Title

tobit postestimation –	- Postestimation	tools fo	r tobit
------------------------	------------------	----------	---------

Description Remarks and examples Syntax for predict References

Menu for predict Also see Options for predict

Description

The following postestimation commands are available after tobit:

Command	Description
contrast	contrasts and ANOVA-style joint tests of estimates
estat ic	Akaike's and Schwarz's Bayesian information criteria (AIC and BIC)
estat summarize	summary statistics for the estimation sample
estat vce	variance-covariance matrix of the estimators (VCE)
estat (svy)	postestimation statistics for survey data
estimates	cataloging estimation results
$forecast^1$	dynamic forecasts and simulations
hausman	Hausman's specification test
lincom	point estimates, standard errors, testing, and inference for linear combinations of coefficients
linktest	link test for model specification
$rtest^2$	likelihood-ratio test
margins	marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot	graph the results from margins (profile plots, interaction plots, etc.)
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients
predict	predictions, residuals, influence statistics, and other diagnostic measures
predictnl	point estimates, standard errors, testing, and inference for generalized predictions
pwcompare	pairwise comparisons of estimates
suest	seemingly unrelated estimation
test	Wald tests of simple and composite linear hypotheses
testnl	Wald tests of nonlinear hypotheses

 1 forecast is not appropriate with ${\tt svy}$ estimation results.

 $^2\,\,{\rm lrtest}$ is not appropriate with svy estimation results.

Syntax for predict

predict	[type] newvar $[if]$ $[in]$ $[, statistic nooffset]$	
predict	$[type] \{stub* newvar_{reg} newvar_{sigma} \} [if] [in], scores$	
statistic	Description	
Main		
xb	linear prediction; the default	
stdp	standard error of the linear prediction	
stdf	standard error of the forecast	
pr(<i>a</i> , <i>b</i>)	$\Pr(a < y_j < b)$	
_ e(a,b)	$E(y_j a < y_j < b)$	
$\underline{ystar}(a,b)$	$E(y_{j}^{*}), y_{j}^{*} = \max\{a, \min(y_{j}, b)\}$	

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample.

stdf is not allowed with svy estimation results.

where a and b may be numbers or variables; a missing $(a \ge .)$ means $-\infty$, and b missing $(b \ge .)$ means $+\infty$; see [U] 12.2.1 Missing values.

Menu for predict

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

Main

xb, the default, calculates the linear prediction.

- stdp calculates the standard error of the prediction, which can be thought of as the standard error of the predicted expected value or mean for the observation's covariate pattern. The standard error of the prediction is also referred to as the standard error of the fitted value.
- stdf calculates the standard error of the forecast, which is the standard error of the point prediction for 1 observation. It is commonly referred to as the standard error of the future or forecast value. By construction, the standard errors produced by stdf are always larger than those produced by stdp; see Methods and formulas in [R] regress postestimation.
- pr(a,b) calculates $Pr(a < x_j b + u_j < b)$, the probability that $y_j | x_j$ would be observed in the interval (a, b).

a and *b* may be specified as numbers or variable names; *lb* and *ub* are variable names; pr(20,30) calculates $Pr(20 < \mathbf{x}_j \mathbf{b} + u_j < 30)$; pr(*lb*,*ub*) calculates $Pr(lb < \mathbf{x}_j \mathbf{b} + u_j < ub)$; and pr(20,*ub*) calculates $Pr(20 < \mathbf{x}_j \mathbf{b} + u_j < ub)$.

a missing $(a \ge .)$ means $-\infty$; pr(.,30) calculates $Pr(-\infty < \mathbf{x}_j \mathbf{b} + u_j < 30)$; pr(*lb*,30) calculates $Pr(-\infty < \mathbf{x}_j \mathbf{b} + u_j < 30)$ in observations for which $lb \ge .$ and calculates $Pr(lb < \mathbf{x}_j \mathbf{b} + u_j < 30)$ elsewhere.

b missing $(b \ge .)$ means $+\infty$; pr(20,.) calculates $Pr(+\infty > \mathbf{x}_j\mathbf{b} + u_j > 20)$; pr(20,*ub*) calculates $Pr(+\infty > \mathbf{x}_j\mathbf{b} + u_j > 20)$ in observations for which $ub \ge .$ and calculates $Pr(20 < \mathbf{x}_j\mathbf{b} + u_j < ub)$ elsewhere.

- e(a,b) calculates $E(\mathbf{x}_j\mathbf{b} + u_j | a < \mathbf{x}_j\mathbf{b} + u_j < b)$, the expected value of $y_j|\mathbf{x}_j$ conditional on $y_j|\mathbf{x}_j$ being in the interval (a,b), meaning that $y_j|\mathbf{x}_j$ is truncated. a and b are specified as they are for pr().
- ystar(*a*,*b*) calculates $E(y_j^*)$, where $y_j^* = a$ if $\mathbf{x}_j \mathbf{b} + u_j \leq a$, $y_j^* = b$ if $\mathbf{x}_j \mathbf{b} + u_j \geq b$, and $y_j^* = \mathbf{x}_j \mathbf{b} + u_j$ otherwise, meaning that y_j^* is censored. *a* and *b* are specified as they are for pr().
- nooffset is relevant only if you specified offset(*varname*). It modifies the calculations made by predict so that they ignore the offset variable; the linear prediction is treated as $x_j b$ rather than as $x_j b + offset_j$.

scores calculates equation-level score variables.

The first new variable will contain $\partial \ln L / \partial (\mathbf{x}_i \boldsymbol{\beta})$.

The second new variable will contain $\partial \ln L / \partial \sigma$.

Remarks and examples

Following Cong (2000), write the tobit model as

$$y_i^* = \begin{cases} y_i, & \text{if } a < y_i < b \\ a, & \text{if } y_i \le a \\ b, & \text{if } y_i \ge b \end{cases}$$

 y_i is a latent variable; instead, we observe y_i^* , which is bounded between a and b if y_i is outside those bounds.

There are four types of marginal effects that may be of interest in the tobit model, depending on the application:

- 1. The β coefficients themselves measure how the unobserved variable y_i changes with respect to changes in the regressors.
- 2. The marginal effects of the truncated expected value $E(y_i^*|a < y_i^* < b)$ measure the changes in y_i with respect to changes in the regressors among the subpopulation for which y_i is not at a boundary.
- 3. The marginal effects of the censored expected value $E(y_i^*)$ describe how the observed variable y_i^* changes with respect to the regressors.
- 4. The marginal effects of $Pr(a < y_i^* < b)$ describe how the probability of being uncensored changes with respect to the regressors.

In the next example, we show how to obtain each of these.

stata.com

Example 1

In example 3 of [R] tobit, we fit a two-limit tobit model of mpg on wgt.

. use http://w (1978 Automobi	www.stata-pres ile Data)	ss.com/data/	r13/auto				
. generate wgt	c = weight/100	00					
. tobit mpg wg	gt, ll(17) ul((24)					
Tobit regressi	ion			Numbe LR ch	er of obs ni2(1)	=	74 77.60
Log likelihood	a = −104.25976	3		Prob Pseud	> chi2 lo R2	=	0.0000 0.2712
mpg	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
wgt _cons	-5.764448 38.07469	.7245417 2.255917	-7.96 16.88	0.000	-7.208 33.57	457 865	-4.320438 42.57072
/sigma	2.886337	.3952143			2.098	676	3.673998
Obs. summary	7: 18 33 23	left-censo uncenso right-censo	red obsen red obsen red obsen	rvations rvations rvations	at mpg<= at mpg>=	:17 :24	

tobit reports the β coefficients for the latent regression model. The marginal effect of x_k on y is simply the corresponding β_k , because E(y|x) is linear in x. Thus a 1,000-pound increase in a car's weight (which is a 1-unit increase in wgt) would lower fuel economy by 5.8 mpg.

To estimate the means of the marginal effects on the expected value of the censored outcome, conditional on weight being each of three values (2,000; 3,000; and 4,000 pounds), we type

. margins, d	ydz	(wgt) pred	ict(ystar(17	7,24)) at(wgt=(2 3	4))		
Conditional : Model VCE	maı :	rginal effe OIM	cts		Numbe	er of obs	=	74
Expression dy/dx w.r.t.	:	E(mpg* 17< wgt	mpg<24), pre	edict(ysta	r(17,24)))		
1at	:	wgt	=	2				
2at	:	wgt	=	3				
3at	:	wgt	=	4				
			Delta-metho	od				_
		dy/dx	Std. Err.	Z	P> z	L95% Co	onf.	Interval
wgt								
_at 1 2 3		-1.0861 -4.45315 -1.412822	.311273 .4772541 .3289702	-3.49 -9.33 -4.29	0.000 0.000 0.000	-1.69618 -5.38855 -2.05759	34 51 91	4760162 -3.51775 768052

The $E(y^*|x)$ is nonlinear in x, so the marginal effect for a continuous covariate is not the same as the change in y^* induced by a one-unit change in x. Recall that the marginal effect at a point is the slope of the tangent line at that point. In our example, we estimate the mean of the marginal effects for different values of wgt. The estimated mean of the marginal effects is -1.1 mpg for a 2,000 pound car; -4.5 mpg for a 3,000 pound car; and -1.4 mpg for a 4,000 pound car. To estimate the means of the marginal effects on the expected value of the truncated outcome at the same levels of wgt, we type

. margins, d	yd:	x(wgt) pred	dict(e(17,24))	at(wgt=(234))		
Conditional n Model VCE	mai :	rginal effe OIM	ects		Number	of obs =	74
Expression dy/dx w.r.t.	:	E(mpg 17 <r wgt</r 	npg<24), predi	ct(e(17,2	4))		
1at	:	wgt	=	2			
2at	:	wgt	=	3			
3at	:	wgt	=	4			
			Delta-method				
		dy/d:	x Std. Err.	Z	P> z	[95% Conf.	Interval]
wgt							
_at							
1		-1.166572	2.0827549	-14.10	0.000	-1.328768	-1.004375
2		-2.308842	2.4273727	-5.40	0.000	-3.146477	-1.471207
3		-1.288890	6.0889259	-14.49	0.000	-1.463188	-1.114604

The mean of the marginal effects of a change in wgt on y_i (which is bounded between 17 and 24) is about -1.2 mpg for a 2,000 pound car; -2.3 mpg for a 3,000 pound car; and -1.3 for a 4,000 pound car.

```
4
```

References

Cong, R. 2000. sg144: Marginal effects of the tobit model. Stata Technical Bulletin 56: 27–34. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 189–197. College Station, TX: Stata Press.

McDonald, J. F., and R. A. Moffitt. 1980. The use of tobit analysis. Review of Economics and Statistics 62: 318-321.

Also see

- [R] tobit Tobit regression
- [U] 20 Estimation and postestimation commands