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Syntax

Quantile regression

qreg depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

, qreg options
]

Interquantile range regression

iqreg depvar
[

indepvars
] [

if
] [

in
] [

, iqreg options
]

Simultaneous-quantile regression

sqreg depvar
[

indepvars
] [

if
] [

in
] [

, sqreg options
]

Bootstrapped quantile regression

bsqreg depvar
[

indepvars
] [

if
] [

in
] [

, bsqreg options
]

qreg options Description

Model

quantile(#) estimate # quantile; default is quantile(.5)

SE/Robust

vce(
[

vcetype
]
,
[

vceopts
]
) technique used to estimate standard errors

Reporting

level(#) set confidence level; default is level(95)

display options control column formats, row spacing, line width, display of omitted
variables and base and empty cells, and factor-variable labeling

Optimization

optimization options control the optimization process; seldom used
wlsiter(#) attempt # weighted least-squares iterations before doing linear

programming iterations

vcetype Description

iid compute the VCE assuming the residuals are i.i.d.
robust compute the robust VCE
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vceopts Description

denmethod nonparametric density estimation technique
bwidth bandwidth method used by the density estimator

denmethod Description

fitted use the empirical quantile function using fitted values; the default
residual use the empirical residual quantile function
kernel

[
(kernel)

]
use a nonparametric kernel density estimator; default is
epanechnikov

bwidth Description

hsheather Hall–Sheather’s bandwidth; the default
bofinger Bofinger’s bandwidth
chamberlain Chamberlain’s bandwidth

kernel Description

epanechnikov Epanechnikov kernel function; the default
epan2 alternative Epanechnikov kernel function
biweight biweight kernel function
cosine cosine trace kernel function
gaussian Gaussian kernel function
parzen Parzen kernel function
rectangle rectangle kernel function
triangle triangle kernel function

iqreg options Description

Model

quantiles(# #) interquantile range; default is quantiles(.25 .75)

reps(#) perform # bootstrap replications; default is reps(20)

Reporting

level(#) set confidence level; default is level(95)

nodots suppress display of the replication dots
display options control column formats, row spacing, line width, display of omitted

variables and base and empty cells, and factor-variable labeling
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sqreg options Description

Model

quantiles(#
[

#
[

# . . .
] ]
) estimate # quantiles; default is quantiles(.5)

reps(#) perform # bootstrap replications; default is reps(20)

Reporting

level(#) set confidence level; default is level(95)

nodots suppress display of the replication dots
display options control column formats, row spacing, line width, display of omitted

variables and base and empty cells, and factor-variable labeling

bsqreg options Description

Model

quantile(#) estimate # quantile; default is quantile(.5)

reps(#) perform # bootstrap replications; default is reps(20)

Reporting

level(#) set confidence level; default is level(95)

display options control column formats, row spacing, line width, display of omitted
variables and base and empty cells, and factor-variable labeling

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
by, mi estimate, rolling, and statsby, are allowed by qreg, iqreg, sqreg, and bsqreg; mfp, nestreg, and

stepwise are allowed only with qreg; see [U] 11.1.10 Prefix commands.
qreg allows fweights, iweights, and pweights; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
qreg

Statistics > Nonparametric analysis > Quantile regression

iqreg

Statistics > Nonparametric analysis > Interquantile regression

sqreg

Statistics > Nonparametric analysis > Simultaneous-quantile regression

bsqreg

Statistics > Nonparametric analysis > Bootstrapped quantile regression

Description
qreg fits quantile (including median) regression models, also known as least–absolute-value models

(LAV or MAD) and minimum L1-norm models. The quantile regression models fit by qreg express
the quantiles of the conditional distribution as linear functions of the independent variables.

http://www.stata.com/manuals13/u11.pdf#u11.4.3Factorvariables
http://www.stata.com/manuals13/u11.pdf#u11.1.10Prefixcommands
http://www.stata.com/manuals13/u11.pdf#u11.1.6weight
http://www.stata.com/manuals13/u20.pdf#u20Estimationandpostestimationcommands
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iqreg estimates interquantile range regressions, regressions of the difference in quantiles. The
estimated variance–covariance matrix of the estimators (VCE) is obtained via bootstrapping.

sqreg estimates simultaneous-quantile regression. It produces the same coefficients as qreg for
each quantile. Reported standard errors will be similar, but sqreg obtains an estimate of the VCE
via bootstrapping, and the VCE includes between-quantile blocks. Thus you can test and construct
confidence intervals comparing coefficients describing different quantiles.

bsqreg is equivalent to sqreg with one quantile.

Options for qreg

� � �
Model �

quantile(#) specifies the quantile to be estimated and should be a number between 0 and 1, exclusive.
Numbers larger than 1 are interpreted as percentages. The default value of 0.5 corresponds to the
median.

� � �
SE/Robust �

vce(
[

vcetype
]
,
[

vceopts
]
) specifies the type of VCE to compute and the density estimation method

to use in computing the VCE.

vcetype specifies the type of VCE to compute. Available types are iid and robust.

vce(iid), the default, computes the VCE under the assumption that the residuals are independent
and identically distributed (i.i.d.).

vce(robust) computes the robust VCE under the assumption that the residual density is contin-
uous and bounded away from 0 and infinity at the specified quantile(); see Koenker (2005,
sec. 4.2).

vceopts consists of available denmethod and bwidth options.

denmethod specifies the method to use for the nonparametric density estimator. Available
methods are fitted, residual, or kernel

[
(kernel)

]
, where the optional kernel must be

one of the kernel choices listed below.

fitted and residual specify that the nonparametric density estimator use some of the
structure imposed by quantile regression. The default fitted uses a function of the fitted
values and residual uses a function of the residuals. vce(robust, residual) is not
allowed.

kernel() specifies that the nonparametric density estimator use a kernel method. The
available kernel functions are epanechnikov, epan2, biweight, cosine, gaussian,
parzen, rectangle, and triangle. The default is epanechnikov. See [R] kdensity
for the kernel function forms.

bwidth specifies the bandwidth method to use by the nonparametric density estimator. Available
methods are hsheather for the Hall–Sheather bandwidth, bofinger for the Bofinger
bandwidth, and chamberlain for the Chamberlain bandwidth.

See Koenker (2005, sec. 3.4 and 4.10) for a description of the sparsity estimation techniques
and the Hall–Sheather and Bofinger bandwidth formulas. See Chamberlain (1994, eq. 2.2) for the
Chamberlain bandwidth.

� � �
Reporting �

level(#); see [R] estimation options.

http://www.stata.com/manuals13/rkdensity.pdf#rkdensity
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
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display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvla-
bel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt), sformat(% fmt), and
nolstretch; see [R] estimation options.

� � �
Optimization �

optimization options: iterate(#),
[
no
]
log, trace. iterate() specifies the maximum number of

iterations; log/nolog specifies whether to show the iteration log; and trace specifies that the
iteration log should include the current parameter vector. These options are seldom used.

wlsiter(#) specifies the number of weighted least-squares iterations that will be attempted before
the linear programming iterations are started. The default value is 1. If there are convergence
problems, increasing this number should help.

Options for iqreg

� � �
Model �

quantiles(# #) specifies the quantiles to be compared. The first number must be less than the
second, and both should be between 0 and 1, exclusive. Numbers larger than 1 are interpreted as
percentages. Not specifying this option is equivalent to specifying quantiles(.25 .75), meaning
the interquantile range.

reps(#) specifies the number of bootstrap replications to be used to obtain an estimate of the
variance–covariance matrix of the estimators (standard errors). reps(20) is the default and is
arguably too small. reps(100) would perform 100 bootstrap replications. reps(1000) would
perform 1,000 replications.

� � �
Reporting �

level(#); see [R] estimation options.

nodots suppresses display of the replication dots.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvla-
bel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt), sformat(% fmt), and
nolstretch; see [R] estimation options.

Options for sqreg

� � �
Model �

quantiles(#
[
#
[
# . . .

] ]
) specifies the quantiles to be estimated and should contain numbers

between 0 and 1, exclusive. Numbers larger than 1 are interpreted as percentages. The default
value of 0.5 corresponds to the median.

reps(#) specifies the number of bootstrap replications to be used to obtain an estimate of the
variance–covariance matrix of the estimators (standard errors). reps(20) is the default and is
arguably too small. reps(100) would perform 100 bootstrap replications. reps(1000) would
perform 1,000 replications.

� � �
Reporting �

level(#); see [R] estimation options.

nodots suppresses display of the replication dots.

http://www.stata.com/manuals13/d.pdf#dformat
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals13/d.pdf#dformat
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
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display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvla-
bel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt), sformat(% fmt), and
nolstretch; see [R] estimation options.

Options for bsqreg

� � �
Model �

quantile(#) specifies the quantile to be estimated and should be a number between 0 and 1, exclusive.
Numbers larger than 1 are interpreted as percentages. The default value of 0.5 corresponds to the
median.

reps(#) specifies the number of bootstrap replications to be used to obtain an estimate of the
variance–covariance matrix of the estimators (standard errors). reps(20) is the default and is
arguably too small. reps(100) would perform 100 bootstrap replications. reps(1000) would
perform 1,000 replications.

� � �
Reporting �

level(#); see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvla-
bel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt), sformat(% fmt), and
nolstretch; see [R] estimation options.

Remarks and examples stata.com

Remarks are presented under the following headings:

Median regression
Quantile regression
Estimated standard errors
Interquantile and simultaneous-quantile regression
What are the parameters?

Median regression

qreg fits quantile regression models. The default form is median regression, where the objective is
to estimate the median of the dependent variable, conditional on the values of the independent variables.
This method is similar to ordinary regression, where the objective is to estimate the conditional mean
of the dependent variable. Simply put, median regression finds a line through the data that minimizes
the sum of the absolute residuals rather than the sum of the squares of the residuals, as in ordinary
regression. Equivalently, median regression expresses the median of the conditional distribution of
the dependent variable as a linear function of the conditioning (independent) variables. Cameron and
Trivedi (2010, chap. 7) provide a nice introduction to quantile regression using Stata.

http://www.stata.com/manuals13/d.pdf#dformat
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals13/d.pdf#dformat
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://stata.com
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Example 1: Estimating the conditional median

Consider a two-group experimental design with 5 observations per group:

. use http://www.stata-press.com/data/r13/twogrp

. list

x y

1. 0 0
2. 0 1
3. 0 3
4. 0 4
5. 0 95

6. 1 14
7. 1 19
8. 1 20
9. 1 22

10. 1 23

. qreg y x
Iteration 1: WLS sum of weighted deviations = 60.941342

Iteration 1: sum of abs. weighted deviations = 55.5
Iteration 2: sum of abs. weighted deviations = 55

Median regression Number of obs = 10
Raw sum of deviations 78.5 (about 14)
Min sum of deviations 55 Pseudo R2 = 0.2994

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x 17 18.23213 0.93 0.378 -25.04338 59.04338
_cons 3 12.89207 0.23 0.822 -26.72916 32.72916

We have estimated the equation
ymedian = 3 + 17 x

We look back at our data. x takes on the values 0 and 1, so the median for the x = 0 group is 3,
whereas for x = 1 it is 3 + 17 = 20. The output reports that the raw sum of absolute deviations about
14 is 78.5; that is, the sum of |y− 14| is 78.5. Fourteen is the unconditional median of y, although
in these data, any value between 14 and 19 could also be considered an unconditional median (we
have an even number of observations, so the median is bracketed by those two values). In any case,
the raw sum of deviations of y about the median would be the same no matter what number we
choose between 14 and 19. (With a “median” of 14, the raw sum of deviations is 78.5. Now think
of choosing a slightly larger number for the median and recalculating the sum. Half the observations
will have larger negative residuals, but the other half will have smaller positive residuals, resulting in
no net change.)

We turn now to the actual estimated equation. The sum of the absolute deviations about the solution
ymedian = 3 + 17x is 55. The pseudo-R2 is calculated as 1− 55/78.5 ≈ 0.2994. This result is based
on the idea that the median regression is the maximum likelihood estimate for the double-exponential
distribution.
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Technical note
qreg is an alternative to regular regression or robust regression—see [R] regress and [R] rreg.

Let’s compare the results:

. regress y x

Source SS df MS Number of obs = 10
F( 1, 8) = 0.00

Model 2.5 1 2.5 Prob > F = 0.9586
Residual 6978.4 8 872.3 R-squared = 0.0004

Adj R-squared = -0.1246
Total 6980.9 9 775.655556 Root MSE = 29.535

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x -1 18.6794 -0.05 0.959 -44.07477 42.07477
_cons 20.6 13.20833 1.56 0.157 -9.858465 51.05847

Unlike qreg, regress fits ordinary linear regression and is concerned with predicting the mean rather
than the median, so both results are, in a technical sense, correct. Putting aside those technicalities,
however, we tend to use either regression to describe the central tendency of the data, of which the
mean is one measure and the median another. Thus we can ask, “which method better describes the
central tendency of these data?”

Means—and therefore ordinary linear regression—are sensitive to outliers, and our data were
purposely designed to contain two such outliers: 95 for x = 0 and 14 for x = 1. These two outliers
dominated the ordinary regression and produced results that do not reflect the central tendency
well—you are invited to enter the data and graph y against x.

Robust regression attempts to correct the outlier-sensitivity deficiency in ordinary regression:

. rreg y x, genwt(wt)

Huber iteration 1: maximum difference in weights = .7311828
Huber iteration 2: maximum difference in weights = .17695779
Huber iteration 3: maximum difference in weights = .03149585

Biweight iteration 4: maximum difference in weights = .1979335
Biweight iteration 5: maximum difference in weights = .23332905
Biweight iteration 6: maximum difference in weights = .09960067
Biweight iteration 7: maximum difference in weights = .02691458
Biweight iteration 8: maximum difference in weights = .0009113

Robust regression Number of obs = 10
F( 1, 8) = 80.63
Prob > F = 0.0000

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x 18.16597 2.023114 8.98 0.000 13.50066 22.83128
_cons 2.000003 1.430558 1.40 0.200 -1.298869 5.298875

Here rreg discarded the first outlier completely. (We know this because we included the genwt()
option on rreg and, after fitting the robust regression, examined the weights.) For the other “outlier”,
rreg produced a weight of 0.47.

In any case, the answers produced by qreg and rreg to describe the central tendency are similar,
but the standard errors are different. In general, robust regression will have smaller standard errors
because it is not as sensitive to the exact placement of observations near the median. You are welcome
to try removing the first outlier in the qreg estimation to observe an improvement in the standard
errors by typing

http://www.stata.com/manuals13/rregress.pdf#rregress
http://www.stata.com/manuals13/rrreg.pdf#rrreg
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. qreg y x if _n!=5

Also, some authors (Rousseeuw and Leroy 1987, 11) have noted that quantile regression, unlike the
unconditional median, may be sensitive to even one outlier if its leverage is high enough. Rousseeuw
and Leroy (1987) discuss estimators that are more robust to perturbations to the data than either mean
regression or quantile regression.

In the end, quantile regression may be more useful for the interpretation of the parameters that it
estimates than for its robustness to perturbations to the data.

Example 2: Median regression

Let’s now consider a less artificial example using the automobile data described in [U] 1.2.2 Example
datasets. Using median regression, we will regress each car’s price on its weight and length and
whether it is of foreign manufacture:

. use http://www.stata-press.com/data/r13/auto, clear
(1978 Automobile Data)

. qreg price weight length foreign
Iteration 1: WLS sum of weighted deviations = 56397.829

Iteration 1: sum of abs. weighted deviations = 55950.5
Iteration 2: sum of abs. weighted deviations = 55264.718
Iteration 3: sum of abs. weighted deviations = 54762.283
Iteration 4: sum of abs. weighted deviations = 54734.152
Iteration 5: sum of abs. weighted deviations = 54552.638
note: alternate solutions exist
Iteration 6: sum of abs. weighted deviations = 54465.511
Iteration 7: sum of abs. weighted deviations = 54443.699
Iteration 8: sum of abs. weighted deviations = 54411.294

Median regression Number of obs = 74
Raw sum of deviations 71102.5 (about 4934)
Min sum of deviations 54411.29 Pseudo R2 = 0.2347

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight 3.933588 1.328718 2.96 0.004 1.283543 6.583632
length -41.25191 45.46469 -0.91 0.367 -131.9284 49.42456

foreign 3377.771 885.4198 3.81 0.000 1611.857 5143.685
_cons 344.6489 5182.394 0.07 0.947 -9991.31 10680.61

The estimated equation is

pricemedian = 3.93 weight− 41.25 length + 3377.8 foreign + 344.65

The output may be interpreted in the same way as linear regression output; see [R] regress. The
variables weight and foreign are significant, but length is not significant. The median price of
the cars in these data is $4,934. This value is a median (one of the two center observations), not the
median, which would typically be defined as the midpoint of the two center observations.

http://www.stata.com/manuals13/u1.pdf#u1.2.2Exampledatasets
http://www.stata.com/manuals13/u1.pdf#u1.2.2Exampledatasets
http://www.stata.com/manuals13/rregress.pdf#rregress
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Quantile regression

Quantile regression is similar to median regression in that it estimates an equation expressing a
quantile of the conditional distribution, albeit one that generally differs from the 0.5 quantile that is
the median. For example, specifying quantile(.25) estimates the parameters that describe the 25th
percentile (first quartile) of the conditional distribution.

Quantile regression allows for effects of the independent variables to differ over the quantiles. For
example, Chamberlain (1994) finds that union membership has a larger effect on the lower quantiles
than on the higher quantiles of the conditional distribution of U.S. wages. That the effects of the
independent variables may vary over quantiles of the conditional distribution is an important advantage
of quantile regression over mean regression.

Example 3: Estimating quantiles other than the median

Returning to real data, the equation for the 25th percentile of price conditional on weight,
length, and foreign in our automobile data is

. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)

. qreg price weight length foreign, quantile(.25)
Iteration 1: WLS sum of weighted deviations = 49469.235

Iteration 1: sum of abs. weighted deviations = 49728.883
Iteration 2: sum of abs. weighted deviations = 45669.89
Iteration 3: sum of abs. weighted deviations = 43416.646
Iteration 4: sum of abs. weighted deviations = 41947.221
Iteration 5: sum of abs. weighted deviations = 41093.025
Iteration 6: sum of abs. weighted deviations = 37623.424
Iteration 7: sum of abs. weighted deviations = 35721.453
Iteration 8: sum of abs. weighted deviations = 35226.308
Iteration 9: sum of abs. weighted deviations = 34823.319
Iteration 10: sum of abs. weighted deviations = 34801.777

.25 Quantile regression Number of obs = 74
Raw sum of deviations 41912.75 (about 4187)
Min sum of deviations 34801.78 Pseudo R2 = 0.1697

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight 1.831789 .6328903 2.89 0.005 .5695289 3.094049
length 2.84556 21.65558 0.13 0.896 -40.34514 46.03626

foreign 2209.925 421.7401 5.24 0.000 1368.791 3051.059
_cons -1879.775 2468.46 -0.76 0.449 -6802.963 3043.413

Compared with our previous median regression, the coefficient on length now has a positive sign,
and the coefficients on foreign and weight are reduced. The actual lower quantile is $4,187,
substantially less than the median $4,934.
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We can also estimate the upper quartile as a function of the same three variables:

. qreg price weight length foreign, quantile(.75)
Iteration 1: WLS sum of weighted deviations = 55465.741

Iteration 1: sum of abs. weighted deviations = 55652.957
Iteration 2: sum of abs. weighted deviations = 52994.785
Iteration 3: sum of abs. weighted deviations = 50189.446
Iteration 4: sum of abs. weighted deviations = 49898.245
Iteration 5: sum of abs. weighted deviations = 49398.106
Iteration 6: sum of abs. weighted deviations = 49241.835
Iteration 7: sum of abs. weighted deviations = 49197.967

.75 Quantile regression Number of obs = 74
Raw sum of deviations 79860.75 (about 6342)
Min sum of deviations 49197.97 Pseudo R2 = 0.3840

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight 9.22291 1.785767 5.16 0.000 5.66131 12.78451
length -220.7833 61.10352 -3.61 0.001 -342.6504 -98.91616

foreign 3595.133 1189.984 3.02 0.004 1221.785 5968.482
_cons 20242.9 6965.02 2.91 0.005 6351.61 34134.2

This result tells a different story: weight is much more important, and length is now significant—with
a negative coefficient! The prices of high-priced cars seem to be determined by factors different from
those affecting the prices of low-priced cars.

Technical note
One explanation for having substantially different regression functions for different quantiles is

that the data are heteroskedastic, as we will demonstrate below. The following statements create a
sharply heteroskedastic set of data:

. drop _all

. set obs 10000
obs was 0, now 10000

. set seed 50550

. gen x = .1 + .9 * runiform()

. gen y = x * runiform()^2
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Let’s now fit the regressions for the 5th and 95th quantiles:

. qreg y x, quantile(.05)
Iteration 1: WLS sum of weighted deviations = 540.36365

Iteration 1: sum of abs. weighted deviations = 539.15959
Iteration 2: sum of abs. weighted deviations = 141.36772
Iteration 3: sum of abs. weighted deviations = 91.234609
Iteration 4: sum of abs. weighted deviations = 91.127281
Iteration 5: sum of abs. weighted deviations = 91.126351
Iteration 6: sum of abs. weighted deviations = 91.126236
Iteration 7: sum of abs. weighted deviations = 91.126229
Iteration 8: sum of abs. weighted deviations = 91.126224
Iteration 9: sum of abs. weighted deviations = 91.126221

.05 Quantile regression Number of obs = 10000
Raw sum of deviations 91.17849 (about .0009234)
Min sum of deviations 91.12622 Pseudo R2 = 0.0006

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x .002601 .0004576 5.68 0.000 .001704 .003498
_cons -.0001393 .0002782 -0.50 0.617 -.0006846 .000406

. qreg y x, quantile(.95)
Iteration 1: WLS sum of weighted deviations = 618.77845

Iteration 1: sum of abs. weighted deviations = 619.00068
Iteration 2: sum of abs. weighted deviations = 228.32522
Iteration 3: sum of abs. weighted deviations = 169.22749
Iteration 4: sum of abs. weighted deviations = 169.21949
Iteration 5: sum of abs. weighted deviations = 169.21945

.95 Quantile regression Number of obs = 10000
Raw sum of deviations 277.3444 (about .61326343)
Min sum of deviations 169.2194 Pseudo R2 = 0.3899

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x .8898259 .0090984 97.80 0.000 .8719912 .9076605
_cons .0021514 .0055307 0.39 0.697 -.00869 .0129927

The coefficient on x, in particular, differs markedly between the two estimates. For the mathematically
inclined, it is not too difficult to show that the theoretical lines are y = 0.0025 x for the 5th percentile
and y = 0.9025 x for the 95th, numbers in close agreement with our numerical results.

The estimator for the standard errors computed by qreg assumes that the sample is independent
and identically distributed (i.i.d.); see Estimated standard errors and Methods and formulas for details.
Because the data are conditionally heteroskedastic, we should have used bsqreg to consistently
estimate the standard errors using a bootstrap method.

Estimated standard errors

The variance–covariance matrix of the estimator (VCE) depends on the reciprocal of the density
of the dependent variable evaluated at the quantile of interest. This function, known as the “sparsity
function”, is hard to estimate.
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The default method, which uses the fitted values for the predicted quantiles, generally performs
well, but other methods may be preferred in larger samples. The vce() suboptions denmethod and
bwidth provide other estimators of the sparsity function, the details of which are described in Methods
and formulas.

For models with heteroskedastic errors, option vce(robust) computes a Huber (1967) form
of sandwich estimate (Koenker 2005). Alternatively, Gould (1992, 1997b) introduced generalized
versions of qreg that obtain estimates of the standard errors by using bootstrap resampling (see Efron
and Tibshirani [1993] or Wu [1986] for an introduction to bootstrap standard errors). The iqreg,
sqreg, and bsqreg commands provide a bootstrapped estimate of the entire variance–covariance
matrix of the estimators.

Example 4: Obtaining robust standard errors

Example 2 of qreg on real data above was a median regression of price on weight, length, and
foreign using auto.dta. Suppose, after investigation, we are convinced that car price observations
are not independent. We decide that standard errors robust to non-i.i.d. errors would be appropriate
and use the option vce(robust).

. use http://www.stata-press.com/data/r13/auto, clear
(1978 Automobile Data)

. qreg price weight length foreign, vce(robust)
Iteration 1: WLS sum of weighted deviations = 56397.829

Iteration 1: sum of abs. weighted deviations = 55950.5
Iteration 2: sum of abs. weighted deviations = 55264.718
Iteration 3: sum of abs. weighted deviations = 54762.283
Iteration 4: sum of abs. weighted deviations = 54734.152
Iteration 5: sum of abs. weighted deviations = 54552.638
note: alternate solutions exist
Iteration 6: sum of abs. weighted deviations = 54465.511
Iteration 7: sum of abs. weighted deviations = 54443.699
Iteration 8: sum of abs. weighted deviations = 54411.294

Median regression Number of obs = 74
Raw sum of deviations 71102.5 (about 4934)
Min sum of deviations 54411.29 Pseudo R2 = 0.2347

Robust
price Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight 3.933588 1.694477 2.32 0.023 .55406 7.313116
length -41.25191 51.73571 -0.80 0.428 -144.4355 61.93171

foreign 3377.771 728.5115 4.64 0.000 1924.801 4830.741
_cons 344.6489 5096.528 0.07 0.946 -9820.055 10509.35

We see that the robust standard error for weight increases making it less significant in modifying
the median automobile price. The standard error for length also increases, but the standard error
for the foreign indicator decreases.
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For comparison, we repeat the estimation using bootstrap standard errors:

. use http://www.stata-press.com/data/r13/auto, clear
(1978 Automobile Data)

. set seed 1001

. bsqreg price weight length foreign
(fitting base model)

Bootstrap replications (20)
1 2 3 4 5

....................

Median regression, bootstrap(20) SEs Number of obs = 74
Raw sum of deviations 71102.5 (about 4934)
Min sum of deviations 54411.29 Pseudo R2 = 0.2347

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight 3.933588 3.12446 1.26 0.212 -2.297951 10.16513
length -41.25191 83.71267 -0.49 0.624 -208.2116 125.7077

foreign 3377.771 1057.281 3.19 0.002 1269.09 5486.452
_cons 344.6489 7053.301 0.05 0.961 -13722.72 14412.01

The coefficient estimates are the same—indeed, they are obtained using the same technique. Only
the standard errors differ. Therefore, the t statistics, significance levels, and confidence intervals also
differ.

Because bsqreg (as well as sqreg and iqreg) obtains standard errors by randomly resampling
the data, the standard errors it produces will not be the same from run to run unless we first set the
random-number seed to the same number; see [R] set seed.

http://www.stata.com/manuals13/rsetseed.pdf#rsetseed
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By default, bsqreg, sqreg, and iqreg use 20 replications. We can control the number of
replications by specifying the reps() option:

. bsqreg price weight length i.foreign, reps(1000)
(fitting base model)

Bootstrap replications (1000)
1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

.................................................. 200

.................................................. 250

.................................................. 300

.................................................. 350

.................................................. 400

.................................................. 450

.................................................. 500

.................................................. 550

.................................................. 600

.................................................. 650

.................................................. 700

.................................................. 750

.................................................. 800

.................................................. 850

.................................................. 900

.................................................. 950

.................................................. 1000

Median regression, bootstrap(1000) SEs Number of obs = 74
Raw sum of deviations 71102.5 (about 4934)
Min sum of deviations 54411.29 Pseudo R2 = 0.2347

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight 3.933588 2.659381 1.48 0.144 -1.370379 9.237555
length -41.25191 69.29771 -0.60 0.554 -179.4618 96.95802

foreign
Foreign 3377.771 1094.264 3.09 0.003 1195.331 5560.211

_cons 344.6489 5916.906 0.06 0.954 -11456.25 12145.55

A comparison of the standard errors is informative.

qreg bsqreg bsqreg
Variable qreg vce(robust) reps(20) reps(1000)

weight 1.329 1.694 3.124 2.660
length 45.46 51.74 83.71 69.30
1.foreign 885.4 728.5 1057. 1094.
cons 5182. 5096. 7053. 5917.

The results shown above are typical for models with heteroskedastic errors. (Our dependent variable
is price; if our model had been in terms of ln(price), the standard errors estimated by qreg and
bsqreg would have been nearly identical.) Also, even for heteroskedastic errors, 20 replications is
generally sufficient for hypothesis tests against 0.
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Interquantile and simultaneous-quantile regression

Consider a quantile regression model where the qth quantile is given by

Qq(y) = aq + bq,1x1 + bq,2x2

For instance, the 75th and 25th quantiles are given by

Q0.75(y) = a0.75 + b0.75,1x1 + b0.75,2x2

Q0.25(y) = a0.25 + b0.25,1x1 + b0.25,2x2

The difference in the quantiles is then

Q0.75(y)−Q0.25(y) = (a0.75 − a0.25) + (b0.75,1 − b0.25,1)x1 + (b0.75,2 − b0.25,2)x2

qreg fits models such as Q0.75(y) and Q0.25(y). iqreg fits interquantile models, such as Q0.75(y)−
Q0.25(y). The relationships of the coefficients estimated by qreg and iqreg are exactly as shown:
iqreg reports coefficients that are the difference in coefficients of two qreg models, and, of course,
iqreg reports the appropriate standard errors, which it obtains by bootstrapping.

sqreg is like qreg in that it estimates the equations for the quantiles

Q0.75(y) = a0.75 + b0.75,1x1 + b0.75,2x2

Q0.25(y) = a0.25 + b0.25,1x1 + b0.25,2x2

The coefficients it obtains are the same that would be obtained by estimating each equation separately
using qreg. sqreg differs from qreg in that it estimates the equations simultaneously and obtains
an estimate of the entire variance–covariance matrix of the estimators by bootstrapping. Thus you
can perform hypothesis tests concerning coefficients both within and across equations.

For example, to fit the above model, you could type
. qreg y x1 x2, quantile(.25)
. qreg y x1 x2, quantile(.75)

By doing this, you would obtain estimates of the parameters, but you could not test whether
b0.25,1 = b0.75,1 or, equivalently, b0.75,1 − b0.25,1 = 0. If your interest really is in the difference of
coefficients, you could type

. iqreg y x1 x2, quantiles(.25 .75)

The “coefficients” reported would be the difference in quantile coefficients. You could also estimate
both quantiles simultaneously and then test the equality of the coefficients:

. sqreg y x1 x2, quantiles(.25 .75)

. test [q25]x1 = [q75]x1

Whether you use iqreg or sqreg makes no difference for this test. sqreg, however, because it
estimates the quantiles simultaneously, allows you to test other hypotheses. iqreg, by focusing on
quantile differences, presents results in a way that is easier to read.

Finally, sqreg can estimate quantiles singly,
. sqreg y x1 x2, quantiles(.5)

and can thereby be used as a substitute for the slower bsqreg. (Gould [1997b] presents timings
demonstrating that sqreg is faster than bsqreg.) sqreg can also estimate more than two quantiles
simultaneously:

. sqreg y x1 x2, quantiles(.25 .5 .75)
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Example 5: Simultaneous quantile estimation

In demonstrating qreg, we performed quantile regressions using auto.dta. We discovered that
the regression of price on weight, length, and foreign produced vastly different coefficients for
the 0.25, 0.5, and 0.75 quantile regressions. Here are the coefficients that we obtained:

25th 50th 75th
Variable percentile percentile percentile

weight 1.83 3.93 9.22
length 2.85 −41.25 −220.8
foreign 2209.9 3377.8 3595.1
cons −1879.8 344.6 20242.9

All we can say, having estimated these equations separately, is that price seems to depend differently
on the weight, length, and foreign variables depending on the portion of the price distribution
we examine. We cannot be more precise because the estimates have been made separately. With
sqreg, however, we can estimate all the effects simultaneously:

. use http://www.stata-press.com/data/r13/auto, clear
(1978 Automobile Data)

. set seed 1001

. sqreg price weight length foreign, q(.25 .5 .75) reps(100)
(fitting base model)

Bootstrap replications (100)
1 2 3 4 5

.................................................. 50

.................................................. 100

Simultaneous quantile regression Number of obs = 74
bootstrap(100) SEs .25 Pseudo R2 = 0.1697

.50 Pseudo R2 = 0.2347

.75 Pseudo R2 = 0.3840

Bootstrap
price Coef. Std. Err. t P>|t| [95% Conf. Interval]

q25
weight 1.831789 1.574777 1.16 0.249 -1.309005 4.972583
length 2.84556 38.63523 0.07 0.941 -74.20998 79.9011

foreign 2209.925 1008.521 2.19 0.032 198.494 4221.357
_cons -1879.775 3665.184 -0.51 0.610 -9189.753 5430.204

q50
weight 3.933588 2.529541 1.56 0.124 -1.111423 8.978599
length -41.25191 68.62258 -0.60 0.550 -178.1153 95.61151

foreign 3377.771 1025.882 3.29 0.002 1331.715 5423.827
_cons 344.6489 6199.257 0.06 0.956 -12019.38 12708.68

q75
weight 9.22291 2.483676 3.71 0.000 4.269374 14.17645
length -220.7833 86.17422 -2.56 0.013 -392.6524 -48.91421

foreign 3595.133 1145.124 3.14 0.002 1311.255 5879.011
_cons 20242.9 9414.242 2.15 0.035 1466.79 39019.02

The coefficient estimates above are the same as those previously estimated, although the standard error
estimates are a little different. sqreg obtains estimates of variance by bootstrapping. The important
thing here, however, is that the full covariance matrix of the estimators has been estimated and stored,
and thus it is now possible to perform hypothesis tests. Are the effects of weight the same at the
25th and 75th percentiles?
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. test [q25]weight = [q75]weight

( 1) [q25]weight - [q75]weight = 0

F( 1, 70) = 8.97
Prob > F = 0.0038

It appears that they are not. We can obtain a confidence interval for the difference by using lincom:

. lincom [q75]weight-[q25]weight

( 1) - [q25]weight + [q75]weight = 0

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) 7.391121 2.467548 3.00 0.004 2.469752 12.31249

Indeed, we could test whether the weight and length sets of coefficients are equal at the three
quantiles estimated:

. quietly test [q25]weight = [q50]weight

. quietly test [q25]weight = [q75]weight, accumulate

. quietly test [q25]length = [q50]length, accumulate

. test [q25]length = [q75]length, accumulate

( 1) [q25]weight - [q50]weight = 0
( 2) [q25]weight - [q75]weight = 0
( 3) [q25]length - [q50]length = 0
( 4) [q25]length - [q75]length = 0

F( 4, 70) = 2.43
Prob > F = 0.0553

iqreg focuses on one quantile comparison but presents results that are more easily interpreted:

. set seed 1001

. iqreg price weight length foreign, q(.25 .75) reps(100) nolog

.75-.25 Interquantile regression Number of obs = 74
bootstrap(100) SEs .75 Pseudo R2 = 0.3840

.25 Pseudo R2 = 0.1697

Bootstrap
price Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight 7.391121 2.467548 3.00 0.004 2.469752 12.31249
length -223.6288 83.09868 -2.69 0.009 -389.3639 -57.89376

foreign 1385.208 1191.018 1.16 0.249 -990.2036 3760.619
_cons 22122.68 9009.159 2.46 0.017 4154.478 40090.88

Looking only at the 0.25 and 0.75 quantiles (the interquartile range), the iqreg command output
is easily interpreted. Increases in weight correspond significantly to increases in price dispersion.
Increases in length correspond to decreases in price dispersion. The foreign variable does not
significantly change price dispersion.

Do not make too much of these results; the purpose of this example is simply to illustrate the
sqreg and iqreg commands and to do so in a context that suggests why analyzing dispersion might
be of interest.
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lincom after sqreg produced the same t statistic for the interquartile range of weight, as did
the iqreg command above. In general, they will not agree exactly because of the randomness of
bootstrapping, unless the random-number seed is set to the same value before estimation (as was
done here).

Gould (1997a) presents simulation results showing that the coverage—the actual percentage of
confidence intervals containing the true value—for iqreg is appropriate.

What are the parameters?

In this section, we use a specific data-generating process (DGP) to illustrate the interpretation of the
parameters estimated by qreg. If simulation experiments are not intuitive to you, skip this section.

In general, quantile regression parameterizes the quantiles of the distribution of y conditional on
the independent variables x as xβ, where β is a vector of estimated parameters. In our example, we
include a constant term and a single independent variable, and we express quantiles of the distribution
of y conditional on x as β0 + β1x.

We use simulated data to illustrate what we mean by a conditional distribution and how to interpret
the parameters β estimated by qreg. We also note how we could change our example to illustrate a
DGP for which the estimator in qreg would be misspecified.

We suppose that the distribution of y conditional on x has a Weibull form. If y has a Weibull
distribution, the distribution function is F (y) = 1−exp{−(y/λ)k}, where the scale parameter λ > 0
and the shape parameter k > 0. We can make y have a Weibull distribution function conditional on
x by making the scale parameter or the shape parameter functions of x. In our example, we specify
a particular DGP by supposing that λ = (1 + αx), α = 1.5, x = 1 +

√
ν, and that ν has a χ2(1)

distribution. For the moment, we leave the parameter k as is so that we can discuss how this decision
relates to model specification.

Plugging in for λ yields the functional form for the distribution of y conditional on x, which is
known as the conditional distribution function and is denoted F (y|x). F (y|x) is the distribution for
y for each given value of x.

Some algebra yields that F (y|x) = 1− exp[−{y/(1 + αx)}k]. Letting τ = F (y|x) implies that
0 ≤ τ ≤ 1, because probabilities must be between 0 and 1.

To obtain the τ quantile of the distribution of y conditional on x, we solve

τ = 1− exp[−{y/(1 + αx)}k]

for y as a function of τ , x, α, and k. The solution is

y = (1 + αx){− ln(1− τ)}(1/k) (1)

For any value of τ ∈ (0, 1), expression (1) gives the τ quantile of the distribution of y conditional
on x. To use qreg, we must rewrite (1) as a function of x, β0, and β1. Some algebra yields that (1)
can be rewritten as

y = β0 + β1 ∗ x

where β0 = {− ln(1 − τ)}(1/k) and β1 = α{− ln(1 − τ)}(1/k). We can express the conditional
quantiles as linear combinations of x, which is a property of the estimator implemented in qreg.



20 qreg — Quantile regression

If we parameterize k as a nontrivial function of x, the conditional quantiles will not be linear
in x. If the conditional quantiles cannot be represented as linear functions of x, we cannot estimate
the true parameters of the DGP. This restriction illustrates the limits of the estimator implemented in
qreg.

We set k = 2 for our example.

Conditional quantile regression allows the coefficients to change with the specified quantile. For
our DGP, the coefficients β0 and β1 increase as τ gets larger. Substituting in for α and k yields that
β0 =

√
− ln(1− τ) and β1 = 1.5

√
− ln(1− τ). Table 1 presents the true values for β0 and β1

implied by our DGP when τ ∈ {0.25, 0.5, 0.8}.

Table 1: True values for β0 and β1

τ β0 β1

0.25 0.53636 0.80454
0.5 0.8325546 1.248832
0.8 1.268636 1.902954

We can also use (1) to generate data from the specified distribution of y conditional on x by
plugging in random uniform numbers for τ . Each random uniform number substituted in for τ in (1)
yields a draw from the conditional distribution of y given x.

Example 6

In this example, we generate 100,000 observations from our specified DGP by substituting random
uniform numbers for τ in (1), with α = 1.5, k = 2, x = 1 +

√
ν, and ν coming from a χ2(1)

distribution.

We begin by executing the code that implements this method; below we discuss each line of the
output produced.

. clear // drop existing variables

. set seed 1234571 // set random-number seed

. set obs 100000 // set number of observations
obs was 0, now 100000

. generate double tau = runiform() // generate uniform variate

. generate double x = 1 + sqrt(rchi2(1)) // generate values for x

. generate double lambda = 1 + 1.5*x // lambda is 1 + alpha*x

. generate double k = 2 // fix value of k

. // generate random values for y

. // given x

. generate double y = lambda*((-ln(1-tau))^(1/k))

Although the comments at the end of each line briefly describe what each line is doing, we provide
a more careful description. The first line drops any variables in memory. The second sets the seed
of the random-number generator so that we will always get the same sequence of random uniform
numbers. The third line sets the sample size to 100,000 observations, and the fourth line reports the
change in sample size.

The fifth line substitutes random uniform numbers for τ . This line is the key to the algorithm.
This standard method, known as inverse-probability transforms, for computing random numbers is
discussed by Cameron and Trivedi (2010, 126–127), among others.
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Lines 6–8 generate x, λ, and k per our specified DGP. Lines 9–11 implement (1) using the
previously generated λ, x, and k.

At the end, we have 100,000 observations on y and x, with y coming from the conditional
distribution that we specified above.

Example 7

In the example below, we use qreg to estimate β1 and β0, the parameters from the conditional
quantile function, for the 0.5 quantile from our simulated data.

. qreg y x, quantile(.5)
Iteration 1: WLS sum of weighted deviations = 68975.517

Iteration 1: sum of abs. weighted deviations = 68975.325
Iteration 2: sum of abs. weighted deviations = 68843.958
Iteration 3: sum of abs. weighted deviations = 68629.64
Iteration 4: sum of abs. weighted deviations = 68626.382
Iteration 5: sum of abs. weighted deviations = 68625.659
Iteration 6: sum of abs. weighted deviations = 68625.657
Iteration 7: sum of abs. weighted deviations = 68625.657

Median regression Number of obs = 100000
Raw sum of deviations 73840.51 (about 2.944248)
Min sum of deviations 68625.66 Pseudo R2 = 0.0706

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x 1.228536 .0118791 103.42 0.000 1.205253 1.251819
_cons .8693355 .0225288 38.59 0.000 .8251793 .9134917

In the qreg output, the results for x correspond to the estimate of β1, and the results for cons
correspond to the estimate of β0. The reported estimates are close to their true values of 1.248832
and 0.8325546, which are given in table 1.

The intuition in this example comes from the ability of qreg to recover the true parameters of
our specified DGP. As we increase the number of observations in our sample size, the qreg estimates
will get closer to the true values.
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Example 8

In the example below, we estimate the parameters of the conditional quantile function for the 0.25
quantile and compare them with the true values.

. qreg y x, quantile(.25)
Iteration 1: WLS sum of weighted deviations = 65497.284

Iteration 1: sum of abs. weighted deviations = 65492.359
Iteration 2: sum of abs. weighted deviations = 60139.477
Iteration 3: sum of abs. weighted deviations = 49999.793
Iteration 4: sum of abs. weighted deviations = 49999.479
Iteration 5: sum of abs. weighted deviations = 49999.465
Iteration 6: sum of abs. weighted deviations = 49999.465

.25 Quantile regression Number of obs = 100000
Raw sum of deviations 52014.79 (about 1.857329)
Min sum of deviations 49999.47 Pseudo R2 = 0.0387

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x .7844305 .0107092 73.25 0.000 .7634405 .8054204
_cons .5633285 .0203102 27.74 0.000 .5235209 .6031362

As above, qreg reports the estimates of β1 and β0 in the output table for x and cons, respectively.
The reported estimates are close to their true values of 0.80454 and 0.53636, which are given in
table 1. As expected, the estimates are close to their true values. Also as expected, the estimates for
the 0.25 quantile are smaller than the estimates for the 0.5 quantile.
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Example 9

We finish this section by estimating the parameters of the conditional quantile function for the 0.8
quantile and comparing them with the true values.

. qreg y x, quantile(.8)
Iteration 1: WLS sum of weighted deviations = 66332.299

Iteration 1: sum of abs. weighted deviations = 66332.194
Iteration 2: sum of abs. weighted deviations = 60076.645
Iteration 3: sum of abs. weighted deviations = 52589.193
Iteration 4: sum of abs. weighted deviations = 52340.961
Iteration 5: sum of abs. weighted deviations = 52262.505
Iteration 6: sum of abs. weighted deviations = 52249.305
Iteration 7: sum of abs. weighted deviations = 52245.124
Iteration 8: sum of abs. weighted deviations = 52245.103
Iteration 9: sum of abs. weighted deviations = 52245.081
Iteration 10: sum of abs. weighted deviations = 52245.075
Iteration 11: sum of abs. weighted deviations = 52245.074
Iteration 12: sum of abs. weighted deviations = 52245.073
Iteration 13: sum of abs. weighted deviations = 52245.073
Iteration 14: sum of abs. weighted deviations = 52245.073
Iteration 15: sum of abs. weighted deviations = 52245.073

.8 Quantile regression Number of obs = 100000
Raw sum of deviations 60093.34 (about 4.7121822)
Min sum of deviations 52245.07 Pseudo R2 = 0.1306

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x 1.889702 .0146895 128.64 0.000 1.860911 1.918493
_cons 1.293773 .0278587 46.44 0.000 1.23917 1.348375

As above, qreg reports the estimates of β1 and β0 in the output table for x and cons, respectively.
The reported estimates are close to their true values of 1.902954 and 1.268636, which are given in
table 1. As expected, the estimates are close to their true values. Also as expected, the estimates for
the 0.8 quantile are larger than the estimates for the 0.5 quantile.
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Stored results
qreg stores the following in e():

Scalars
e(N) number of observations
e(df m) model degrees of freedom
e(df r) residual degrees of freedom
e(q) quantile requested
e(q v) value of the quantile
e(sum adev) sum of absolute deviations
e(sum rdev) sum of raw deviations
e(sum w) sum of weights
e(f r) density estimate
e(sparsity) sparsity estimate
e(bwidth) bandwidth
e(kbwidth) kernel bandwidth
e(rank) rank of e(V)
e(convcode) 0 if converged; otherwise, return code for why nonconvergence

Macros
e(cmd) qreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(bwmethod) bandwidth method; hsheather, bofinger, or chamberlain
e(denmethod) density estimation method; fitted, residual, or kernel
e(kernel) kernel function
e(wtype) weight type
e(wexp) weight expression
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample
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iqreg stores the following in e():

Scalars
e(N) number of observations
e(df r) residual degrees of freedom
e(q0) lower quantile requested
e(q1) upper quantile requested
e(reps) number of replications
e(sumrdev0) lower quantile sum of raw deviations
e(sumrdev1) upper quantile sum of raw deviations
e(sumadev0) lower quantile sum of absolute deviations
e(sumadev1) upper quantile sum of absolute deviations
e(rank) rank of e(V)
e(convcode) 0 if converged; otherwise, return code for why nonconvergence

Macros
e(cmd) iqreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(vcetype) title used to label Std. Err.
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

sqreg stores the following in e():

Scalars
e(N) number of observations
e(df r) residual degrees of freedom
e(n q) number of quantiles requested
e(q#) the quantiles requested
e(reps) number of replications
e(sumrdv#) sum of raw deviations for q#
e(sumadv#) sum of absolute deviations for q#
e(rank) rank of e(V)
e(convcode) 0 if converged; otherwise, return code for why nonconvergence

Macros
e(cmd) sqreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(eqnames) names of equations
e(vcetype) title used to label Std. Err.
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample
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bsqreg stores the following in e():

Scalars
e(N) number of observations
e(df r) residual degrees of freedom
e(q) quantile requested
e(q v) value of the quantile
e(reps) number of replications
e(sum adev) sum of absolute deviations
e(sum rdev) sum of raw deviations
e(rank) rank of e(V)
e(convcode) 0 if converged; otherwise, return code for why nonconvergence

Macros
e(cmd) bsqreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
Linear programming formulation of quantile regression
Standard errors when residuals are i.i.d.
Pseudo-R2

Introduction

According to Stuart and Ord (1991, 1084), the method of minimum absolute deviations was first
proposed by Boscovich in 1757 and was later developed by Laplace; Stigler (1986, 39–55) and
Hald (1998, 97–103, 112–116) provide historical details. According to Bloomfield and Steiger (1980),
Harris (1950) later observed that the problem of minimum absolute deviations could be turned into the
linear programming problem that was first implemented by Wagner (1959). Interest has grown in this
method because robust methods and extreme value modeling have become more popular. Statistical
and computational properties of minimum absolute deviation estimators are surveyed by Narula and
Wellington (1982). Cameron and Trivedi (2005), Hao and Naiman (2007), and Wooldridge (2010)
provide excellent introductions to quantile regression methods, while Koenker (2005) gives an in-depth
review of the topic.

Linear programming formulation of quantile regression

Define τ as the quantile to be estimated; the median is τ = 0.5. For each observation i, let εi be
the residual

εi = yi − x′iβ̂τ
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The objective function to be minimized is

cτ (εi) = (τ1 {εi ≥ 0}+ (1− τ)1 {εi < 0}) |εi|
= (τ1 {εi ≥ 0} − (1− τ)1 {εi < 0}) εi
= (τ − 1 {εi < 0}) εi

(2)

where 1{·} is the indicator function. This function is sometimes referred to as the check function
because it resembles a check mark (Wooldridge 2010, 450); the slope of cτ (εi) is τ when εi > 0
and is τ − 1 when εi < 0, but is undefined for εi = 0. Choosing the β̂τ that minimize cτ (εi) is
equivalent to finding the β̂τ that make xβ̂τ best fit the quantiles of the distribution of y conditional
on x.

This minimization problem is set up as a linear programming problem and is solved with linear
programming techniques, as suggested by Armstrong, Frome, and Kung (1979) and described in detail
by Koenker (2005). Here 2n slack variables, un×1 and vn×1, are introduced, where ui ≥ 0, vi ≥ 0,
and ui × vi = 0, reformulating the problem as

min
βτ ,u,v

{τ1′nu + (1− τ)1′nv | y −Xβτ = u− v}

where 1n is a vector of 1s. This is a linear objective function on a polyhedral constraint set with
(
n
k

)
vertices, and our goal is to find the vertex that minimizes (2). Each step in the search is described by
a set of k observations through which the regression plane passes, called the basis. A step is taken
by replacing a point in the basis if the linear objective function can be improved. If this occurs, a
line is printed in the iteration log. The definition of convergence is exact in the sense that no amount
of added iterations could improve the objective function.

A series of weighted least-squares (WLS) regressions is used to identify a set of observations
as a starting basis. The WLS algorithm for τ = 0.5 is taken from Schlossmacher (1973) with a
generalization for 0 < τ < 1 implied from Hunter and Lange (2000).

Standard errors when residuals are i.i.d.
The estimator for the VCE implemented in qreg assumes that the errors of the model are independent

and identically distributed (i.i.d.). When the errors are i.i.d., the large-sample VCE is

cov(βτ ) =
τ(1− τ)

f2Y (ξτ )
{E(xix

′
i)}
−1

(3)

where ξτ = F−1Y (τ) and FY (y) is the distribution function of Y with density fY (y). See
Koenker (2005, 73) for this result. From (3), we see that the regression precision depends on
the inverse of the density function, termed the sparsity function, sτ = 1/fY (ξτ ).

While 1/n
∑n
i=1 xix

′
i estimates E(xix

′
i), estimating the sparsity function is more difficult. qreg

provides several methods to estimate the sparsity function. The different estimators are specified
through the suboptions of vce(iid, denmethod bwidth). The suboption denmethod specifies the
functional form for the sparsity estimator. The default is fitted.

Here we outline the logic underlying the fitted estimator. Because FY (y) is the distribution
function for Y , we have fY (y) = {dFy(y)}/dy, τ = FY (ξτ ), and ξτ = F−1Y (τ). When differen-
tiating the identity FY {F−1Y (τ)} = τ , the sparsity function can be written as sτ = {F−1Y (τ)}/dt.
Numerically, we can approximate the derivative using the centered difference,
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F−1Y (τ)

dt
≈
F−1Y (τ + h)− F−1Y (τ − h)

2h
=
ξτ+h − ξτ−h

2h
= ŝτ (4)

where h is the bandwidth.

The empirical quantile function is computed by first estimating βτ+h and βτ−h, and then computing
F̂−1Y (τ +h) = x′β̂τ+h and F̂−1Y (τ −h) = x′β̂τ−h, where x is the sample mean of the independent
variables x. These quantities are then substituted into (4).

Alternatively, as the option suggests, vce(iid, residual) specifies that qreg use the empirical
quantile function of the residuals to estimate the sparsity. Here we substitute Fε, the distribution of
the residuals, for FY , which only differ by their first moments.

The k residuals associated with the linear programming basis will be zero, where k is the number
of regression coefficients. These zero residuals are removed before computing the τ + h and τ − h
quantiles, ε(τ+h) = F̂−1ε (τ +h) and ε(τ−h) = F̂−1ε (τ −h). The F̂−1ε estimates are then substituted
for F−1Y in (4).

Each of the estimators for the sparsity function depends on a bandwidth. The vce() suboption bwidth
specifies the bandwidth method to use. The three bandwidth options and their citations are hsheather
(Hall and Sheather 1988), bofinger (Bofinger 1975), and chamberlain (Chamberlain 1994).

Their formulas are

hs = n−1/3Φ−1
(

1− α

2

)2/3 [3

2
× φ{Φ−1(τ)}4

2Φ−1(τ)2 + 1

]1/3

hb = n−1/5
[ 9

2φ{2Φ−1(τ)}4

{2Φ−1(τ)2 + 1}2

]1/5

hc = Φ−1
(

1− α

2

)√τ(1− τ)

n

where hs is the Hall–Sheather bandwidth, hb is the Bofinger bandwidth, hc is the Chamberlain
bandwidth, Φ() and φ() are the standard normal distribution and density functions, n is the sample
size, and 100(1−α) is the confidence level set by the level() option. Koenker (2005) discusses the
derivation of the Hall–Sheather and the Bofinger bandwidth formulas. You should avoid modifying
the confidence level when replaying estimates that use the Hall–Sheather or Chamberlain bandwidths
because these methods use the confidence level to estimate the coefficient standard errors.

Finally, the vce() suboption kernel(kernel) specifies that qreg use one of several kernel-density
estimators to estimate the sparsity function. kernel allows you to choose which kernel function to
use, where the default is the Epanechnikov kernel. See [R] kdensity for the functional form of the
eight kernels.

The kernel bandwidth is computed using an adaptive estimate of scale

hk = min
(
σ̂,

rq
1.34

)
×
{

Φ−1(τ + h)− Φ−1(τ − h)
}

where h is one of hs, hb, or hc; rq is the interquartile range; and σ̂ is the standard deviation of y;
see Silverman (1992, 47) and Koenker (2005, 81) for discussions. Let f̂ε(εi) be the kernel density
estimate for the ith residual, and then the kernel estimator for the sparsity function is

ŝτ =
nhk∑n

i=1 f̂ε(εi)

http://www.stata.com/manuals13/rkdensity.pdf#rkdensity
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Finally, substituting your choice of sparsity estimate into (3) results in the i.i.d. variance–covariance
matrix

Vn = ŝ2ττ(1− τ)

(
n∑
i=1

xix
′
i

)−1

Pseudo-R2

The pseudo-R2 is calculated as

1− sum of weighted deviations about estimated quantile
sum of weighted deviations about raw quantile

This is based on the likelihood for a double-exponential distribution evi|εi|, where vi are multipliers

vi =

{
2τ if εi > 0
2(1− τ) otherwise

Minimizing the objective function (2) with respect to βτ also minimizes
∑
i |εi|vi, the sum of

weighted least absolute deviations. For example, for the 50th percentile vi = 1, for all i, and we
have median regression. If we want to estimate the 75th percentile, we weight the negative residuals
by 0.50 and the positive residuals by 1.50. It can be shown that the criterion is minimized when 75%
of the residuals are negative.
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