Title stata.com

example 24 — Reliability

Description Remarks and examples Also see

Description

Below we demonstrate sem's reliability() option with the following data:

. use http://www.stata-press.com/data/r13/sem_rel
(measurement error with known reliabilities)

. summarize

Variable	Obs	Mean	Std. Dev.	Min	Max
У	1234	701.081	71.79378	487	943
x1	1234	100.278	14.1552	51	149
x2	1234	100.2066	14.50912	55	150

. notes

_dta:

- 1. Fictional data.
- Variables x1 and x2 each contain a test score designed to measure X. The test is scored to have mean 100.
- 3. Variables x1 and x2 are both known to have reliability 0.5.
- 4. Variable y is the outcome, believed to be related to X.

See [SEM] sem and gsem option reliability() for background.

Remarks and examples

stata.com

Remarks are presented under the following headings:

Baseline model (reliability ignored)
Model with reliability
Model with two measurement variables and reliability

Baseline model (reliability ignored)

. sem (y < -x1)

Endogenous variables

Observed: y

Exogenous variables

Observed: x1

Fitting target model:

Iteration 0: log likelihood = -11629.745Iteration 1: log likelihood = -11629.745

Structural equation model Number of obs 1234

Estimation method = ml

Log likelihood = -11629.745

	Coef.	OIM Std. Err.	z	P> z	[95% Conf.	Interval]
Structural y <-						
x1	3.54976	.1031254	34.42	0.000	3.347637	3.751882
_cons	345.1184	10.44365	33.05	0.000	324.6492	365.5876
var(e.y)	2627.401	105.7752			2428.053	2843.115

LR test of model vs. saturated: chi2(0) 0.00, Prob > chi2 =

Notes:

- 1. In these data, variable x1 is measured with error.
- 2. If we ignore that, we obtain a path coefficient for y < -x1 of 3.55.
- 3. We also ran this model for y < -x2. We obtained a path coefficient of 3.48.

Model with reliability

```
. sem (x1<-X) (y<-X), reliability(x1 .5)
```

Endogenous variables
Measurement: x1 y
Exogenous variables
Latent: X

Fitting target model:

Iteration 0: log likelihood = -11745.845
Iteration 1: log likelihood = -11661.626
Iteration 2: log likelihood = -11631.469
Iteration 3: log likelihood = -11629.745
Iteration 4: log likelihood = -11629.745
Iteration 5: log likelihood = -11629.745

Structural equation model Number of obs = 1234

Estimation method = ml

Log likelihood = -11629.745

(1) [x1]X = 1

 $(2) [var(e.x1)]_{cons} = 100.1036$

		Coef.	OIM Std. Err.	z	P> z	[95% Conf.	Interval]
	asurement						
2	k1 <-						
	Х	1	(constrained)				
	_cons	100.278	.4027933	248.96	0.000	99.4885	101.0674
7	y <-						
	Х	7.09952	.352463	20.14	0.000	6.408705	7.790335
	_cons	701.081	2.042929	343.17	0.000	697.077	705.0851
	var(e.x1)	100.1036	(constrained)				
	<pre>var(e.y)</pre>	104.631	207.3381			2.152334	5086.411
	var(X)	100.1036	8.060038			85.48963	117.2157

LR test of model vs. saturated: chi2(0) = 0.00, Prob > chi2 =

Notes:

- 1. We wish to estimate the effect of y<-x1 when x1 is measured with error (0.50 reliability). To do that, we introduce latent variable X and write our model as (x1<-X) (y<-X).
- 2. When we ignored the measurement error of x1, we obtained a path coefficient for y<-x1 of 3.55. Taking into account the measurement error, we obtain a coefficient of 7.1.

Model with two measurement variables and reliability

```
. sem (x1 x2<-X) (y<-X), reliability(x1 .5 x2 .5)
```

Endogenous variables
Measurement: x1 x2 y
Exogenous variables
Latent: X

Fitting target model:

Iteration 0: log likelihood = -16258.636
Iteration 1: log likelihood = -16258.401
Iteration 2: log likelihood = -16258.4

Structural equation model Number of obs = 1234

Estimation method = ml

Log likelihood = -16258.4

- (1) [x1]X = 1
- $(2) [var(e.x1)]_{cons} = 100.1036$
- $(3) [var(e.x2)]_{cons} = 105.1719$

	Coef.	OIM Std. Err.	z	P> z	[95% Conf.	Interval]
Measurement						
x1 <- X	1	(constraine				
_cons	100.278	.4037851	248.34	0.000	99.48655	101.0694
x2 <-						
Х	1.030101	.0417346	24.68	0.000	.9483029	1.1119
_cons	100.2066	.4149165	241.51	0.000	99.39342	101.0199
у <-						
Х	7.031299	.2484176	28.30	0.000	6.544409	7.518188
_cons	701.081	2.042928	343.17	0.000	697.077	705.0851
<pre>var(e.x1)</pre>	100.1036	(constrained)				
<pre>var(e.x2)</pre>	105.1719	(constrained)				
<pre>var(e.y)</pre>	152.329	105.26			39.31868	590.1553
var(X)	101.0907	7.343656			87.67509	116.5591

LR test of model vs. saturated: chi2(2) = 0.59, Prob > chi2 = 0.7430

Notes:

- 1. We wish to estimate the effect of y<-X. We have two measures of X—x1 and x2—both measured with error (0.50 reliability).
- 2. In the previous section, we used just x1. We obtained path coefficient 7.1 with standard error 0.4. Using both x1 and x2, we obtain path coefficient 7.0 and standard error 0.2.
- 3. We at StataCorp created these fictional data. The true coefficient is 7.

Also see

[SEM] sem and gsem option reliability() — Fraction of variance not due to measurement error [SEM] example 1 — Single-factor measurement model