Title stata.com

swilk — Shapiro-Wilk and Shapiro-Francia tests for normality

Syntax Menu Description Options for swilk
Options for sfrancia Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Syntax

```
Shapiro-Wilk normality test
```

```
swilk varlist [if] [in] [, swilk_options]
```

Shapiro-Francia normality test

$$sfrancia\ varlist\ [if]\ [in][$$
, $sfrancia_options$]

swilk_options	Description				
Main					
<pre>generate(newvar)</pre>	create $newvar$ containing W test coefficients				
$\overline{\underline{1}}$ nnormal	test for three-parameter lognormality do not use average ranks for tied values				
<u>not</u> ies					
sfrancia_options	Description				
Main					
boxcox	use the Box–Cox transformation for W' ; the default is to use the log transformation				
<u>not</u> ies	do not use average ranks for tied values				

by is allowed with swilk and sfrancia; see [D] by.

Menu

swilk

Statistics > Summaries, tables, and tests > Distributional plots and tests > Shapiro-Wilk normality test

sfrancia

Statistics > Summaries, tables, and tests > Distributional plots and tests > Shapiro-Francia normality test

Description

swilk performs the Shapiro-Wilk W test for normality, and sfrancia performs the Shapiro-Francia W' test for normality. swilk can be used with $4 \le n \le 2000$ observations, and sfrancia can be used with $5 \le n \le 5000$ observations; see [R] sktest for a test allowing more observations. See [MV] mytest normality for multivariate tests of normality.

Options for swilk

Main

generate (newvar) creates new variable newvar containing the W test coefficients.

Innormal specifies that the test be for three-parameter lognormality, meaning that $\ln(X-k)$ is tested for normality, where k is calculated from the data as the value that makes the skewness coefficient zero. When simply testing $\ln(X)$ for normality, do not specify this option. See [R] Inskew0 for estimation of k.

noties suppresses use of averaged ranks for tied values when calculating the W test coefficients.

Options for sfrancia

Main

boxcox specifies that the Box-Cox transformation of Royston (1983) for calculating W' test coefficients be used instead of the default log transformation (Royston 1993a). Under the Box-Cox transformation, the normal approximation to the sampling distribution of W', used by sfrancia, is valid for $5 \le n \le 1000$. Under the log transformation, it is valid for $10 \le n \le 5000$.

noties suppresses use of averaged ranks for tied values when calculating the W' test coefficients.

Remarks and examples

stata.com

Example 1

Using our automobile dataset, we will test whether the variables mpg and trunk are normally distributed:

- . use http://www.stata-press.com/data/r13/auto
 (1978 Automobile Data)
- . swilk mpg trunk

Shapiro-Wilk W test for normal data

1						
Variable	0bs	W	V	z	Prob>z	
mpg	74	0.94821	3.335	2.627	0.00430	
trunk	74	0.97921	1.339	0.637	0.26215	

. sfrancia mpg trunk

Shapiro-Francia W' test for normal data

Variable	0bs	W'	۷,	z	Prob>z
mpg	74	0.94872	3.650	2.510	0.00604
trunk	74	0.98446	1.106	0.195	0.42271

We can reject the hypothesis that mpg is normally distributed, but we cannot reject that trunk is normally distributed.

The values reported under W and W' are the Shapiro-Wilk and Shapiro-Francia test statistics. The tests also report V and V', which are more appealing indexes for departure from normality. The median values of V and V' are 1 for samples from normal populations. Large values indicate nonnormality. The 95% critical values of V (V'), which depend on the sample size, are between 1.2 and 2.4 (2.0 and 2.8); see Royston (1991b). There is no more information in V (V') than in W (W')—one is just the transform of the other.

1

Example 2

We have data on a variable called studytime, which we suspect is distributed lognormally:

- . use http://www.stata-press.com/data/r13/cancer (Patient Survival in Drug Trial)
- . generate lnstudytime = ln(studytime)
- . swilk lnstudytime

Shapiro-Wilk W test for normal data

Variable	Obs	W	V	z	Prob>z
lnstudytime	48	0.92731	3.311	2.547	0.00543

We can reject the lognormal assumption. We do not specify the lnnormal option when testing for lognormality. The lnnormal option is for three-parameter lognormality.

4

Example 3

Having discovered that ln(studytime) is not distributed normally, we now test that $\ln(\text{studytime} - k)$ is normally distributed, where k is chosen so that the resulting skewness is zero. We obtain the estimate for k from lnskew0; see [R] lnskew0:

. lnskew0 lnstudytimek = studytime, level(95)

Transform	k	[95% Conf.	Interval]	Skewness
ln(studytim-k)	-11.01181	-infinity	9477328	0000173

. swilk lnstudytimek, lnnormal

Shapiro-Wilk W test for 3-parameter lognormal data

Variable	0bs	W	V	z	Prob>z
lnstudytimek	48	0.97064	1.337	1.261	0.10363

We cannot reject the hypothesis that ln(studytime + 11.01181) is distributed normally. We do specify the lnnormal option when using an estimated value of k.

Stored results

swilk and sfrancia store the following in r():

Scalars

number of observations W or W'r(N)r(W) r(V) V or V'r(p) significance r(z) z statistic

Methods and formulas

The Shapiro-Wilk test is based on Shapiro and Wilk (1965) with a new approximation accurate for $4 \le n \le 2000$ (Royston 1992). The calculations made by swilk are based on Royston (1982, 1992, 1993b).

The Shapiro-Francia test (Shapiro and Francia 1972; Royston 1983; Royston 1993a) is an approximate test that is similar to the Shapiro-Wilk test for very large samples.

Samuel Sanford Shapiro (1930–) earned degrees in statistics and engineering from City College of New York, Columbia, and Rutgers. After employment in the U.S. Army and industry, he joined the faculty at Florida International University in 1972. Shapiro has coauthored various texts in statistics and published several papers on distributional testing and other statistical topics.

Acknowledgment

swilk and sfrancia were written by Patrick Royston of the MRC Clinical Trials Unit, London and coauthor of the Stata Press book Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model.

References

- Brzezinski, M. 2012. The Chen-Shapiro test for normality. Stata Journal 12: 368-374.
- Genest, C., and G. J. Brackstone. 2010. A conversation with Martin Bradbury Wilk. Statistical Science 25: 258-273.
- Gould, W. W. 1992. sg3.7: Final summary of tests of normality. Stata Technical Bulletin 5: 10–11. Reprinted in Stata Technical Bulletin Reprints, vol. 1, pp. 114–115. College Station, TX: Stata Press.
- Royston, P. 1982. An extension of Shapiro and Wilks's W test for normality to large samples. Applied Statistics 31: 115–124.
- —... 1983. A simple method for evaluating the Shapiro-Francia W' test of non-normality. Statistician 32: 297–300.
- —. 1991a. sg3.2: Shapiro-Wilk and Shapiro-Francia tests. Stata Technical Bulletin 3: 19. Reprinted in Stata Technical Bulletin Reprints, vol. 1, p. 105. College Station, TX: Stata Press.
- —. 1991b. Estimating departure from normality. Statistics in Medicine 10: 1283–1293.
- —. 1992. Approximating the Shapiro-Wilk W-test for non-normality. Statistics and Computing 2: 117–119.
- 1993a. A pocket-calculator algorithm for the Shapiro–Francia test for non-normality: An application to medicine. Statistics in Medicine 12: 181–184.
- ---.. 1993b. A toolkit for testing for non-normality in complete and censored samples. Statistician 42: 37-43.
- Shapiro, S. S., and R. S. Francia. 1972. An approximate analysis of variance test for normality. Journal of the American Statistical Association 67: 215–216.
- Shapiro, S. S., and M. B. Wilk. 1965. An analysis of variance test for normality (complete samples). *Biometrika* 52: 591–611.

Also see

- [R] **Inskew0** Find zero-skewness log or Box–Cox transform
- [R] lv Letter-value displays
- [R] **sktest** Skewness and kurtosis test for normality
- [MV] mvtest normality Multivariate normality tests