Title

stata.com

Syntax Remarks and examples Also see	Remarks and examples Stored results Methods and formulas References				
yntax					
slogit depvar [indepvar	rs] [if] [in] [v	veight] [, options]			
options	Description				
Model					
<u>dim</u> ension(#) <u>b</u> aseoutcome(# <i>lbl</i>) <u>const</u> raints(<i>numlist</i>) collinear	 dimension of the model; default is dimension(1) set the base outcome to # or <i>lbl</i>; default is the last outcome apply specified linear constraints keep collinear variables 				
nocorner	do not generate the corner constraints				
SE/Robust					
vce(vcetype)	<pre>vcetype may be oim, robust, cluster clustvar, opg, bootstrag or jackknife</pre>				
Reporting					
<u>l</u> evel(#)	set confidence level; default is level(95)				
<u>nocnsr</u> eport	do not display constraints				
display_options	control column formats, row spacing, line width, display of omitte variables and base and empty cells, and factor-variable labeling				
Maximization					
maximize_options	control the maxim	ization process; seldom us	ed		
<pre>initialize(initype)</pre>	method of initializing scale parameters; <i>initype</i> can be constant, random, or svd; see <i>Options</i> for details				
<u>nonorm</u> alize	do not normalize 1	he numeric variables			
<u>coefl</u> egend	display legend instead of statistics				

bootstrap, by, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

Statistics > Categorical outcomes > Stereotype logistic regression

Description

slogit fits maximum-likelihood stereotype logistic regression models as developed by Anderson (1984). Like multinomial logistic and ordered logistic models, stereotype logistic models are for use with categorical dependent variables. In a multinomial logistic model, the categories cannot be ranked, whereas in an ordered logistic model the categories follow a natural ranking scheme. You can view stereotype logistic models as a compromise between those two models. You can use them when you are unsure of the relevance of the ordering, as is often the case when subjects are asked to assess or judge something. You can also use them in place of multinomial logistic models when you suspect that some of the alternatives are similar. Unlike ordered logistic models, stereotype logistic models do not impose the proportional-odds assumption.

Options

_ Model]

dimension(#) specifies the dimension of the model, which is the number of equations required to describe the relationship between the dependent variable and the independent variables. The maximum dimension is $\min(m-1,p)$, where m is the number of categories of the dependent variable and p is the number of independent variables in the model. The stereotype model with maximum dimension is a reparameterization of the multinomial logistic model.

baseoutcome(# | lbl) specifies the outcome level whose scale parameters and intercept are constrained to be zero. The base outcome may be specified as a number of a label. By default, slogit assumes that the outcome levels are ordered and uses the largest level of the dependent variable as the base outcome.

constraints(numlist), collinear; see [R] estimation options.

By default, the linear equality constraints suggested by Anderson (1984), termed the corner constraints, are generated for you. You can add constraints to these as needed, or you can turn off the corner constraints by specifying nocorner. These constraints are in addition to the constraints placed on the ϕ parameters corresponding to baseoutcome(#).

nocorner specifies that slogit not generate the corner constraints. If you specify nocorner, you must specify at least dimension() \times dimension() constraints for the model to be identified.

SE/Robust

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that allow for intragroup correlation (cluster *clustvar*), and that use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce_option.

If specifying vce(bootstrap) or vce(jackknife), you must also specify baseoutcome().

Reporting

level(#); see [R] estimation options.

nocnsreport; see [R] estimation options.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch; see [R] estimation options.

Maximization

maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. These options are seldom used.

Setting the optimization type to technique(bhhh) resets the default *vcetype* to vce(opg).

- initialize(constant | random | svd) specifies how initial estimates are computed. The default, initialize(constant), is to set the scale parameters to the constant $\min(1/2, 1/d)$, where d is the dimension specified in dimension().
 - initialize(random) requests that uniformly distributed random numbers between 0 and 1 be used as initial values for the scale parameters. If you specify this option, you should also use set seed to ensure that you can replicate your results; see [R] set seed.
 - initialize(svd) requests that a singular value decomposition (SVD) be performed on the matrix of regression estimates from mlogit to reduce its rank to the dimension specified in dimension(). slogit uses the reduced-rank components of the SVD as initial estimates for the scale and regression coefficients. For details, see Methods and formulas.
- nonormalize specifies that the numeric variables not be normalized. Normalization of the numeric variables improves numerical stability but consumes more memory in generating temporary double-precision variables. Variables that are of type byte are not normalized, and if initial estimates are specified using the from() option, normalization of variables is not performed. See *Methods and formulas* for more information.

The following option is available with slogit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples

stata.com

Remarks are presented under the following headings:

Introduction One-dimensional model Higher-dimension models

Introduction

Stereotype logistic models are often used when subjects are requested to assess or judge something. For example, consider a survey in which consumers may be asked to rate the quality of a product on a scale from 1 to 5, with 1 indicating poor quality and 5 indicating excellent quality. If the categories are monotonically related to an underlying latent variable, the ordered logistic model is appropriate. However, suppose that consumers assess quality not just along one dimension, but rather weigh two or three latent factors. Stereotype logistic regression allows you to specify multiple equations to capture the effects of those latent variables, which you then parameterize in terms of observable characteristics. Unlike with multinomial logit, the number of equations you specify could be less than m - 1, where m is the number of categories of the dependent variable.

4 slogit — Stereotype logistic regression

Stereotype logistic models are also used when categories may be indistinguishable. Suppose that a consumer must choose among A, B, C, or D. Multinomial logistic modeling assumes that the four choices are distinct in the sense that a consumer choosing one of the goods can distinguish its characteristics from the others. If goods A and B are in fact similar, consumers may be randomly picking between the two. One alternative is to combine the two categories and fit a three-category multinomial logistic model. A more flexible alternative is to use a stereotype logistic model.

In the multinomial logistic model, you estimate m-1 parameter vectors $\tilde{\beta}_k$, $k = 1, \ldots, m-1$, where m is the number of categories of the dependent variable. The stereotype logistic model is a restriction on the multinomial model in the sense that there are d parameter vectors, where d is between one and $\min(m-1, p)$, and p is the number of regressors. The relationship between the stereotype model's coefficients β_j , $j = 1, \ldots, d$, and the multinomial model's coefficients is $\tilde{\beta}_k = -\sum_{i=1}^d \phi_{jk}\beta_i$. The ϕ s are scale parameters to be estimated along with the β_j s.

Given a row vector of covariates x, let $\eta_k = \theta_k - \sum_{j=1}^d \phi_{jk} \mathbf{x} \beta_j$. The probability of observing outcome k is

$$\Pr(Y_i = k) = \begin{cases} \frac{\exp(\eta_k)}{1 + \sum_{l=1}^{m-1} \exp(\eta_l)} & k < m \\ \frac{1}{1 + \sum_{l=1}^{m-1} \exp(\eta_l)} & k = m \end{cases}$$

This model includes a set of θ parameters so that each equation has an unrestricted constant term. If d = m - 1, the stereotype model is just a reparameterization of the multinomial logistic model. To identify the ϕ s and the β s, you must place at least d^2 restrictions on the parameters. By default, slogit uses the "corner constraints" $\phi_{jj} = 1$ and $\phi_{jk} = 0$ for $j \neq k$, $k \leq d$, and $j \leq d$.

For a discussion of the stereotype logistic model, see Lunt (2005).

One-dimensional model

Example 1

We have 2 years of repair rating data on the make, price, mileage rating, and gear ratio of 104 foreign and 44 domestic automobiles (with 13 missing values on repair rating). We wish to fit a stereotype logistic model to discriminate between the levels of repair rating using mileage, price, gear ratio, and origin of the manufacturer. Here is an overview of our data:

. use http://www.stata-press.com/data/r13/auto2yr (Automobile Models)						
. tabulate repair						
Repair rating	Freq.	Percent	Cum.			
Poor Fair Average Good Excellent	5 19 57 38 16	3.70 14.07 42.22 28.15 11.85	3.70 17.78 60.00 88.15 100.00			
Total	135	100.00				

The variable repair can take five values, 1, ..., 5, which represent the subjective rating of the car model's repair record as *Poor*, *Fair*, *Average*, *Good*, and *Excellent*.

We wish to fit the one-dimensional stereotype logistic model

 $\eta_k = \theta_k - \phi_k \left(\beta_1 \texttt{foreign} + \beta_2 \texttt{mpg} + \beta_3 \texttt{price} + \beta_4 \texttt{gratio} \right)$

for k < 5 and $\eta_5 = 0$. To fit this model, we type

oreign mp	g price grat	io			
0			t concav	ve)	
0					
0					
0					
0					
0		0001		<u> </u>	405
1C regres	sion				100
-150 0560	1				
	1		PIOD	- CIII2 -	- 0.0555
ons = 1					
Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
5.947382	2.094126	2.84	0.005	1.84297	10.05179
.1911968	.08554	2.24	0.025	.0235414	.3588521
.0000576	.0001357	-0.42	0.671	0003236	.0002083
4.307571	1.884713	-2.29	0.022	-8.00154	6136017
1	(constraine	d)			
1.262268	.3530565	3.58	0.000	.5702904	1.954247
1.17593	.3169397	3.71	0.000	.5547394	1.79712
.8657195	.2411228	3.59	0.000	.3931275	1.338311
0	(base outco	me)			
6.864749	4.21252	-1.63	0.103	-15.12114	1.391639
7.613977	4.861803	-1.57	0.117	-17.14294	1.914981
-5.80655	4.987508	-1.16	0.244	-15.58189	3.968786
-3.85724	3.824132	-1.01	0.313	-11.3524	3.637922
0	(base outco	me)			
	g likelih g like	g likelihood = -173.7 g likelihood = -174.7 g likelihood = -164.7 g likelihood = -164.7 g likelihood = -159.7 g likelihood = -159.2 g likelihood = -159.2 g likelihood = -159.2 g likelihood = -159.2 ic regression -159.25691 ons = 1 Coef. Std. Err. 5.947382 2.094126 .1911968 .08554 .0000576 .0001357 4.307571 1.884713 1 (constraine 1.262268 .3530565 1.17593 .3169397 .8657195 .2411228 0 (base outco 6.864749 4.21252 7.613977 4.861803 -5.80655 4.987508 -3.85724 3.824132	g likelihood = -164.77316 g likelihood = -161.7069 g likelihood = -159.76138 g likelihood = -159.34327 g likelihood = -159.25914 g likelihood = -159.25691 g likelihood = -159.25691 ic regression -159.25691 ons = 1 Coef. Std. Err. z 5.947382 2.094126 2.84 .1911968 .08554 2.24 .0000576 .0001357 -0.42 4.307571 1.884713 -2.29 1 (constrained) 1.262268 .3530565 3.58 1.17593 .3169397 3.71 .8657195 .2411228 3.59 0 (base outcome) 6.864749 4.21252 -1.63 7.613977 4.861803 -1.57 -5.80655 4.987508 -1.16 -3.85724 3.824132 -1.01	g likelihood = -173.78178 (not concat g likelihood = -164.77316 g likelihood = -164.77316 g likelihood = -169.776138 g likelihood = -159.76138 g likelihood = -159.25914 g likelihood = -159.25691 g likelihood = -159.25691 g likelihood = -159.25691 ic regression Numbe ons = 1 Coef. Std. Err. z P> z 5.947382 2.094126 2.84 0.005 .1911968 .08554 2.24 0.025 .0000576 .0001357 -0.42 0.671 4.307571 1.884713 -2.29 0.022 1 (constrained) 1.262268 .3530565 3.58 0.000 1.17593 .3169397 3.71 0.000 .8657195 .2411228 3.59 0.000 0 (base outcome) 6.864749 4.21252 -1.63 0.103 7.613977 4.861803 -1.57 0.117 -5.80655 4.987508 -1.16 0.244 -3.85724 3.824132 -1.01 0.313	g likelihood = -173.78178 (not concave) g likelihood = -164.77316 g likelihood = -164.77316 g likelihood = -159.76138 g likelihood = -159.34327 g likelihood = -159.25914 g likelihood = -159.25691 g likelihood = -159.25691 ic regression Number of obs = Wald chi2(4) = -159.25691 Prob > chi2 = ons = 1 Coef. Std. Err. z P> z [95% Conf 5.947382 2.094126 2.84 0.005 1.84297 .1911968 .08554 2.24 0.025 .0235414 .0000576 .0001357 -0.42 0.6710003236 4.307571 1.884713 -2.29 0.022 -8.00154 1 (constrained) 1.262268 .3530565 3.58 0.000 .5702904 1.17593 .3169397 3.71 0.000 .5547394 .8657195 .2411228 3.59 0.000 .3931275 0 (base outcome) 6.864749 4.21252 -1.63 0.103 -15.12114 7.613977 4.861803 -1.57 0.117 -17.14294 -5.80655 4.987508 -1.16 0.244 -15.58189 -3.85724 3.824132 -1.01 0.313 -11.3524

(repair=Excellent is the base outcome)

The coefficient associated with the first scale parameter, ϕ_{11} , is 1, and its standard error and other statistics are missing. This is the corner constraint applied to the one-dimensional model; in the header, this constraint is listed as [phi1_1]_cons = 1. Also, the ϕ and θ parameters that are associated with the base outcome are identified. Keep in mind, though, that there are no coefficient estimates for [phi1_5]_cons or [theta5]_cons in the ereturn matrix e(b). The Wald statistic is for a test of the joint significance of the regression coefficients on foreign, mpg, price, and gratio.

The one-dimensional stereotype model restricts the multinomial logistic regression coefficients $\tilde{\beta}_k$, k = 1, ..., m-1 to be parallel; that is, $\tilde{\beta}_k = -\phi_k\beta$. As Lunt (2001) discusses, in the one-dimensional stereotype model, one linear combination $\mathbf{x}_i\beta$ best discriminates the outcomes of the dependent variable, and the scale parameters ϕ_k measure the distance between the outcome levels and the linear predictor. If $\phi_1 \ge \phi_2 \ge \cdots \phi_{m-1} \ge \phi_m \equiv 0$, the model suggests that the subjective assessment of the dependent variable is indeed ordered. Here the maximum likelihood estimates of the ϕ_s are not monotonic, as would be assumed in an ordered logit model.

We test that $\phi_1 = \phi_2$ by typing . test [phi1_2]_cons = [phi1_1]_cons (1) - [phi1_1]_cons + [phi1_2]_cons = 0 chi2(1) = 0.55 Prob > chi2 = 0.4576

Because the two parameters are not statistically different, we decide to add a constraint to force $\phi_1 = \phi_2$:

Wald chi2(4) = 21.28						135 21.28 0.0003
-	1_1]_cons + [phi1_2]_cons	= 0			
repair	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
foreign mpg price gratio	7.166515 .2340043 000041 -5.218107	1.690177 .0807042 .0001618 1.798717	4.24 2.90 -0.25 -2.90	0.000 0.004 0.800 0.004	3.853829 .0758271 0003581 -8.743528	10.4792 .3921816 .000276 -1.692686
/phi1_1 /phi1_2 /phi1_3 /phi1_4 /phi1_5	1 .9751096 .7209343 0	(constrained (constrained .1286563 .1220353 (base outcom	d) 7.58 5.91	0.000 0.000	.7229478 .4817494	1.227271 .9601191
/theta1 /theta2 /theta3 /theta4 /theta5	-8.293452 -6.958451 -5.620232 -3.745624 0	4.645182 4.629292 4.953981 3.809189 (base outcom	-1.79 -1.50 -1.13 -0.98 me)	0.074 0.133 0.257 0.325	-17.39784 -16.0317 -15.32986 -11.2115	.8109368 2.114795 4.089392 3.720249

(repair=Excellent is the base outcome)

The ϕ estimates are now monotonically decreasing and the standard errors of the ϕ s are small relative to the size of the estimates, so we conclude that, with the exception of outcomes *Poor* and *Fair*, the groups are distinguishable for the one-dimensional model and that the quality assessment can be ordered.

4

Higher-dimension models

The stereotype logistic model is not limited to ordered categorical dependent variables; you can use it on nominal data to reduce the dimension of the regressions. Recall that a multinomial model fit to a categorical dependent variable with m levels will have m - 1 sets of regression coefficients. However, a model with fewer dimensions may fit the data equally well, suggesting that some of the categories are indistinguishable.

Example 2

As discussed in [R] **mlogit**, we have data on the type of health insurance available to 616 psychologically depressed subjects in the United States (Tarlov et al. 1989; Wells et al. 1989). Patients may have either an indemnity (fee-for-service) plan or a prepaid plan, such as an HMO, or may be uninsured. Demographic variables include age, gender, race, and site.

First, we fit the saturated, two-dimensional model that is equivalent to a multinomial logistic model. We choose the base outcome to be 1 (indemnity insurance) because that is the default for mlogit.

```
. use http://www.stata-press.com/data/r13/sysdsn1
(Health insurance data)
. slogit insure age male nonwhite i.site, dim(2) base(1)
                log likelihood = -534.36165
Iteration 0:
Iteration 1:
                log likelihood = -534.36165
Stereotype logistic regression
                                                      Number of obs
                                                                                 615
                                                                       =
                                                      Wald chi2(10)
                                                                       =
                                                                               38.17
Log likelihood = -534.36165
                                                      Prob > chi2
                                                                       =
                                                                              0.0000
 (1)
        [phi1_2]_cons = 1
 (2)
        [phi1_3]_cons = 0
        [phi2_2]_cons = 0
 (3)
        [phi2_3]_cons = 1
 (4)
      insure
                     Coef.
                              Std. Err.
                                                    P>|z|
                                                               [95% Conf. Interval]
                                              z
dim1
                   .011745
                              .0061946
                                            1.90
                                                    0.058
                                                              -.0003962
                                                                            .0238862
         age
         male
                 -.5616934
                              .2027465
                                           -2.77
                                                    0.006
                                                              -.9590693
                                                                           -.1643175
    nonwhite
                 -.9747768
                              .2363213
                                           -4.12
                                                    0.000
                                                              -1.437958
                                                                           -.5115955
         site
           2
                              .2101903
                                           -0.54
                                                    0.591
                                                              -.5250013
                                                                            .2989296
                 -.1130359
           3
                   .5879879
                                            2.58
                                                    0.010
                              .2279351
                                                               .1412433
                                                                            1.034733
dim2
                   .0077961
                              .0114418
                                            0.68
                                                    0.496
                                                              -.0146294
                                                                            .0302217
         age
                 -.4518496
                              .3674867
                                           -1.23
                                                    0.219
                                                               -1.17211
                                                                             .268411
         male
    nonwhite
                 -.2170589
                              .4256361
                                           -0.51
                                                    0.610
                                                               -1.05129
                                                                            .6171725
         site
                              .4705127
           2
                  1.211563
                                            2.57
                                                    0.010
                                                               .2893747
                                                                            2.133751
           3
                   .2078123
                              .3662926
                                            0.57
                                                    0.570
                                                               -.510108
                                                                            .9257327
     /phi1_1
                          0
                             (base outcome)
     /phi1_2
                          1
                             (constrained)
     /phi1_3
                          0
                             (omitted)
     /phi2_1
                          0
                             (base outcome)
     /phi2_2
                          0
                             (omitted)
     /phi2_3
                             (constrained)
                          1
     /theta1
                          0
                             (base outcome)
     /theta2
                   .2697127
                               .3284422
                                            0.82
                                                    0.412
                                                              -.3740222
                                                                            .9134476
     /theta3
                 -1.286943
                              .5923219
                                           -2.17
                                                    0.030
                                                              -2.447872
                                                                           -.1260134
```

(insure=Indemnity is the base outcome)

For comparison, we also fit the model by using mlogit:

. mlogit insure age male nonwhite i.site, nolog							
Multinomial logistic regression			Numbe	r of obs	=	615	
	0 0			LR ch	i2(10)	=	42.99
				Prob	> chi2	=	0.0000
Log likelihood	1 = -534.3616	5		Pseud	o R2	=	0.0387
insure	Coef.	Std. Err.	z	P> z	[95% Co	onf.	Interval]
Indemnity	(base outco	ome)					
Prepaid							
age	011745	.0061946	-1.90	0.058	023886	2	.0003962
male	.5616934	.2027465	2.77	0.006	.164317	5	.9590693
nonwhite	.9747768	.2363213	4.12	0.000	.511595	5	1.437958
site							
2	.1130359	.2101903	0.54	0.591	298929	6	.5250013
3	5879879	.2279351	-2.58	0.010	-1.03473	3	1412433
_cons	.2697127	.3284422	0.82	0.412	374022	2	.9134476
Uninsure							
age	0077961	.0114418	-0.68	0.496	030221	7	.0146294
male	.4518496	.3674867	1.23	0.219	26841	1	1.17211
nonwhite	.2170589	.4256361	0.51	0.610	617172	5	1.05129
site							
2	-1.211563	.4705127	-2.57	0.010	-2.13375	1	2893747
3	2078123	.3662926	-0.57	0.570	925732	7	.510108
_cons	-1.286943	.5923219	-2.17	0.030	-2.44787	2	1260134

Apart from having opposite signs, the coefficients from the stereotype logistic model are identical to those from the multinomial logit model. Recall the definition of η_k given in the Remarks and examples, particularly the minus sign in front of the summation. One other difference in the output is that the constant estimates labeled /theta in the slogit output are the constants labeled _cons in the mlogit output.

Next we examine the one-dimensional model.

. slogit insure age male nonwhite i.site, dim(1) base(1) nolog							
Stereotype log	gistic regres	sion		Numbe	r of obs	=	615
				Wald	chi2(5)	=	28.20
Log likelihood	d = -539.7520	5		Prob	> chi2	=	0.0000
(1) [phi1_2	2]_cons = 1						
insure	Coef.	Std. Err.	z	P> z	[95% Co	nf.	Interval]
age	.0108366	.0061918	1.75	0.080	001299	2	.0229723
male	5032537	.2078171	-2.42	0.015	910567	8	0959396
nonwhite	9480351	.2340604	-4.05	0.000	-1.40678	5	489285
site 2 3	2444316 .556665	.2246366 .2243799	-1.09 2.48	0.277 0.013	684711; .116888	-	.1958481 .9964415
/phi1_1	0	(base outco	 me)				
/phi1_2	1	(constraine	-				
/phi1_3	.0383539	.4079705	0.09	0.925	761253	5	.8379613
/theta1	0	(base outco	me)				
/theta2	.187542	.3303847	0.57	0.570	460000	1	.835084
/theta3	-1.860134	.2158898	-8.62	0.000	-2.2832	7	-1.436997

(insure=Indemnity is the base outcome)

We have reduced a two-dimensional multinomial model to one dimension, reducing the number of estimated parameters by four and decreasing the model likelihood by ≈ 5.4 .

slogit does not report a model likelihood-ratio test. The test of d = 1 (a one-dimensional model) versus d = 0 (the null model) does not have an asymptotic χ^2 distribution because the unconstrained ϕ parameters (/phi1_3 in this example) cannot be identified if $\beta = 0$. More generally, this problem precludes testing any hierarchical model of dimension d versus d - 1. Of course, the likelihood-ratio test of a full-dimension model versus d = 0 is valid because the full model is just multinomial logistic, and all the ϕ parameters are fixed at 0 or 1.

Technical note

The stereotype model is a special case of the reduced-rank vector generalized linear model discussed by Yee and Hastie (2003). If we define $\eta_{ik} = \theta_k - \sum_{j=1}^d \phi_{jk} \mathbf{x}_i \beta_j$, for $k = 1, \ldots, m-1$, we can write the expression in matrix notation as

$$\boldsymbol{\eta}_i = \boldsymbol{\theta} + \boldsymbol{\Phi} \left(\mathbf{x}_i \mathbf{B} \right)'$$

where Φ is a $(m-1) \times d$ matrix containing the ϕ_{jk} parameters and **B** is a $p \times d$ matrix with columns containing the β_j parameters, j = 1, ..., d. The factorization $\Phi \mathbf{B}'$ is not unique because $\Phi \mathbf{B}' = \Phi \mathbf{M} \mathbf{M}^{-1} \mathbf{B}'$ for any nonsingular $d \times d$ matrix **M**. To avoid this identifiability problem, we choose $\mathbf{M} = \Phi_1^{-1}$, where

$$oldsymbol{\Phi} = egin{pmatrix} oldsymbol{\Phi}_1 \ oldsymbol{\Phi}_2 \end{pmatrix}$$

and Φ_1 is $d \times d$ of rank d so that

$$\mathbf{\Phi}\mathbf{M} = \begin{pmatrix} \mathbf{I}_d \\ \mathbf{\Phi}_2 \mathbf{\Phi}_1^{-1} \end{pmatrix}$$

and \mathbf{I}_d is a $d \times d$ identity matrix. Thus the corner constraints used by slogit are $\phi_{jj} \equiv 1$ and $\phi_{jk} \equiv 0$ for $j \neq k$ and $k, j \leq d$.

Stored results

slogit stores the following in e():

Scalars	
e(N)	number of observations
e(k)	number of parameters
e(k_indvars)	number of independent variables
e(k_out)	number of outcomes
e(k_eq)	number of equations in e(b)
e(k_eq_model)	number of equations in overall model test
e(df_m)	Wald test degrees of freedom
e(df_0)	null model degrees of freedom
e(k_dim)	model dimension
e(i_base)	base outcome index
e(11)	log likelihood
e(11_0)	null model log likelihood
e(N_clust)	number of clusters
e(chi2)	χ^2
e(p)	significance
e(ic)	number of iterations
e(rank)	rank of e(V)
e(rc)	return code
e(converged)	1 if converged, 0 otherwise
Macros	
e(cmd)	slogit
e(cmdline)	command as typed
e(depvar)	name of dependent variable
e(indvars)	independent variables
e(wtype)	weight type
e(wexp)	weight expression
e(title)	title in estimation output
e(clustvar)	name of cluster variable
e(out#)	outcome labels, #=1,, e(k_out)
e(chi2type)	Wald; type of model χ^2 test
e(labels)	outcome labels or numeric levels
e(vce)	vcetype specified in vce()
e(vcetype)	title used to label Std. Err.
e(opt)	type of optimization
e(which)	max or min; whether optimizer is to perform maximization or minimization
e(ml_method)	type of ml method
e(user)	name of likelihood-evaluator program
e(technique)	maximization technique
e(properties)	b V
e(predict)	program used to implement predict
e(marginsnotok)	predictions disallowed by margins
e(footnote)	program used to implement the footnote display
e(asbalanced)	factor variables fvset as asbalanced
e(asobserved)	factor variables fvset as asobserved
Matrices	
e(b)	coefficient vector
e(outcomes)	outcome values
e(Cns)	constraints matrix
e(ilog)	iteration log (up to 20 iterations)
e(gradient)	gradient vector
e(V)	variance–covariance matrix of the estimators
e(V) e(V_modelbased)	model-based variance
	model based variance
Functions	
e(sample)	marks estimation sample

Methods and formulas

slogit obtains the maximum likelihood estimates for the stereotype logistic model by using ml; see [R] ml. Each set of regression estimates, one set of β_j s for each dimension, constitutes one ml model equation. The $d \times (m-1) \phi$ s and the $(m-1) \theta$ s are ml ancillary parameters.

Without loss of generality, let the base outcome level be the *m*th level of the dependent variable. Define the row vector $\phi_k = (\phi_{1k}, \ldots, \phi_{dk})$ for $k = 1, \ldots, m-1$, and define the $p \times d$ matrix $\mathbf{B} = (\beta_1, \ldots, \beta_d)$. For observation *i*, the log odds of outcome level *k* relative to level *m*, $k = 1, \ldots, m-1$ is the index

$$\ln\left\{\frac{\Pr(Y_i = k)}{\Pr(Y_i = m)}\right\} = \eta_{ik} = \theta_k - \phi_k\left(\mathbf{x}_i\mathbf{B}\right)$$
$$= \theta_k - \phi_k\nu'_i$$

The row vector ν_i can be interpreted as a latent variable reducing the *p*-dimensional vector of covariates to a more interpretable d < p dimension.

The probability of the *i*th observation having outcome level k is then

$$\Pr(Y_i = k) = p_{ik} = \begin{cases} \frac{e^{\eta_{ik}}}{1 + \sum_{j=1}^{m-1} e^{\eta_{ij}}}, & \text{if } k < m \\ \frac{1}{1 + \sum_{j=1}^{m-1} e^{\eta_{ij}}}, & \text{if } k = m \end{cases}$$

from which the log-likelihood function is computed as

$$L = \sum_{i=1}^{n} w_i \sum_{k=1}^{m} I_k(y_i) \ln(p_{ik})$$
(1)

Here w_i is the weight for observation i and

$$I_k(y_i) = \begin{cases} 1, \text{ if observation } y_i \text{ has outcome } k \\ 0, \text{ otherwise} \end{cases}$$

Numeric variables are normalized for numerical stability during optimization where a new doubleprecision variable \tilde{x}_j is created from variable x_j , j = 1, ..., p, such that $\tilde{x}_j = (x_j - \bar{x}_j)/s_j$. This feature is turned off if you specify nonormalize, or if you use the from() option for initial estimates. Normalization is not performed on byte variables, including the indicator variables generated by [R] xi. The linear equality constraints for regression parameters, if specified, must be scaled also. Assume that a constraint is applied to the regression parameter associated with variable j and dimension i, β_{ji} , and the corresponding element of the constraint matrix (see [P] makecns) is divided by s_j .

After convergence, the parameter estimates for variable j and dimension $i - \tilde{\beta}_{ji}$, say—are transformed back to their original scale, $\beta_{ji} = \tilde{\beta}_{ji}/s_j$. For the intercepts, you compute

$$\theta_k = \widetilde{\theta}_k + \sum_{i=1}^d \phi_{ik} \sum_{j=1}^p \frac{\widetilde{\beta}_{ji} \overline{x}_j}{s_j}$$

12 slogit — Stereotype logistic regression

Initial values are computed using estimates obtained using mlogit to fit a multinomial logistic model. Let the $p \times (m-1)$ matrix $\tilde{\mathbf{B}}$ contain the multinomial logistic regression parameters less the m-1 intercepts. Each ϕ is initialized with constant values min (1/2, 1/d), the initialize(constant) option (the default), or, with uniform random numbers, the initialize(random) option. Constraints are then applied to the starting values so that the structure of the $(m-1) \times d$ matrix Φ is

$$oldsymbol{\Phi} = egin{pmatrix} \phi_1 \ \phi_2 \ dots \ \phi_{m-1} \end{pmatrix} = egin{pmatrix} \mathbf{I}_d \ \widetilde{oldsymbol{\Phi}} \end{pmatrix}$$

where \mathbf{I}_d is a $d \times d$ identity matrix. Assume that only the corner constraints are used, but any constraints you place on the scale parameters are also applied to the initial scale estimates, so the structure of $\boldsymbol{\Phi}$ will change accordingly. The ϕ parameters are invariant to the scale of the covariates, so initial estimates in [0, 1] are reasonable. The constraints guarantee that the rank of $\boldsymbol{\Phi}$ is at least d, so the initial estimates for the stereotype regression parameters are obtained from $\mathbf{B} = \widetilde{\mathbf{B}} \boldsymbol{\Phi} (\boldsymbol{\Phi}' \boldsymbol{\Phi})^{-1}$.

One other approach for initial estimates is provided: initialize(svd). It starts with the mlogit estimates and computes $\widetilde{\mathbf{B}}' = \mathbf{U}\mathbf{D}\mathbf{V}'$, where $\mathbf{U}_{m-1\times p}$ and $\mathbf{V}_{p\times p}$ are orthonormal matrices and $\mathbf{D}_{p\times p}$ is a diagonal matrix containing the singular values of $\widetilde{\mathbf{B}}$. The estimates for Φ and \mathbf{B} are the first d columns of \mathbf{U} and $\mathbf{V}\mathbf{D}$, respectively (Yee and Hastie 2003).

The score for regression coefficients is

$$\mathbf{u}_i(\boldsymbol{\beta}_j) = \frac{\partial L_{ik}}{\partial \boldsymbol{\beta}_j} = \mathbf{x}_i \left(\sum_{l=1}^{m-1} \phi_{jl} p_{il} - \phi_{jk} \right)$$

the score for the scale parameters is

$$u_i(\phi_{jl}) = \frac{\partial L_{ik}}{\partial \phi_{jl}} = \begin{cases} \mathbf{x}_i \boldsymbol{\beta}_j(p_{ik} - 1), & \text{if } l = k\\ \mathbf{x}_i \boldsymbol{\beta}_j p_{il}, & \text{if } l \neq k \end{cases}$$

for l = 1, ..., m - 1; and the score for the intercepts is

$$u_i(\theta_l) = \frac{\partial L_{ik}}{\partial \theta_l} = \begin{cases} 1 - p_{ik}, & \text{if } l = k \\ -p_{il}, & \text{if } l \neq k \end{cases}$$

This command supports the Huber/White/sandwich estimator of the variance and its clustered version using vce(robust) and vce(cluster *clustvar*), respectively. See [P] <u>robust</u>, particularly *Maximum likelihood estimators* and *Methods and formulas*.

slogit also supports estimation with survey data. For details on VCEs with survey data, see [SVY] variance estimation.

References

Anderson, J. A. 1984. Regression and ordered categorical variables (with discussion). Journal of the Royal Statistical Society, Series B 46: 1–30.

Lunt, M. 2001. sg163: Stereotype ordinal regression. Stata Technical Bulletin 61: 12–18. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 298–307. College Station, TX: Stata Press.

—. 2005. Prediction of ordinal outcomes when the association between predictors and outcome differs between outcome levels. *Statistics in Medicine* 24: 1357–1369.

- Tarlov, A. R., J. E. Ware, Jr., S. Greenfield, E. C. Nelson, E. Perrin, and M. Zubkoff. 1989. The medical outcomes study. An application of methods for monitoring the results of medical care. *Journal of the American Medical* Association 262: 925–930.
- Wells, K. B., R. D. Hays, M. A. Burnam, W. H. Rogers, S. Greenfield, and J. E. Ware, Jr. 1989. Detection of depressive disorder for patients receiving prepaid or fee-for-service care. Results from the Medical Outcomes Survey. Journal of the American Medical Association 262: 3298–3302.

Yee, T. W., and T. J. Hastie. 2003. Reduced-rank vector generalized linear models. Statistical Modelling 3: 15-41.

Also see

- [R] slogit postestimation Postestimation tools for slogit
- [R] logistic Logistic regression, reporting odds ratios
- [R] mlogit Multinomial (polytomous) logistic regression
- [R] **ologit** Ordered logistic regression
- [R] **oprobit** Ordered probit regression
- [R] roc Receiver operating characteristic (ROC) analysis
- [SVY] svy estimation Estimation commands for survey data
- [U] 20 Estimation and postestimation commands