Title

example 26 — Fitting a model with data missing at random

Description Remarks and examples Also see

Description

sem method(mlmv) is demonstrated using

. use http://www.stata-press.com/data/r13/cfa_missing (CFA MAR data)

. summarize

Variable	Obs	Mean	Std. Dev.	Min	Max
id	500	250.5	144.4818	1	500
test1	406	97.37475	13.91442	56.0406	136.5672
test2	413	98.04501	13.84145	62.25496	129.3881
test3	443	100.9699	13.4862	65.51753	137.3046
test4	417	99.56815	14.25438	53.8719	153.9779
taken	500	3.358	.6593219	2	4

. notes

_dta:

1. Fictional data on 500 subjects taking four tests.

2. Tests results M.A.R. (missing at random).

3. 230 took all 4 tests

4. 219 took 3 of the 4 tests

5. 51 took 2 of the 4 tests

6. All tests have expected mean 100, s.d. 14.

See [SEM] intro 4 for background.

Remarks and examples

stata.com

Remarks are presented under the following headings:

Fitting the model with method(ml) Fitting the model with method(mlmv) Fitting the model with the Builder

Fitting the model with method(ml)

We fit a single-factor measurement model.

		5	x			
	test1	test2		est3 ε ₃	test4	
. sem (test1 t (270 observat: Endogenous van Measurement: Exogenous var:	test2 test3 t ions with mis riables test1 test2 f iables	est4 <- X), sing values test3 test4	nolog excluded))		
Structural equ Estimation met Log likelihood (1) [test1]	Lation model thod = ml d = -3464]X = 1	. 3099		Number	of obs =	230
	Coef.	OIM Std. Err.	z	P> z	[95% Conf.	Interval]
Measurement test1 <- X _cons	1 96.76907	(constraine .8134878	ed) 118.96	0.000	95.17467	98.36348
test2 <- X _cons	1.021885 92.41248	.1183745 .8405189	8.63 109.95	0.000	.789875 90.7651	1.253895 94.05987
test3 <- X _cons	.5084673 94.12958	.0814191 .7039862	6.25 133.71	0.000	.3488889 92.7498	.6680457 95.50937
test4 <- X _cons	.5585651 92.2556	.0857772 .7322511	6.51 125.99	0.000	.3904449 90.82042	.7266853 93.69079
<pre>var(e.test1) var(e.test2) var(e.test3) var(e.test4) var(X)</pre>	55.86083 61.88092 89.07839 93.26508 96.34453	10.85681 11.50377 8.962574 9.504276 16.28034			38.16563 42.985 73.13566 76.37945 69.18161	81.76028 89.08338 108.4965 113.8837 134.1725
LR test of mod	del vs. satur	ated: chi2(2	2) =	0.39,	Prob > chi2 =	0.8212

Notes:

- 1. This model was fit using 230 of the 500 observations in the dataset. Unless you use sem's method(mlmv), observations are casewise omitted, meaning that if there is a single variable with a missing value among the variables being used, the observation is ignored.
- 2. The coefficients for test3 and test4 are 0.51 and 0.56. Because we at StataCorp manufactured these data, we can tell you that the true coefficients are 1.
- 3. The error variance for e.test1 and e.test2 are understated. These data were manufactured with an error variance of 100.
- 4. These data are missing at random (MAR), not missing completely at random (MCAR). In MAR data, which values are missing can be a function of the observed values in the data. MAR data can produce biased estimates if the missingness is ignored, as we just did. MCAR data do not bias estimates.

Fitting the model with method(mlmv)

. sem (test1 test2 test3 test4 <- X), method(mlmv) nolog Endogenous variables Measurement: test1 test2 test3 test4 Exogenous variables Latent: X (output omitted) Structural equation model Number of obs = 500 Estimation method = mlmv Log likelihood = -6592.9961 (1) [test1]X = 1

	OIM						
	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]	
Measurement test1 <-							
Х	1	(constrain	ed)				
_cons	98.94386	.6814418	145.20	0.000	97.60826	100.2795	
test2 <-							
Х	1.069952	.1079173	9.91	0.000	.8584378	1.281466	
_cons	99.84218	.6911295	144.46	0.000	98.48759	101.1968	
test3 <-							
Х	.9489025	.0896098	10.59	0.000	.7732706	1.124534	
_cons	101.0655	.6256275	161.54	0.000	99.83928	102.2917	
test4 <-							
Х	1.021626	.0958982	10.65	0.000	.8336687	1.209583	
_cons	99.64509	.6730054	148.06	0.000	98.32603	100.9642	
var(e.test1)	101.1135	10.1898			82.99057	123.1941	
<pre>var(e.test2)</pre>	95.45572	10.79485			76.47892	119.1413	
<pre>var(e.test3)</pre>	95.14847	9.053014			78.9611	114.6543	
<pre>var(e.test4)</pre>	101.0943	10.0969			83.12124	122.9536	
var(X)	94.04629	13.96734			70.29508	125.8225	

LR test of model vs. saturated: chi2(2) = 2.27, Prob > chi2 = 0.3209

Notes:

- 1. The model is now fit using all 500 observations in the dataset.
- 2. The coefficients for test3 and test4—previously 0.51 and 0.56—are now 0.95 and 1.02.
- 3. Error variance estimates are now consistent with the true value of 100.
- 4. Standard errors of path coefficients are mostly smaller than reported in the previous model.
- 5. method(mlmv) requires that the data be MCAR or MAR.
- 6. method(mlmv) requires that the data be multivariate normal.

Fitting the model with the Builder

Use the diagram above for reference.

1. Open the dataset.

In the Command window, type

- . use http://www.stata-press.com/data/r13/cfa_missing
- 2. Open a new Builder diagram.

Select menu item Statistics > SEM (structural equation modeling) > Model building and estimation.

3. Create the measurement component for X.

Select the Add Measurement Component tool, ³⁹, and then click in the diagram about one-third of the way down from the top and about halfway in from the left.

In the resulting dialog box,

- a. change the Latent variable name to X;
- b. select test1, test2, test3, and test4 by using the Measurement variables control;
- c. select Down in the Measurement direction control;
- d. click on OK.

If you wish, move the component by clicking on any variable and dragging it.

- 4. Estimate.
 - Click on the Estimate button, *in the Standard Toolbar*. In the resulting dialog box,
 - a. select the Model tab;
 - b. select the Maximum likelihood with missing values radio button;
 - c. click on OK.

You can open a completed diagram in the Builder by typing

. webgetsem cfa_missing

Also see

[SEM] **intro 4** — Substantive concepts

[SEM] sem option method() — Specifying method and calculation of VCE