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Description
This is the first example in the g series. The g means that the example focuses exclusively on the

gsem command. If you are interested primarily in standard linear SEMs, you may want to skip the
remaining examples. If you are especially interested in generalized SEMs, we suggest you read the
remaining examples in order.

gsem provides two features not provided by sem: the ability to fit SEMs containing generalized
linear response variables and the ability to fit multilevel mixed SEMs. These two features can be used
separately or together.

Generalized response variables means that the response variables can be specifications from the
generalized linear model (GLM). These include probit, logistic regression, ordered probit and logistic
regression, multinomial logistic regression, and more.

Multilevel mixed models refer to the simultaneous handling of group-level effects, which can be
nested or crossed. Thus you can include unobserved and observed effects for subjects, subjects within
group, group within subgroup, . . . , or for subjects, group, subgroup, . . . .

Below we demonstrate a single-factor measure model with pass/fail (binary outcome) responses
rather than continuous responses. This is an example of a generalized linear response variable. We
use the following data:

. use http://www.stata-press.com/data/r13/gsem_1fmm
(single-factor pass/fail measurement model)

. summarize

Variable Obs Mean Std. Dev. Min Max

x1 123 .4065041 .4931897 0 1
x2 123 .4065041 .4931897 0 1
x3 123 .4227642 .4960191 0 1
x4 123 .3495935 .4787919 0 1
s4 123 690.9837 77.50737 481 885

. notes

_dta:
1. Fictional data.
2. The variables x1, x2, x3, and x4 record 1=pass, 0=fail.
3. Pass/fail for x1, x2, x3: score > 100
4. Pass/fail for x4: score > 725
5. Variable s4 contains actual score for test 4.

See Single-factor measurement models in [SEM] intro 5 for background.

Remarks and examples stata.com

Remarks are presented under the following headings:
Single-factor pass/fail measurement model
Single-factor pass/fail + continuous measurement model
Fitting the model with the Builder

1

http://stata.com
http://www.stata.com/manuals13/semintro5.pdf#semintro5RemarksandexamplesSingle-factormeasurementmodels
http://www.stata.com/manuals13/semintro5.pdf#semintro5
http://stata.com
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Single-factor pass/fail measurement model

Below we fit the following model:

X

x1
Bernoulli

probit

x2
Bernoulli

probit

x3
Bernoulli

probit

x4
Bernoulli

probit

The measurement variables we have (x1, . . . , x4) are not continuous. They are pass/fail, coded as 1
(pass) and 0 (fail). To account for that, we use probit (also known as family Bernoulli, link probit).
The equations for this model are

Pr(x1 = 1) = Φ(α1 +Xβ1)

Pr(x2 = 1) = Φ(α2 +Xβ2)

Pr(x3 = 1) = Φ(α3 +Xβ3)

Pr(x4 = 1) = Φ(α4 +Xβ4)

where Φ(·) is the N(0, 1) cumulative distribution.

One way to think about this is to imagine a test that is scored on a continuous scale. Let’s imagine
the scores were s1, s2, s3, and s4 and distributed N(µi, σ

2
i ), as test scores often are. Let’s further

imagine that for each test, a cutoff ci is chosen and the student passes the test if si ≥ ci.
If we had the test scores, we would fit this as a linear model. We would posit

si = γi +Xδi + εi

where εi ∼ N(0, σ2
i ). However, we do not have test scores in our data; we have only the pass/fail

results xi = 1 if si > ci.
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So let’s consider the pass/fail problem. The probability that a student passes test i is determined
by the probability that the student scores above the cutoff:

Pr(si > ci) = Pr(γi +Xδi + εi > ci)

= Pr{ εi > ci − (γi +Xδi) }
= Pr{−εi ≤ −ci + (γi +Xδi) }
= Pr{−εi ≤ (γi − ci) +Xδi }
= Pr{−εi/σi ≤ (γi − ci)/σi +Xδi/σi}
= Φ{ (γi − ci)/σi +Xδi/σi }

The last equation is the probit model. In fact, we just derived the probit model, and now we know
the relationship between the parameters we will be able to estimate with our pass/fail data: αi and
βi. We also now know the parameters we could have estimated if we had the continuous test scores:
γi and δi. The relationship is

αi = (γi − ci)/σi
βi = δi/σi

Notice that the right-hand sides of both equations are divided by σi, the standard deviation of the
error term from the linear model for the ith test score. In pass/fail data, we lose the original scale of
the score, and the slope coefficient we will be able to estimate is the slope coefficient from the linear
model divided by the standard deviation of the error term. Meanwhile, the intercept we will be able
to estimate is just the difference of the continuous model’s intercept and the cutoff for passing the
test, sans scale.

The command to fit the model and the results are

. gsem (x1 x2 x3 x4 <-X), probit

Fitting fixed-effects model:

Iteration 0: log likelihood = -329.82091
Iteration 1: log likelihood = -329.57665
Iteration 2: log likelihood = -329.57664

Refining starting values:

Grid node 0: log likelihood = -273.75437

Fitting full model:

Iteration 0: log likelihood = -273.75437
Iteration 1: log likelihood = -264.3035
Iteration 2: log likelihood = -263.37815
Iteration 3: log likelihood = -262.305
Iteration 4: log likelihood = -261.69025
Iteration 5: log likelihood = -261.42132
Iteration 6: log likelihood = -261.35508
Iteration 7: log likelihood = -261.3224
Iteration 8: log likelihood = -261.3133
Iteration 9: log likelihood = -261.30783
Iteration 10: log likelihood = -261.30535
Iteration 11: log likelihood = -261.30405
Iteration 12: log likelihood = -261.30337
Iteration 13: log likelihood = -261.30302
Iteration 14: log likelihood = -261.30283
Iteration 15: log likelihood = -261.30272
Iteration 16: log likelihood = -261.30267
Iteration 17: log likelihood = -261.30264
Iteration 18: log likelihood = -261.30263



4 example 27g — Single-factor measurement model (generalized response)

Generalized structural equation model Number of obs = 123
Log likelihood = -261.30263

( 1) [x1]X = 1

Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 <-
X 1 (constrained)

_cons -.3666763 .1896773 -1.93 0.053 -.738437 .0050844

x2 <-
X 1.33293 .4686743 2.84 0.004 .4143455 2.251515

_cons -.4470271 .2372344 -1.88 0.060 -.911998 .0179438

x3 <-
X .6040478 .1908343 3.17 0.002 .2300195 .9780761

_cons -.2276709 .1439342 -1.58 0.114 -.5097767 .0544349

x4 <-
X 9.453342 5.151819 1.83 0.067 -.6440375 19.55072

_cons -4.801027 2.518038 -1.91 0.057 -9.736291 .1342372

var(X) 2.173451 1.044885 .847101 5.576536

Notes:

1. In the path diagrams, x1, . . . , x4 are shown as being family Bernoulli, link probit. On the
command line, we just typed probit although we could have typed family(bernoulli)
link(probit). In the command language, probit is a synonym for family(bernoulli)
link(probit).

2. Variable X is latent exogenous and thus needs a normalizing constraint. The variable is anchored
to the first observed variable, x1, and thus the path coefficient is constrained to be 1. See
Identification 2: Normalization constraints (anchoring) in [SEM] intro 4.

3. The path coefficients for X->x1, X->x2, and X->x3 are 1, 1.33, and 0.60. Meanwhile, the path
coefficient for X->x4 is 9.45. This is not unexpected; we at StataCorp generated these fictional
data, and we made the x4 effect large and less precisely estimable.

Single-factor pass/fail + continuous measurement model

In the above example, all equations were probit. Different equations within a single SEM can have
a different family and link.

Below we refit our model with the continuous measure for test 4 (variable s4) in place of the
pass/fail measure (variable x4). We continue to use the pass/fail measures for tests 1, 2, and 3.

. gsem (x1 x2 x3 <-X, probit) (s4<-X)

Fitting fixed-effects model:

Iteration 0: log likelihood = -959.23492
Iteration 1: log likelihood = -959.09499
Iteration 2: log likelihood = -959.09499

Refining starting values:

Grid node 0: log likelihood = -905.14944

Fitting full model:

Iteration 0: log likelihood = -905.14944 (not concave)
Iteration 1: log likelihood = -872.33773

http://www.stata.com/manuals13/semintro4.pdf#semintro4RemarksandexamplesIdentification2Normalizationconstraints(anchoring)
http://www.stata.com/manuals13/semintro4.pdf#semintro4
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Iteration 2: log likelihood = -869.83144
Iteration 3: log likelihood = -869.69578
Iteration 4: log likelihood = -869.68928
Iteration 5: log likelihood = -869.6892

Generalized structural equation model Number of obs = 123
Log likelihood = -869.6892

( 1) [x1]X = 1

Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 <-
X 1 (constrained)

_cons -.4171085 .1964736 -2.12 0.034 -.8021896 -.0320274

x2 <-
X 1.298311 .3280144 3.96 0.000 .6554142 1.941207

_cons -.4926357 .2387179 -2.06 0.039 -.9605142 -.0247573

x3 <-
X .682969 .1747328 3.91 0.000 .3404989 1.025439

_cons -.2942021 .1575014 -1.87 0.062 -.6028992 .0144949

s4 <-
X 55.24829 12.19904 4.53 0.000 31.3386 79.15798

_cons 690.9837 6.960106 99.28 0.000 677.3422 704.6253

var(X) 1.854506 .7804393 .812856 4.230998

var(e.s4) 297.8565 408.64 20.24012 4383.299

Notes:

1. We obtain similar coefficients for x1, . . . , x3.

2. We removed x4 (a pass/fail variable) and substituted s4 (the actual test score). s4 turns out to
be more significant than x4. This suggests a poor cutoff was set for “passing” test 4.

3. The log-likelihood values for the two models we have fit are strikingly different: −261 in the
previous model and −870 in the current model. The difference has no meaning. Log-likelihood
values are dependent on the model specified. We changed the fourth equation from a probit
specification to a continuous (linear-regression) specification, and just doing that changes the
metric of the log-likelihood function. Comparisons of log-likelihood values are only meaningful
when they share the same metric.

Fitting the model with the Builder

Use the diagram in Single-factor pass/fail measurement model above for reference.

1. Open the dataset.

In the Command window, type

. use http://www.stata-press.com/data/r13/gsem_1fmm

2. Open a new Builder diagram.

Select menu item Statistics > SEM (structural equation modeling) > Model building and
estimation.

3. Put the Builder in gsem mode by clicking on the button.
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4. Create the measurement component for X.

Select the Add Measurement Component tool, , and then click in the diagram about one-third
of the way down from the top and slightly left of the center.

In the resulting dialog box,

a. change the Latent variable name to X;

b. select x1, x2, x3, and x4 by using the Measurement variables control;

c. check Make measurements generalized;

d. select Bernoulli, Probit in the Family/Link control;

e. select Down in the Measurement direction control;

f. click on OK.

If you wish, move the component by clicking on any variable and dragging it.

5. Estimate.

Click on the Estimate button, , in the Standard Toolbar, and then click on OK in the resulting
GSEM estimation options dialog box.

6. To fit the model in Single-factor pass/fail + continuous measurement model, modify the diagram
created in the previous steps.

a. Use the Select tool, , to click on the x4 rectangle.

b. In the Contextual Toolbar, select s4 in the Variable control.

c. In the Contextual Toolbar, select Gaussian, Identity in the Family/Link control.

7. Estimate.

Click on the Estimate button, , in the Standard Toolbar, and then click on OK in the resulting
GSEM estimation options dialog box.

You can open a completed diagram in the Builder by typing

. webgetsem gsem_1fmm

Also see
[SEM] example 1 — Single-factor measurement model

[SEM] example 28g — One-parameter logistic IRT (Rasch) model

[SEM] example 29g — Two-parameter logistic IRT model

[SEM] example 30g — Two-level measurement model (multilevel, generalized response)

[SEM] example 31g — Two-factor measurement model (generalized response)

[SEM] gsem — Generalized structural equation model estimation command

[SEM] intro 5 — Tour of models

http://www.stata.com/manuals13/semexample1.pdf#semexample1
http://www.stata.com/manuals13/semexample28g.pdf#semexample28g
http://www.stata.com/manuals13/semexample29g.pdf#semexample29g
http://www.stata.com/manuals13/semexample30g.pdf#semexample30g
http://www.stata.com/manuals13/semexample31g.pdf#semexample31g
http://www.stata.com/manuals13/semgsem.pdf#semgsem
http://www.stata.com/manuals13/semintro5.pdf#semintro5

