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Syntax

rreg depvar
[

indepvars
] [

if
] [

in
] [

, options
]

options Description

Model

tune(#) use # as the biweight tuning constant; default is tune(7)

Reporting

level(#) set confidence level; default is level(95)

genwt(newvar) create newvar containing the weights assigned to each observation
display options control column formats, row spacing, line width, display of omitted

variables and base and empty cells, and factor-variable labeling

Optimization

optimization options control the optimization process; seldom used
graph graph weights during convergence

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, mfp, mi estimate, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Linear models and related > Other > Robust regression

Description
rreg performs one version of robust regression of depvar on indepvars.

Also see Robust standard errors in [R] regress for standard regression with robust variance estimates
and [R] qreg for quantile (including median or least-absolute-residual) regression.
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Options

� � �
Model �

tune(#) is the biweight tuning constant. The default is 7, meaning seven times the median absolute
deviation (MAD) from the median residual; see Methods and formulas. Lower tuning constants
downweight outliers rapidly but may lead to unstable estimates (less than 6 is not recommended).
Higher tuning constants produce milder downweighting.

� � �
Reporting �

level(#); see [R] estimation options.

genwt(newvar) creates the new variable newvar containing the weights assigned to each observation.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvla-
bel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt), sformat(% fmt), and
nolstretch; see [R] estimation options.

� � �
Optimization �

optimization options: iterate(#), tolerance(#),
[
no

]
log. iterate() specifies the maximum

number of iterations; iterations stop when the maximum change in weights drops below toler-
ance(); and log/nolog specifies whether to show the iteration log. These options are seldom
used.

graph allows you to graphically watch the convergence of the iterative technique. The weights
obtained from the most recent round of estimation are graphed against the weights obtained from
the previous round.

The following option is available with rreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples stata.com

rreg first performs an initial screening based on Cook’s distance> 1 to eliminate gross outliers
before calculating starting values and then performs Huber iterations followed by biweight iterations,
as suggested by Li (1985).

Example 1

We wish to examine the relationship between mileage rating, weight, and location of manufacture
for the 74 cars in our automobile data. As a point of comparison, we begin by fitting an ordinary
regression:
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. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)

. regress mpg weight foreign

Source SS df MS Number of obs = 74
F( 2, 71) = 69.75

Model 1619.2877 2 809.643849 Prob > F = 0.0000
Residual 824.171761 71 11.608053 R-squared = 0.6627

Adj R-squared = 0.6532
Total 2443.45946 73 33.4720474 Root MSE = 3.4071

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.0065879 .0006371 -10.34 0.000 -.0078583 -.0053175
foreign -1.650029 1.075994 -1.53 0.130 -3.7955 .4954422

_cons 41.6797 2.165547 19.25 0.000 37.36172 45.99768

We now compare this with the results from rreg:

. rreg mpg weight foreign

Huber iteration 1: maximum difference in weights = .80280176
Huber iteration 2: maximum difference in weights = .2915438
Huber iteration 3: maximum difference in weights = .08911171
Huber iteration 4: maximum difference in weights = .02697328

Biweight iteration 5: maximum difference in weights = .29186818
Biweight iteration 6: maximum difference in weights = .11988101
Biweight iteration 7: maximum difference in weights = .03315872
Biweight iteration 8: maximum difference in weights = .00721325

Robust regression Number of obs = 74
F( 2, 71) = 168.32
Prob > F = 0.0000

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.0063976 .0003718 -17.21 0.000 -.007139 -.0056562
foreign -3.182639 .627964 -5.07 0.000 -4.434763 -1.930514

_cons 40.64022 1.263841 32.16 0.000 38.1202 43.16025

Note the large change in the foreign coefficient.

Technical note
It would have been better if we had fit the previous robust regression by typing rreg mpg weight

foreign, genwt(w). The new variable, w, would then contain the estimated weights. Let’s pretend
that we did this:
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. rreg mpg weight foreign, genwt(w)
(output omitted )

. summarize w, detail

Robust Regression Weight

Percentiles Smallest
1% 0 0
5% .0442957 0

10% .4674935 0 Obs 74
25% .8894815 .0442957 Sum of Wgt. 74

50% .9690193 Mean .8509966
Largest Std. Dev. .2746451

75% .9949395 .9996715
90% .9989245 .9996953 Variance .0754299
95% .9996715 .9997343 Skewness -2.287952
99% .9998585 .9998585 Kurtosis 6.874605

We discover that 3 observations in our data were dropped altogether (they have weight 0). We could
further explore our data:

. sort w

. list make mpg weight w if w <.467, sep(0)

make mpg weight w

1. VW Diesel 41 2,040 0
2. Subaru 35 2,050 0
3. Datsun 210 35 2,020 0
4. Plym. Arrow 28 3,260 .04429567
5. Cad. Seville 21 4,290 .08241943
6. Toyota Corolla 31 2,200 .10443129
7. Olds 98 21 4,060 .28141296

Being familiar with the automobile data, we immediately spotted two things: the VW is the only
diesel car in our data, and the weight recorded for the Plymouth Arrow is incorrect.

Example 2

If we specify no explanatory variables, rreg produces a robust estimate of the mean:

. rreg mpg

Huber iteration 1: maximum difference in weights = .64471879
Huber iteration 2: maximum difference in weights = .05098336
Huber iteration 3: maximum difference in weights = .0099887

Biweight iteration 4: maximum difference in weights = .25197391
Biweight iteration 5: maximum difference in weights = .00358606

Robust regression Number of obs = 74
F( 0, 73) = 0.00
Prob > F = .

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

_cons 20.68825 .641813 32.23 0.000 19.40912 21.96738
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The estimate is given by the coefficient on cons. The mean is 20.69 with an estimated standard
error of 0.6418. The 95% confidence interval is [ 19.4, 22.0 ]. By comparison, ci (see [R] ci) gives
us the standard calculation:

. ci mpg

Variable Obs Mean Std. Err. [95% Conf. Interval]

mpg 74 21.2973 .6725511 19.9569 22.63769

Stored results
rreg stores the following in e():

Scalars
e(N) number of observations
e(mss) model sum of squares
e(df m) model degrees of freedom
e(rss) residual sum of squares
e(df r) residual degrees of freedom
e(r2) R-squared
e(r2 a) adjusted R-squared
e(F) F statistic
e(rmse) root mean squared error
e(rank) rank of e(V)

Macros
e(cmd) rreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(genwt) variable containing the weights
e(title) title in estimation output
e(model) ols
e(vce) ols
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
See Berk (1990), Goodall (1983), and Rousseeuw and Leroy (1987) for a general description of

the issues and methods. Hamilton (1991a, 1992) provides a more detailed description of rreg and
some Monte Carlo evaluations.

rreg begins by fitting the regression (see [R] regress), calculating Cook’s D (see [R] predict and
[R] regress postestimation), and excluding any observation for which D > 1.

Thereafter rreg works iteratively: it performs a regression, calculates case weights from absolute
residuals, and regresses again using those weights. Iterations stop when the maximum change in
weights drops below tolerance(). Weights derive from one of two weight functions, Huber weights

http://www.stata.com/manuals13/rci.pdf#rci
http://www.stata.com/manuals13/rregress.pdf#rregress
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and biweights. Huber weights (Huber 1964) are used until convergence, and then, from that result,
biweights are used until convergence. The biweight was proposed by Beaton and Tukey (1974, 151–
152) after the Princeton robustness study (Andrews et al. 1972) had compared various estimators.
Both weighting functions are used because Huber weights have problems dealing with severe outliers,
whereas biweights sometimes fail to converge or have multiple solutions. The initial Huber weighting
should improve the behavior of the biweight estimator.

In Huber weighting, cases with small residuals receive weights of 1; cases with larger residuals
receive gradually smaller weights. Let ei = yi − Xib represent the ith-case residual. The ith
scaled residual ui = ei/s is calculated, where s = M/0.6745 is the residual scale estimate and
M = med(|ei−med(ei)|) is the median absolute deviation from the median residual. Huber estimation
obtains case weights:

wi =

{
1 if |ui| ≤ ch
ch/|ui| otherwise

rreg defines ch = 1.345, so downweighting begins with cases whose absolute residual exceeds
(1.345/0.6745)M ≈ 2M .

With biweights, all cases with nonzero residuals receive some downweighting, according to the
smoothly decreasing biweight function

wi =

{
{1− (ui/cb)

2}2 if |ui| ≤ cb
0 otherwise

where cb = 4.685× tune()/7. Thus when tune() = 7, cases with absolute residuals of
(4.685/0.6745)M ≈ 7M or more are assigned 0 weight and thus are effectively dropped.
Goodall (1983, 377) suggests using a value between 6 and 9, inclusive, for tune() in the bi-
weight case and states that performance is good between 6 and 12, inclusive.

The tuning constants ch = 1.345 and cb = 4.685 (assuming tune() is set at the default 7)
give rreg about 95% of the efficiency of OLS when applied to data with normally distributed errors
(Hamilton 1991b). Lower tuning constants downweight outliers more drastically (but give up Gaussian
efficiency); higher tuning constants make the estimator more like OLS.

Standard errors are calculated using the pseudovalues approach described in Street, Carroll, and
Ruppert (1988).

Acknowledgment
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