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Description
The single-factor measurement model is demonstrated using the following data:

. use http://www.stata-press.com/data/r13/sem_1fmm
(single-factor measurement model)

. summarize

Variable Obs Mean Std. Dev. Min Max

x1 123 96.28455 14.16444 54 131
x2 123 97.28455 16.14764 64 135
x3 123 97.09756 15.10207 62 138
x4 123 690.9837 77.50737 481 885

. notes

_dta:
1. fictional data
2. Variables x1, x2, and x3 each contain a test score designed to measure X.

The test is scored to have mean 100.
3. Variable x4 is also designed to measure X, but designed to have mean 700.

See Single-factor measurement models in [SEM] intro 5 for background.

Remarks and examples stata.com

Remarks are presented under the following headings:
Single-factor measurement model
Fitting the same model with gsem
Fitting the same model with the Builder
The measurement-error model interpretation

Single-factor measurement model

Below we fit the following model:
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. sem (x1 x2 x3 x4 <- X)

Endogenous variables

Measurement: x1 x2 x3 x4

Exogenous variables

Latent: X

Fitting target model:

Iteration 0: log likelihood = -2081.0258
Iteration 1: log likelihood = -2080.986
Iteration 2: log likelihood = -2080.9859

Structural equation model Number of obs = 123
Estimation method = ml
Log likelihood = -2080.9859

( 1) [x1]X = 1

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

Measurement
x1 <-

X 1 (constrained)
_cons 96.28455 1.271963 75.70 0.000 93.79155 98.77755

x2 <-
X 1.172364 .1231777 9.52 0.000 .9309398 1.413788

_cons 97.28455 1.450053 67.09 0.000 94.4425 100.1266

x3 <-
X 1.034523 .1160558 8.91 0.000 .8070579 1.261988

_cons 97.09756 1.356161 71.60 0.000 94.43953 99.75559

x4 <-
X 6.886044 .6030898 11.42 0.000 5.704009 8.068078

_cons 690.9837 6.960137 99.28 0.000 677.3421 704.6254

var(e.x1) 80.79361 11.66414 60.88206 107.2172
var(e.x2) 96.15861 13.93945 72.37612 127.7559
var(e.x3) 99.70874 14.33299 75.22708 132.1576
var(e.x4) 353.4711 236.6847 95.14548 1313.166

var(X) 118.2068 23.82631 79.62878 175.4747

LR test of model vs. saturated: chi2(2) = 1.78, Prob > chi2 = 0.4111

The equations for this model are

x1 = α1 +Xβ1 + e.x1

x2 = α2 +Xβ2 + e.x2

x3 = α3 +Xβ3 + e.x3

x4 = α4 +Xβ4 + e.x4

Notes:

1. Variable X is latent exogenous and thus needs a normalizing constraint. The variable is anchored
to the first observed variable, x1, and thus the path coefficient is constrained to be 1. See
Identification 2: Normalization constraints (anchoring) in [SEM] intro 4.

http://www.stata.com/manuals13/semintro4.pdf#semintro4RemarksandexamplesIdentification2Normalizationconstraints(anchoring)
http://www.stata.com/manuals13/semintro4.pdf#semintro4
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2. The path coefficients for X->x1, X->x2, and X->x3 are 1 (constrained), 1.17, and 1.03. Meanwhile,
the path coefficient for X->x4 is 6.89. This is not unexpected; we at StataCorp generated this
data, and the true coefficients are 1, 1, 1, and 7.

3. A test for “model versus saturated” is reported at the bottom of the output; the χ2(2) statistic
is 1.78 and its significance level is 0.4111. We cannot reject the null hypothesis of this test.

This test is a goodness-of-fit test in badness-of-fit units; a significant result implies that there
may be missing paths in the model’s specification.

More mathematically, the null hypothesis of the test is that the fitted covariance matrix and mean
vector of the observed variables are equal to the matrix and vector observed in the population.

Fitting the same model with gsem

sem and gsem produce the same results for standard linear SEMs. We are going to demonstrate
that just this once.

. gsem (x1 x2 x3 x4 <- X)

Fitting fixed-effects model:

Iteration 0: log likelihood = -2233.3283
Iteration 1: log likelihood = -2233.3283

Refining starting values:

Grid node 0: log likelihood = -2081.0303

Fitting full model:

Iteration 0: log likelihood = -2081.0303
Iteration 1: log likelihood = -2080.9861
Iteration 2: log likelihood = -2080.9859

Generalized structural equation model Number of obs = 123
Log likelihood = -2080.9859

( 1) [x1]X = 1

Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 <-
X 1 (constrained)

_cons 96.28455 1.271962 75.70 0.000 93.79155 98.77755

x2 <-
X 1.172365 .1231778 9.52 0.000 .9309411 1.413789

_cons 97.28455 1.450052 67.09 0.000 94.4425 100.1266

x3 <-
X 1.034524 .1160559 8.91 0.000 .8070585 1.261989

_cons 97.09756 1.35616 71.60 0.000 94.43954 99.75559

x4 <-
X 6.886053 .6030902 11.42 0.000 5.704018 8.068088

_cons 690.9837 6.96013 99.28 0.000 677.3421 704.6253

var(X) 118.2064 23.8262 79.62858 175.474

var(e.x1) 80.79381 11.66416 60.88222 107.2175
var(e.x2) 96.15857 13.93942 72.37613 127.7558
var(e.x3) 99.70883 14.33298 75.22718 132.1577
var(e.x4) 353.4614 236.6835 95.14011 1313.168
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Notes:

1. Results are virtually the same. Coefficients differ in the last digit; for instance, x2<-X was 1.172364
and now it is 1.172365. The same is true of standard errors, etc. Meanwhile, variance estimates
are usually differing in the next-to-last digit; for instance, var(e.x2) was 96.15861 and is now
96.15857.

These are the kind of differences we would expect to see. gsem follows a different approach
for obtaining results that involves far more numeric machinery, which correspondingly results in
slightly less accuracy.

2. The log-likelihood values reported are the same. This model is one of the few models we could
have chosen where sem and gsem would produce the same log-likelihood values. In general, gsem
log likelihoods are on different metrics from those of sem. In the case where the model does not
include observed exogenous variables, however, they share the same metric.

3. There is no reason to use gsem over sem when both can fit the same model. sem is slightly more
accurate, is quicker, and has more postestimation features.

Fitting the same model with the Builder

Use the diagram above for reference.

1. Open the dataset.

In the Command window, type

. use http://www.stata-press.com/data/r13/sem_1fmm

2. Open a new Builder diagram.

Select menu item Statistics > SEM (structural equation modeling) > Model building and
estimation.

3. Create the measurement component for X.

Select the Add Measurement Component tool, , and then click in the diagram about one-third
of the way down from the top and slightly left of the center.

In the resulting dialog box,

a. change the Latent variable name to X;

b. select x1, x2, x3, and x4 by using the Measurement variables control;

c. select Down in the Measurement direction control;

d. click on OK.

If you wish, move the component by clicking on any variable and dragging it.

Notice that the constraints of 1 on the paths from the error terms to the observed measures are
implied, so we do not need to add these to our diagram.

4. Estimate.

Click on the Estimate button, , in the Standard Toolbar, and then click on OK in the resulting
SEM estimation options dialog box.

You can open a completed diagram in the Builder by typing

. webgetsem sem_1fmm
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The measurement-error model interpretation

As we pointed out in Using path diagrams to specify standard linear SEMs in [SEM] intro 2, if
we rename variable x4 to be y, we can reinterpret this measurement model as a measurement-error
model. In this interpretation, X is the unobserved true value. x1, x2, and x3 are each measurements
of X, but with error. Meanwhile, y (x4) is really something else entirely. Perhaps y is earnings, and
we believe

y = α4 + β4X+ e.y

We are interested in β4, the effect of true X on y.

If we were to go back to the data and type regress y x1, we would obtain an estimate of β4,
but we would expect that estimate to be biased toward 0 because of the errors-in-variable problem.
The same applies for y on x2 and y on x3. If we do that, we obtain

β4 based on regress y x1 4.09

β4 based on regress y x2 3.71

β4 based on regress y x3 3.70

In the sem output above, we have an estimate of β4 with the bias washed away:

β4 based on sem (y<-X) 6.89

The number 6.89 is the value reported for (x4<-X) in the sem output.

That β4 might be 6.89 seems plausible because we expect that the estimate should be larger than
the estimates we obtain using the variables measured with error. In fact, we can tell you that the 6.89
estimate is quite good because we at StataCorp know that the true value of β4 is 7. Here is how we
manufactured this fictional dataset:

set seed 12347
set obs 123
gen X = round(rnormal(0,10))
gen x1 = round(100 + X + rnormal(0, 10))
gen x2 = round(100 + X + rnormal(0, 10))
gen x3 = round(100 + X + rnormal(0, 10))
gen x4 = round(700 + 7*X + rnormal(0, 10))

The data recorded in sem 1fmm.dta were obviously generated using normality, the same assumption
that is most often used to justify the SEM maximum likelihood estimator. In [SEM] intro 4, we explained
that the normality assumption can be relaxed and conditional normality can usually be substituted in
its place.

So let’s consider nonnormal data. Let’s make X be χ2(2), a violently nonnormal distribution,
resulting in the data-manufacturing code

set seed 12347
set obs 123
gen X = (rchi2(2)-2)*(10/2)
gen x1 = round(100 + X + rnormal(0, 10))
gen x2 = round(100 + X + rnormal(0, 10))
gen x3 = round(100 + X + rnormal(0, 10))
gen x4 = round(700 + 7*X + rnormal(0, 10))

http://www.stata.com/manuals13/semintro2.pdf#semintro2RemarksandexamplesUsingpathdiagramstospecifystandardlinearSEMs
http://www.stata.com/manuals13/semintro2.pdf#semintro2
http://www.stata.com/manuals13/semintro4.pdf#semintro4
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All the rnormal() functions remaining in our code have to do with the assumed normality of
the errors. The multiplicative and additive constants in the generation of X simply rescale the χ2(2)
variable to have mean 100 and standard deviation 10, which would not be important except for the
subsequent round() functions, which themselves were unnecessary except that we wanted to produce
a pretty dataset when we created the original sem 1fmm.dta.

In any case, if we rerun the commands with these data, we obtain

β4 based on regress y x1 3.93

β4 based on regress y x2 4.44

β4 based on regress y x3 3.77

β4 based on sem (y<-X) 6.70

We will not burden you with the details of running simulations to assess coverage; we will just
tell you that coverage is excellent: reported test statistics and significance levels can be trusted.

By the way, errors in the variables is something that does not go away with progressively
larger sample sizes. Change the code above to produce a 100,000-observation dataset instead of a
123-observation one, and you will obtain

β4 based on regress y x1 3.51

β4 based on regress y x2 3.51

β4 based on regress y x3 3.48

β4 based on sem (y<-X) 7.00

Reference
Acock, A. C. 2013. Discovering Structural Equation Modeling Using Stata. Rev. ed. College Station, TX: Stata Press.

Also see
[SEM] sem — Structural equation model estimation command

[SEM] gsem — Generalized structural equation model estimation command

[SEM] intro 5 — Tour of models

[SEM] example 3 — Two-factor measurement model

[SEM] example 24 — Reliability

[SEM] example 27g — Single-factor measurement model (generalized response)
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