Description

The single-factor measurement model is demonstrated using the following data:

```
. use http://www.stata-press.com/data/r13/sem_1fmm
(single-factor measurement model)
. summarize

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>123</td>
<td>96.28455</td>
<td>14.16444</td>
<td>54</td>
<td>131</td>
</tr>
<tr>
<td>x2</td>
<td>123</td>
<td>97.28455</td>
<td>16.14764</td>
<td>64</td>
<td>135</td>
</tr>
<tr>
<td>x3</td>
<td>123</td>
<td>97.09756</td>
<td>15.10207</td>
<td>62</td>
<td>138</td>
</tr>
<tr>
<td>x4</td>
<td>123</td>
<td>690.9837</td>
<td>77.50737</td>
<td>481</td>
<td>885</td>
</tr>
</tbody>
</table>
```

`. notes
_dta:
 1. fictional data
 2. Variables x1, x2, and x3 each contain a test score designed to measure X. The test is scored to have mean 100.
 3. Variable x4 is also designed to measure X, but designed to have mean 700.

See *Single-factor measurement models* in [SEM] intro 5 for background.

Remarks and examples

Remarks are presented under the following headings:

- **Single-factor measurement model**
- **Fitting the same model with gsem**
- **Fitting the same model with the Builder**
- **The measurement-error model interpretation**

Single-factor measurement model

Below we fit the following model:
example 1 — Single-factor measurement model

. sem (x1 x2 x3 x4 <- X)

Endogenous variables
Measurement: x1 x2 x3 x4

Exogenous variables
Latent: X

Fitting target model:
Iteration 0: log likelihood = -2081.0258
Iteration 1: log likelihood = -2080.986
Iteration 2: log likelihood = -2080.9859

Structural equation model

Number of obs = 123
Estimation method = ml
Log likelihood = -2080.9859

(1) \[|x1|X = 1\]

| OIM | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----|-------|-----------|----|------|---------------------|
| Measurement | | | | | |
| x1 <- X | 1 (constrained) | | | | |
| _cons | 96.28455 | 1.271963 | 75.70 | 0.000 | 93.79155 | 98.77755 |
| x2 <- X | | | | | |
| _cons | 1.172364 | .1231777 | 9.52 | 0.000 | .9309398 | 1.413788 |
| x3 <- X | | | | | |
| _cons | 1.034523 | .1160558 | 8.91 | 0.000 | .8070579 | 1.261988 |
| x4 <- X | | | | | |
| _cons | 6.886044 | .6030898 | 11.42 | 0.000 | 5.704009 | 8.068078 |
| var(e.x1) | 80.79361 | 11.66414 | | | 60.88206 | 107.2172 |
| var(e.x2) | 96.15861 | 13.93945 | | | 72.37612 | 127.7559 |
| var(e.x3) | 99.70874 | 14.33299 | | | 75.22708 | 132.1576 |
| var(e.x4) | 353.4711 | 236.6847 | | | 95.14548 | 1313.166 |
| var(X) | 118.2068 | 23.82631 | | | 79.62878 | 175.4747 |

LR test of model vs. saturated: chi2(2) = 1.78, Prob > chi2 = 0.4111

The equations for this model are

\[x_1 = \alpha_1 + X\beta_1 + e.x_1\]
\[x_2 = \alpha_2 + X\beta_2 + e.x_2\]
\[x_3 = \alpha_3 + X\beta_3 + e.x_3\]
\[x_4 = \alpha_4 + X\beta_4 + e.x_4\]

Notes:

1. Variable \(X\) is latent exogenous and thus needs a normalizing constraint. The variable is anchored to the first observed variable, \(x_1\), and thus the path coefficient is constrained to be 1. See Identification 2: Normalization constraints (anchoring) in [SEM] intro 4.
2. The path coefficients for $X \rightarrow x_1$, $X \rightarrow x_2$, and $X \rightarrow x_3$ are 1 (constrained), 1.17, and 1.03. Meanwhile, the path coefficient for $X \rightarrow x_4$ is 6.89. This is not unexpected; we at StataCorp generated this data, and the true coefficients are 1, 1, 1, and 7.

3. A test for “model versus saturated” is reported at the bottom of the output; the $\chi^2(2)$ statistic is 1.78 and its significance level is 0.4111. We cannot reject the null hypothesis of this test. This test is a goodness-of-fit test in badness-of-fit units; a significant result implies that there may be missing paths in the model’s specification.

More mathematically, the null hypothesis of the test is that the fitted covariance matrix and mean vector of the observed variables are equal to the matrix and vector observed in the population.

Fitting the same model with gsem

sem and gsem produce the same results for standard linear SEMs. We are going to demonstrate that just this once.

```
     . gsem (x1 x2 x3 x4 <- X)
  Fitting fixed-effects model:
Iteration 0:  log likelihood = -2233.3283
Iteration 1:  log likelihood = -2233.3283
  Refining starting values:
Grid node 0:  log likelihood = -2081.0303
  Fitting full model:
Iteration 0:  log likelihood = -2081.0303
Iteration 1:  log likelihood = -2080.9861
Iteration 2:  log likelihood = -2080.9859
Generalized structural equation model
Number of obs        =         123
Log likelihood       =     -2080.9859
( 1)  [x1]X = 1

                          Coef.  Std. Err.      z    P>|z|     [95% Conf. Interval]
  x1 <-
      X                  1  (constrained)
     _cons           96.28455   1.271962  75.70   0.000    93.79155    98.77755
  x2 <-
      X               1.172365   .1231778   9.52   0.000     .9309411    1.413789
     _cons           97.28455   1.450052  67.09   0.000    94.44250    100.1266
  x3 <-
      X               1.034524   .1160559   8.91   0.000     .8070585    1.261989
     _cons           97.09756   1.356160  71.60   0.000    94.43954    99.75559
  x4 <-
      X               6.886053   .6030902  11.42   0.000     5.704018    8.068088
     _cons           690.9837   6.960134  99.28   0.000    677.3421    704.6253
  var(X)            118.2064   23.82628  79.62   0.000     95.14011    131.3168
  var(e.x1)         80.79381   11.66416   6.89   0.000     66.70115    94.88572
  var(e.x2)        96.15857   13.93942   6.98   0.000     71.89748    120.4198
  var(e.x3)        99.70883   14.33298   6.99   0.000     71.93482    127.4829
  var(e.x4)        353.4614   236.68349  1.48   0.171    -225.3209    932.2448
```


Notes:

1. Results are virtually the same. Coefficients differ in the last digit; for instance, \(x2 \leftarrow X \) was 1.172364 and now it is 1.172365. The same is true of standard errors, etc. Meanwhile, variance estimates are usually differing in the next-to-last digit; for instance, \(\text{var}(e.x2) \) was 96.15861 and is now 96.15857. These are the kind of differences we would expect to see. \texttt{gsem} follows a different approach for obtaining results that involves far more numeric machinery, which correspondingly results in slightly less accuracy.

2. The log-likelihood values reported are the same. This model is one of the few models we could have chosen where \texttt{sem} and \texttt{gsem} would produce the same log-likelihood values. In general, \texttt{gsem} log likelihoods are on different metrics from those of \texttt{sem}. In the case where the model does not include observed exogenous variables, however, they share the same metric.

3. There is no reason to use \texttt{gsem} over \texttt{sem} when both can fit the same model. \texttt{sem} is slightly more accurate, is quicker, and has more postestimation features.

Fitting the same model with the Builder

Use the diagram above for reference.

1. Open the dataset.

 In the Command window, type

 \[\texttt{use http://www.stata-press.com/data/r13/sem_1fmm} \]

2. Open a new Builder diagram.

 Select menu item \texttt{Statistics > SEM (structural equation modeling) > Model building and estimation}.

3. Create the measurement component for \(X \).

 Select the Add Measurement Component tool, \[\text{Add Measurement Component} \], and then click in the diagram about one-third of the way down from the top and slightly left of the center.

 In the resulting dialog box,

 a. change the \textit{Latent variable name} to \(X \);

 b. select \(x1 \), \(x2 \), \(x3 \), and \(x4 \) by using the \textit{Measurement variables} control;

 c. select \textit{Down} in the \textit{Measurement direction} control;

 d. click on \texttt{OK}.

 If you wish, move the component by clicking on any variable and dragging it.

 Notice that the constraints of 1 on the paths from the error terms to the observed measures are implied, so we do not need to add these to our diagram.

4. Estimate.

 Click on the \texttt{Estimate} button, \[\text{Estimate} \], in the Standard Toolbar, and then click on \texttt{OK} in the resulting \textit{SEM estimation options} dialog box.

You can open a completed diagram in the Builder by typing

\[\texttt{webgetsem sem_1fmm} \]
The measurement-error model interpretation

As we pointed out in *Using path diagrams to specify standard linear SEMs* in [SEM] intro 2, if we rename variable x4 to be y, we can reinterpret this measurement model as a measurement-error model. In this interpretation, X is the unobserved true value. x1, x2, and x3 are each measurements of X, but with error. Meanwhile, y (x4) is really something else entirely. Perhaps y is earnings, and we believe

\[y = \alpha_4 + \beta_4 X + e.y \]

We are interested in \(\beta_4 \), the effect of true X on y.

If we were to go back to the data and type `regress y x1`, we would obtain an estimate of \(\beta_4 \), but we would expect that estimate to be biased toward 0 because of the errors-in-variable problem. The same applies for y on x2 and y on x3. If we do that, we obtain

\[
\begin{align*}
\beta_4 & \text{ based on } \text{regress y x1} & 4.09 \\
\beta_4 & \text{ based on } \text{regress y x2} & 3.71 \\
\beta_4 & \text{ based on } \text{regress y x3} & 3.70
\end{align*}
\]

In the `sem` output above, we have an estimate of \(\beta_4 \) with the bias washed away:

\[\beta_4 \text{ based on } \text{sem (y<-X)} \quad 6.89 \]

The number 6.89 is the value reported for \((x4<-X)\) in the `sem` output.

That \(\beta_4 \) might be 6.89 seems plausible because we expect that the estimate should be larger than the estimates we obtain using the variables measured with error. In fact, we can tell you that the 6.89 estimate is quite good because we at StataCorp know that the true value of \(\beta_4 \) is 7. Here is how we manufactured this fictional dataset:

```bash
set seed 12347
set obs 123
gen X = round(rnormal(0,10))
gen x1 = round(100 + X + rnormal(0, 10))
gen x2 = round(100 + X + rnormal(0, 10))
gen x3 = round(100 + X + rnormal(0, 10))
gen x4 = round(700 + 7*X + rnormal(0, 10))
```

The data recorded in `sem_1fmm.dta` were obviously generated using normality, the same assumption that is most often used to justify the SEM maximum likelihood estimator. In [SEM] intro 4, we explained that the normality assumption can be relaxed and conditional normality can usually be substituted in its place.

So let’s consider nonnormal data. Let’s make X be \(\chi^2(2) \), a violently nonnormal distribution, resulting in the data-manufacturing code

```bash
set seed 12347
set obs 123
gen X = (rchi2(2)-2)*(10/2)
gen x1 = round(100 + X + rnormal(0, 10))
gen x2 = round(100 + X + rnormal(0, 10))
gen x3 = round(100 + X + rnormal(0, 10))
gen x4 = round(700 + 7*X + rnormal(0, 10))
```
All the \texttt{rnormal()} functions remaining in our code have to do with the assumed normality of the errors. The multiplicative and additive constants in the generation of X simply rescale the $\chi^2(2)$ variable to have mean 100 and standard deviation 10, which would not be important except for the subsequent \texttt{round()} functions, which themselves were unnecessary except that we wanted to produce a pretty dataset when we created the original \texttt{sem_1fmm.dta}.

In any case, if we rerun the commands with these data, we obtain

\begin{verbatim}
\beta_4 \text{ based on } \texttt{regress y x1} & 3.93 \\
\beta_4 \text{ based on } \texttt{regress y x2} & 4.44 \\
\beta_4 \text{ based on } \texttt{regress y x3} & 3.77 \\
\beta_4 \text{ based on } \texttt{sem (y<-X)} & 6.70 \\
\end{verbatim}

We will not burden you with the details of running simulations to assess coverage; we will just tell you that coverage is excellent: reported test statistics and significance levels can be trusted.

By the way, errors in the variables is something that does not go away with progressively larger sample sizes. Change the code above to produce a 100,000-observation dataset instead of a 123-observation one, and you will obtain

\begin{verbatim}
\beta_4 \text{ based on } \texttt{regress y x1} & 3.51 \\
\beta_4 \text{ based on } \texttt{regress y x2} & 3.51 \\
\beta_4 \text{ based on } \texttt{regress y x3} & 3.48 \\
\beta_4 \text{ based on } \texttt{sem (y<-X)} & 7.00 \\
\end{verbatim}

Reference

Also see

\begin{verbatim}[SEM] \texttt{sem} — Structural equation model estimation command \\
[SEM] \texttt{gsem} — Generalized structural equation model estimation command \\
[SEM] \texttt{intro 5} — Tour of models \\
[SEM] \texttt{example 3} — Two-factor measurement model \\
[SEM] \texttt{example 24} — Reliability \\
[SEM] \texttt{example 27g} — Single-factor measurement model (generalized response) \end{verbatim}