level density contributions within a given cluster

f(y|x,u, θ) =

n∏
i=1

t∏
j=1

fi(yij |xj ,u, θ)

where t is the number of individuals within the cluster. This extends to more levels by expanding
the products down to the observations nested within the hierarchical groups. Because the single-level
model is a special case of a two-level model where all the groups have a single observation, we will
now use the two-level notation and subscripts.

Except for the ordinal and multinomial families, we use the link function to map the conditional
mean

µij = E(yij |xj ,u)

to the linear prediction
zij = x′jβi + x′jΛiu

where βi is the vector of the fixed-effect coefficients and Λi is the matrix of the latent loadings for
yij . For notational convenience, we will overload the definitions of f(·) and fi(·) so that they are
functions of the responses and model parameters through the linear predictions z′ = (z1, . . . , zn).
Thus f(y|x,u, θ) is equivalently specified as f(y, z, θ), and fi(yij |xj ,u, θ) is equivalently specified
as fi(yij , zij , θ). In this new notation, the likelihood for a given cluster is
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L(θ) =

∫
<r

f(y, z, θ)φ(u|µu,Σu)∂u

=
1

(2π)r/2
√
|Σu|

∫
<r

exp

{
log f(y, z, θ)− 1

2
(u− µu)′Σ−1u (u− µu)

}
∂u

(1)

gsem allows nonrecursive systems between Gaussian response variables with the identity link, but
non-Gaussian responses and Gaussian responses with the log link are not allowed to participate in
any nonrecursive systems. This means that if a given response y is specified with a family other
than Gaussian or a link other than identity, then y cannot have a path that ultimately leads back to
itself. Any response may participate in a recursive system because the participating responses may
be treated as exogenous variables when predicting other responses in a recursive system.

The latent vector u consists of stacked collections of the latent variables from each level. Within
each level, the latent endogenous variables η are stacked over the latent exogenous variables ξ. Within
a given level, the latent exogenous variables and latent endogenous errors are assumed independent
and multivariate normal

ξ ∼ N(κ,Φ)

ε ∼ N(0,Ψ)

so according to the linear relationship

η = Bη+ Γξ+ Ax+ ε

we have that the latent variables are jointly multivariate normal. This linear relationship implies that
gsem allows latent variables to predict each other, but only within level. It also means that gsem
allows paths from observed variables to latent variables; however, the observed variable must be
constant within group if the path is to a group-level latent variable.

For our two-level model, we have

u ∼ N(µu,Σu)

where

µu =

(
µη
κ

)
Σu =

(
Σηη Σηξ
Σξη Φ

)
µη = (I−B)−1(Γκ+ Ax)

Σηη = (I−B)−1(ΓΦΓ′ + Ψ)
{

(I−B)−1
}′

Σηξ = (I−B)−1ΓΦ

The vector θ is therefore the set of unique model parameters taken from the following:

βi is the vector of fixed-effect coefficients for yij .

Λi is the matrix of latent loadings for yij .
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B is the matrix of latent endogenous coefficients.

Γ is the matrix of latent exogenous coefficients.

A is the matrix of latent fixed-effect coefficients.

κ is the vector of latent exogenous means.

Φ is the matrix of latent exogenous variances and covariances.

Ψ is the matrix of latent endogenous error variances and covariances.

Auxiliary parameters that result from some of the distribution families.

Each level of a multilevel model will have its own set of the following parameters: B, Γ, A, κ, Φ,
and Ψ. For multilevel models, Σu is a block-diagonal matrix with a block for each level.

Gauss–Hermite quadrature

The integral in (1) is generally not tractable, so we must use numerical methods. In the univariate
case, the integral of a function multiplied by the kernel of the standard normal distribution can be
approximated using Gauss–Hermite quadrature (GHQ). For q-point GHQ, let the abscissa and weight
pairs be denoted by (a∗k, w

∗
k), k = 1, . . . , q. The GHQ approximation is then

∫ ∞
−∞

f(x) exp(−x2) dx ≈
q∑

k=1

w∗kf(a∗k)

Using the standard normal distribution yields the approximation

∫ ∞
−∞

f(x)φ(x) dx ≈
q∑

k=1

wkf(ak)

where ak =
√

2a∗k and wk = (w∗k)/
√
π.

We can use a change-of-variables technique to transform the multivariate integral (1) into a set
of nested univariate integrals. Each univariate integral can then be evaluated using GHQ. Let v be
a random vector whose elements are independently standard normal, and let L be the Cholesky
decomposition of Σu, that is, Σu = LL′. In the distribution, we have that u = µu + Lv, and the
linear predictions vector as a function of v is

zij = x′jβi + x′jΛi(µu + Lv)

so the likelihood for a given cluster is

L(θ) = (2π)−r/2
∫ ∞
−∞

. . .

∫ ∞
−∞

exp

{
log f(y, z, θ)− 1

2

r∑
k=1

v2k

}
dv1 . . . dvr (2)

where r is the number of latent variables.

Consider an r-dimensional quadrature grid containing q quadrature points in each dimension. Let
the vector of abscissas ak = (ak1 , . . . , akr )′ be a point in this grid, and let wk = (wk1 , . . . , wkr )′

be the vector of corresponding weights. The GHQ approximation to the likelihood for a given cluster
is
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LGHQ(θ) =

q∑
k1=1

. . .

q∑
kr=1

[
exp

{
n∑
i=1

log fi(yij , zijk, θ)

}
r∏
s=1

wks

]

where

zijk = x′jβ+ x′jΛi(µu + Lak)

Adaptive quadrature

This section sets the stage for mean-variance adaptive Gauss–Hermite quadrature (MVAGH) and
mode-curvature adaptive Gauss–Hermite quadrature (MCAGH).

Let’s reconsider the likelihood in (2). If we fix the observed variables and the model parameters,
we see that the posterior density for v is proportional to

φ(v)f(y, z, θ)

It is reasonable to assume that this posterior density can be approximated by a multivariate normal
density with mean vector µv and variance matrix τv . Instead of using the prior density of v as the
weighting distribution in the integral, we can use our approximation for the posterior density,

L(θ) =

∫
<r

f(y, z, θ)φ(v)

φ(v,µv, τv)
φ(v,µv, τv) dv

The likelihood is then approximated with

L∗(θ) =

q∑
k1=1

. . .

q∑
kr=1

[
exp

{
n∑
i=1

log fi(yij , z
∗
ijk, θ)

}
r∏
s=1

ωks

]

where

z∗ijk = x′jβ+ x′jΛi(µu + Lαk)

and αk and the ωks are the adaptive versions of the abscissas and weights after an orthogonalizing
transformation, which eliminates posterior covariances between the latent variables. αk and the ωks
are functions of ak and wk and the adaptive parameters µv and τv .

For MVAGH, µv is the posterior mean and τv is the posterior variance of v. They are computed
iteratively by updating the posterior moments by using the MVAGH approximation, starting with a 0
mean vector and identity variance matrix.

For MCAGH, µv is the posterior mode for v and τv is the curvature at the mode. They are computed
by optimizing the integrand in (2) with respect to v.
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Laplacian approximation

Let’s reconsider the likelihood in (1) and denote the argument in the exponential function by

h(u) = log f(y, z, θ)− 1

2
(u− µu)′Σ−1u (u− µu)

=

n∑
i=1

t∑
j=1

log fi(yij , zij , θ)− 1

2
(u− µu)′Σ−1u (u− µu)

where

zij = x′jβi + x′jΛiu

The Laplacian approximation is based on a second-order Taylor expansion of h(u) about the value
of u that maximizes it. The first and second partials with respect to u are

h′(u) =
∂h(u)

∂u
=

n∑
i=1

t∑
j=1

∂ log fi(yij , zij , θ)

∂zij
Λ′ixj −Σ−1(u− µu)

H(u) =
∂2h(u)

∂u∂u′
=

n∑
i=1

t∑
j=1

x′jΛi
∂2 log fi(yij , zij , θ)

∂zij∂zij
Λ′ixj −Σ−1

The maximizer of h(u) is û such that h′(û) = 0. The integral in (1) is proportional to the posterior
density of u given the data, so û is also the posterior mode.

The second-order Taylor approximation then takes the form

h(u) ≈ h(û) +
1

2
(u− û)′H(û)(u− û) (3)

because the first order derivative term is 0. The integral is approximated by∫
<r

exp{h(u)} du ≈ exp{h(û)}(2π)r/2 |−H(û)|−1/2

because the second term in (3) is the kernel of a multivariate normal density once it is exponentiated.
The Laplacian approximation for the log likelihood is

logLLap(θ) = −1

2
log |Σu| −

1

2
log |−H(û)|+ h(û)

Postestimation
We begin by considering the prediction of the latent variables u for a given cluster in a two-level

model. Prediction of latent variables in multilevel generalized linear models involves assigning values
to the latent variables, and there are many methods for doing so; see Skrondal and Rabe-Hesketh (2009)
and Skrondal and Rabe-Hesketh (2004, chap. 7) for a comprehensive review. Stata offers two methods
of predicting latent variables: empirical Bayes means (also known as posterior means) and empirical
Bayes modes (also known as posterior modes). Below we provide more details about the two methods.
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Empirical Bayes

Let θ̂ denote the estimated model parameters. Empirical Bayes (EB) predictors of the latent variables
are the means or modes of the empirical posterior distribution with the parameter estimates θ replaced
with their estimates θ̂. The method is called “empirical” because θ̂ is treated as known. EB combines
the prior information about the latent variables with the likelihood to obtain the conditional posterior
distribution of latent variables. Using Bayes’ theorem, the empirical conditional posterior distribution
of the latent variables for a given cluster is

ω(u|y,x; θ̂) =
f(y|u,x; θ̂)φ(u; µ̂u, Σ̂u)∫
f(y|u,x; θ̂)φ(u; µ̂u, Σ̂u) du

=
f(y|u,x; θ̂)φ(u; µ̂u, Σ̂u)

L(θ̂)

The denominator is just the likelihood contribution of the given cluster.

EB mean predictions of latent variables, ũ, also known as posterior means, are calculated as

ũ =

∫
<r

uω(u|y,x; θ̂) du

where we use the notation ũ rather than û to distinguish predicted values from estimates. This
multivariate integral is approximated by MVAGH. If you have multiple latent variables within a level
or latent variables across levels, the calculation involves orthogonalizing transformations with the
Cholesky transformation because the latent variables are no longer independent under the posterior
distribution.

When all the response variables are normal, the posterior density is multivariate normal, and EB
means are also best linear unbiased predictors (BLUPs); see Skrondal and Rabe-Hesketh (2004, 227).
In generalized mixed-effects models, the posterior density tends to multivariate normal as cluster size
increases.

EB modal predictions can be approximated by solving for ˜̃u such that

∂

∂u
logω(u|y,x; θ̂)

∣∣
u=˜̃u = 0

Because the denominator in ω(·) does not depend on u, we can omit it from the calculation to obtain
the EB mode. The calculation of EB modes does not require numerical integration, and for that reason
they are often used in place of EB means. As the posterior density gets closer to being multivariate
normal, EB modes get closer and closer to EB means.

Just like there are many methods of assigning values to the random effects, there exist many methods
of calculating standard errors of the predicted random effects; see Skrondal and Rabe-Hesketh (2009)
for a comprehensive review.

Stata uses the posterior standard deviation as the standard error of the posterior means predictor of
random effects. For a given level, the EB posterior covariance matrix of the random effects is given
by

Cov(ũ|y,x; θ̂) =

∫
<r

(u− ũ)(u− ũ)′ ω(u|y,x; θ̂) du

The posterior covariance matrix and the integrals are approximated by MVAGH.
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Conditional standard errors for the estimated posterior modes are derived from standard theory of
maximum likelihood, which dictates that the asymptotic variance matrix of ˜̃u is the negative inverse
of the Hessian matrix.

Other predictions

In what follows, we show formulas with the posterior means estimates of random effects ũ, which
are used by default or if the means option is specified. If the modes option is specified, ũ are simply
replaced with the posterior modes ˜̃u in these formulas.

For the ith response in the jth observation within a given cluster in a two-level model, the linear
predictor is computed as

ẑij = x′jβ̂+ x′jΛ̂iũ

The linear predictor includes the offset or exposure variable if one was specified during estimation,
unless the nooffset option is specified. If the fixedonly option is specified, the linear predictor
is computed as

ẑij = x′jβ̂

The predicted mean, conditional on the predicted latent variables, is

µ̂ij = g−1(ẑij)

where g−1(·) is the inverse link function defined in Link functions above. For the ordinal and
multinomial families, the predicted mean is actually a probability, and gsem can produce a probability
for each outcome value as described in The ordinal family and The multinomial family above.
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