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Syntax

oneway response var factor var
[

if
] [

in
] [

weight
] [

, options
]

options Description

Main

bonferroni Bonferroni multiple-comparison test
scheffe Scheffé multiple-comparison test
sidak Šidák multiple-comparison test
tabulate produce summary table[
no
]
means include or suppress means; default is means[

no
]
standard include or suppress standard deviations; default is standard[

no
]
freq include or suppress frequencies; default is freq[

no
]
obs include or suppress number of obs; default is obs if data are weighted

noanova suppress the ANOVA table
nolabel show numeric codes, not labels
wrap do not break wide tables
missing treat missing values as categories

by is allowed; see [D] by.
aweights and fweights are allowed; see [U] 11.1.6 weight.

Menu
Statistics > Linear models and related > ANOVA/MANOVA > One-way ANOVA

Description
The oneway command reports one-way analysis-of-variance (ANOVA) models and performs multiple-

comparison tests.

If you wish to fit more complicated ANOVA layouts or wish to fit analysis-of-covariance (ANCOVA)
models, see [R] anova.

See [D] encode for examples of fitting ANOVA models on string variables.

See [R] loneway for an alternative oneway command with slightly different features.
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Options

� � �
Main �

bonferroni reports the results of a Bonferroni multiple-comparison test.

scheffe reports the results of a Scheffé multiple-comparison test.

sidak reports the results of a Šidák multiple-comparison test.

tabulate produces a table of summary statistics of the response var by levels of the factor var.
The table includes the mean, standard deviation, frequency, and, if the data are weighted, the
number of observations. Individual elements of the table may be included or suppressed by using
the [no]means, [no]standard, [no]freq, and [no]obs options. For example, typing

oneway response factor, tabulate means standard

produces a summary table that contains only the means and standard deviations. You could achieve
the same result by typing

oneway response factor, tabulate nofreq

[no]means includes or suppresses only the means from the table produced by the tabulate option.
See tabulate above.

[no]standard includes or suppresses only the standard deviations from the table produced by the
tabulate option. See tabulate above.

[no]freq includes or suppresses only the frequencies from the table produced by the tabulate
option. See tabulate above.

[no]obs includes or suppresses only the reported number of observations from the table produced by
the tabulate option. If the data are not weighted, only the frequency is reported. If the data are
weighted, the frequency refers to the sum of the weights. See tabulate above.

noanova suppresses the display of the ANOVA table.

nolabel causes the numeric codes to be displayed rather than the value labels in the ANOVA and
multiple-comparison test tables.

wrap requests that Stata not break up wide tables to make them more readable.

missing requests that missing values of factor var be treated as a category rather than as observations
to be omitted from the analysis.

Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
Obtaining observed means
Multiple-comparison tests
Weighted data
Video example

Introduction

The oneway command reports one-way ANOVA models. To perform a one-way layout of a variable
called endog on exog, type oneway endog exog.

http://stata.com
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Example 1

We run an experiment varying the amount of fertilizer used in growing apple trees. We test four
concentrations, using each concentration in three groves of 12 trees each. Later in the year, we
measure the average weight of the fruit.

If all had gone well, we would have had 3 observations on the average weight for each of the
four concentrations. Instead, two of the groves were mistakenly leveled by a confused man on a large
bulldozer. We are left with the following dataset:

. use http://www.stata-press.com/data/r13/apple
(Apple trees)

. describe

Contains data from http://www.stata-press.com/data/r13/apple.dta
obs: 10 Apple trees

vars: 2 16 Jan 2013 11:23
size: 100

storage display value
variable name type format label variable label

treatment int %8.0g Fertilizer
weight double %10.0g Average weight in grams

Sorted by:

. list, abbreviate(10)

treatment weight

1. 1 117.5
2. 1 113.8
3. 1 104.4
4. 2 48.9
5. 2 50.4

6. 2 58.9
7. 3 70.4
8. 3 86.9
9. 4 87.7

10. 4 67.3

To obtain the one-way ANOVA results, we type

. oneway weight treatment

Analysis of Variance
Source SS df MS F Prob > F

Between groups 5295.54433 3 1765.18144 21.46 0.0013
Within groups 493.591667 6 82.2652778

Total 5789.136 9 643.237333

Bartlett’s test for equal variances: chi2(3) = 1.3900 Prob>chi2 = 0.708

We find significant (at better than the 1% level) differences among the four concentrations.
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Technical note
Rather than using the oneway command, we could have performed this analysis by using anova.

Example 1 in [R] anova repeats this same analysis. You may wish to compare the output.

You will find the oneway command quicker than the anova command, and, as you will learn,
oneway allows you to perform multiple-comparison tests. On the other hand, anova will let you
generate predictions, examine the covariance matrix of the estimators, and perform more general
hypothesis tests.

Technical note
Although the output is a usual ANOVA table, let’s run through it anyway. The between-group

sum of squares for the model is 5295.5 with 3 degrees of freedom, resulting in a mean square of
5295.5/3 ≈ 1765.2. The corresponding F statistic is 21.46 and has a significance level of 0.0013.
Thus the model appears to be significant at the 0.13% level.

The second line summarizes the within-group (residual) variation. The within-group sum of squares
is 493.59 with 6 degrees of freedom, resulting in a mean squared error of 82.27.

The between- and residual-group variations sum to the total sum of squares (TSS), which is reported
as 5789.1 in the last line of the table. This is the TSS of weight after removal of the mean. Similarly,
the between plus residual degrees of freedom sum to the total degrees of freedom, 9. Remember that
there are 10 observations. Subtracting 1 for the mean, we are left with 9 total degrees of freedom.

At the bottom of the table, Bartlett’s test for equal variances is reported. The value of the statistic
is 1.39. The corresponding significance level (χ2 with 3 degrees of freedom) is 0.708, so we cannot
reject the assumption that the variances are homogeneous.

Obtaining observed means

Example 2

We typed oneway weight treatment to obtain an ANOVA table of weight of fruit by fertilizer
concentration. Although we obtained the table, we obtained no information on which fertilizer seems
to work the best. If we add the tabulate option, we obtain that additional information:

. oneway weight treatment, tabulate

Summary of Average weight in grams
Fertilizer Mean Std. Dev. Freq.

1 111.9 6.7535176 3
2 52.733333 5.3928966 3
3 78.65 11.667262 2
4 77.5 14.424978 2

Total 80.62 25.362124 10

Analysis of Variance
Source SS df MS F Prob > F

Between groups 5295.54433 3 1765.18144 21.46 0.0013
Within groups 493.591667 6 82.2652778

Total 5789.136 9 643.237333

Bartlett’s test for equal variances: chi2(3) = 1.3900 Prob>chi2 = 0.708

http://www.stata.com/manuals13/ranova.pdf#ranovaRemarksandexamplesex_onewayanova
http://www.stata.com/manuals13/ranova.pdf#ranova
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We find that the average weight was largest when we used fertilizer concentration 1.

Multiple-comparison tests

Example 3: Bonferroni multiple-comparison test

oneway can also perform multiple-comparison tests using either Bonferroni, Scheffé, or Šidák
normalizations. For instance, to obtain the Bonferroni multiple-comparison test, we specify the
bonferroni option:

. oneway weight treatment, bonferroni

Analysis of Variance
Source SS df MS F Prob > F

Between groups 5295.54433 3 1765.18144 21.46 0.0013
Within groups 493.591667 6 82.2652778

Total 5789.136 9 643.237333

Bartlett’s test for equal variances: chi2(3) = 1.3900 Prob>chi2 = 0.708

Comparison of Average weight in grams by Fertilizer
(Bonferroni)

Row Mean-
Col Mean 1 2 3

2 -59.1667
0.001

3 -33.25 25.9167
0.042 0.122

4 -34.4 24.7667 -1.15
0.036 0.146 1.000

The results of the Bonferroni test are presented as a matrix. The first entry, −59.17, represents the
difference between fertilizer concentrations 2 and 1 (labeled “Row Mean - Col Mean” in the upper stub
of the table). Remember that in the previous example we requested the tabulate option. Looking
back, we find that the means of concentrations 1 and 2 are 111.90 and 52.73, respectively. Thus
52.73 − 111.90 = −59.17.

Underneath that number is reported “0.001”. This is the Bonferroni-adjusted significance of the
difference. The difference is significant at the 0.1% level. Looking down the column, we see that
concentration 3 is also worse than concentration 1 (4.2% level), as is concentration 4 (3.6% level).

On the basis of this evidence, we would use concentration 1 if we grew apple trees.

Example 4: Scheffé multiple-comparison test

We can just as easily obtain the Scheffé-adjusted significance levels. Rather than specifying the
bonferroni option, we specify the scheffe option.
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We will also add the noanova option to prevent Stata from redisplaying the ANOVA table:

. oneway weight treatment, noanova scheffe

Comparison of Average weight in grams by Fertilizer
(Scheffe)

Row Mean-
Col Mean 1 2 3

2 -59.1667
0.001

3 -33.25 25.9167
0.039 0.101

4 -34.4 24.7667 -1.15
0.034 0.118 0.999

The differences are the same as those we obtained in the Bonferroni output, but the significance levels
are not. According to the Bonferroni-adjusted numbers, the significance of the difference between
fertilizer concentrations 1 and 3 is 4.2%. The Scheffé-adjusted significance level is 3.9%.

We will leave it to you to decide which results are more accurate.

Example 5: Šidák multiple-comparison test

Let’s conclude this example by obtaining the Šidák-adjusted multiple-comparison tests. We do this
to illustrate Stata’s capabilities to calculate these results, because searching across adjustment methods
until you find the results you want is not a valid technique for obtaining significance levels.

. oneway weight treatment, noanova sidak

Comparison of Average weight in grams by Fertilizer
(Sidak)

Row Mean-
Col Mean 1 2 3

2 -59.1667
0.001

3 -33.25 25.9167
0.041 0.116

4 -34.4 24.7667 -1.15
0.035 0.137 1.000

We find results that are similar to the Bonferroni-adjusted numbers.

� �
Henry Scheffé (1907–1977) was born in New York. He studied mathematics at the University of
Wisconsin, gaining a doctorate with a dissertation on differential equations. He taught mathematics
at Wisconsin, Oregon State University, and Reed College, but his interests changed to statistics and
he joined Wilks at Princeton. After periods at Syracuse, UCLA, and Columbia, Scheffé settled in
Berkeley from 1953. His research increasingly focused on linear models and particularly ANOVA,
on which he produced a celebrated monograph. His death was the result of a bicycle accident.� �
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Weighted data

Example 6

oneway can work with both weighted and unweighted data. Let’s assume that we wish to perform
a one-way layout of the death rate on the four census regions of the United States using state data.
Our data contain three variables, drate (the death rate), region (the region), and pop (the population
of the state).

To fit the model, we type oneway drate region [weight=pop], although we typically abbreviate
weight as w. We will also add the tabulate option to demonstrate how the table of summary statistics
differs for weighted data:

. use http://www.stata-press.com/data/r13/census8
(1980 Census data by state)

. oneway drate region [w=pop], tabulate
(analytic weights assumed)

Census Summary of Death Rate
region Mean Std. Dev. Freq. Obs.

NE 97.15 5.82 49135283 9
N Cntrl 88.10 5.58 58865670 12

South 87.05 10.40 74734029 16
West 75.65 8.23 43172490 13

Total 87.34 10.43 2.259e+08 50

Analysis of Variance
Source SS df MS F Prob > F

Between groups 2360.92281 3 786.974272 12.17 0.0000
Within groups 2974.09635 46 64.6542685

Total 5335.01916 49 108.877942

Bartlett’s test for equal variances: chi2(3) = 5.4971 Prob>chi2 = 0.139

When the data are weighted, the summary table has four columns rather than three. The column
labeled “Freq.” reports the sum of the weights. The overall frequency is 2.259 × 108, meaning that
there are approximately 226 million people in the United States.

The ANOVA table is appropriately weighted. Also see [U] 11.1.6 weight.

Video example

One-way ANOVA in Stata

http://www.stata.com/manuals13/u11.pdf#u11.1.6weight
http://www.youtube.com/watch?v=XEFGGkFRdD4
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Stored results
oneway stores the following in r():

Scalars
r(N) number of observations r(df m) between-group degrees of freedom
r(F) F statistic r(rss) within-group sum of squares
r(df r) within-group degrees of freedom r(chi2bart) Bartlett’s χ2

r(mss) between-group sum of squares r(df bart) Bartlett’s degrees of freedom

Methods and formulas
Methods and formulas are presented under the following headings:

One-way analysis of variance
Bartlett’s test
Multiple-comparison tests

One-way analysis of variance

The model of one-way ANOVA is

yij = µ+ αi + εij

for levels i = 1, . . . , k and observations j = 1, . . . , ni. Define yi as the (weighted) mean of yij over
j and y as the overall (weighted) mean of yij . Define wij as the weight associated with yij , which
is 1 if the data are unweighted. wij is normalized to sum to n =

∑
i ni if aweights are used and

is otherwise not normalized. wi refers to
∑
j wij , and w refers to

∑
i wi.

The between-group sum of squares is then

S1 =
∑
i

wi(yi − y)2

The TSS is
S =

∑
i

∑
j

wij(yij − y)2

The within-group sum of squares is given by Se = S − S1.

The between-group mean square is s21 = S1/(k − 1), and the within-group mean square is
s2e = Se/(w − k). The test statistic is F = s21/s

2
e. See, for instance, Snedecor and Cochran (1989).

Bartlett’s test
Bartlett’s test assumes that you have m independent, normal, random samples and tests the

hypothesis σ2
1 = σ2

2 = · · · = σ2
m. The test statistic, M , is defined as

M =
(T −m) lnσ̂2 −

∑
(Ti − 1) lnσ̂2

i

1 + 1
3(m−1)

{(∑
1

Ti−1

)
− 1

T−m

}
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where there are T overall observations, Ti observations in the ith group, and

(Ti − 1)σ̂2
i =

Ti∑
j=1

(yij − yi)
2

(T −m)σ̂2 =

m∑
i=1

(Ti − 1)σ̂2
i

An approximate test of the homogeneity of variance is based on the statistic M with critical values
obtained from the χ2 distribution of m − 1 degrees of freedom. See Bartlett (1937) or Draper and
Smith (1998, 56–57).

Multiple-comparison tests

Let’s begin by reviewing the logic behind these adjustments. The “standard” t statistic for the
comparison of two means is

t =
yi − yj

s
√

1
ni

+ 1
nj

where s is the overall standard deviation, yi is the measured average of y in group i, and ni is the
number of observations in the group. We perform hypothesis tests by calculating this t statistic. We
simultaneously choose a critical level, α, and look up the t statistic corresponding to that level in
a table. We reject the hypothesis if our calculated t exceeds the value we looked up. Alternatively,
because we have a computer at our disposal, we calculate the significance level e corresponding to
our calculated t statistic, and if e < α, we reject the hypothesis.

This logic works well when we are performing one test. Now consider what happens when we
perform several separate tests, say, n of them. Let’s assume, just for discussion, that we set α equal to
0.05 and that we will perform six tests. For each test, we have a 0.05 probability of falsely rejecting
the equality-of-means hypothesis. Overall, then, our chances of falsely rejecting at least one of the
hypotheses is 1 − (1 − 0.05)6 ≈ 0.26 if the tests are independent.

The idea behind multiple-comparison tests is to control for the fact that we will perform multiple
tests and to reduce our overall chances of falsely rejecting each hypothesis to α rather than letting
our chances increase with each additional test. (See Miller [1981] and Hochberg and Tamhane [1987]
for rather advanced texts on multiple-comparison procedures.)

The Bonferroni adjustment (see Miller [1981]; also see van Belle et al. [2004, 534–537]) does
this by (falsely but approximately) asserting that the critical level we should use, a, is the true critical
level, α, divided by the number of tests, n; that is, a = α/n. For instance, if we are going to perform
six tests, each at the 0.05 significance level, we want to adopt a critical level of 0.05/6 ≈ 0.00833.

We can just as easily apply this logic to e, the significance level associated with our t statistic, as
to our critical level α. If a comparison has a calculated significance of e, then its “real” significance,
adjusted for the fact of n comparisons, is n × e. If a comparison has a significance level of, say,
0.012, and we perform six tests, then its “real” significance is 0.072. If we adopt a critical level of
0.05, we cannot reject the hypothesis. If we adopt a critical level of 0.10, we can reject it.

Of course, this calculation can go above 1, but that just means that there is no α < 1 for which
we could reject the hypothesis. (This situation arises because of the crude nature of the Bonferroni
adjustment.) Stata handles this case by simply calling the significance level 1. Thus the formula for
the Bonferroni significance level is

eb = min(1, en)
where n = k(k − 1)/2 is the number of comparisons.
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The Šidák adjustment (Šidák [1967]; also see Winer, Brown, and Michels [1991, 165–166]) is
slightly different and provides a tighter bound. It starts with the assertion that

a = 1− (1− α)1/n

Turning this formula around and substituting calculated significance levels, we obtain

es = min
{
1, 1− (1− e)n

}
For example, if the calculated significance is 0.012 and we perform six tests, the “real” significance
is approximately 0.07.

The Scheffé test (Scheffé [1953, 1959]; also see Kuehl [2000, 97–98]) differs in derivation, but
it attacks the same problem. Let there be k means for which we want to make all the pairwise tests.
Two means are declared significantly different if

t ≥
√
(k − 1)F (α; k − 1, ν)

where F (α; k − 1, ν) is the α-critical value of the F distribution with k − 1 numerator and ν
denominator degrees of freedom. Scheffé’s test has the nicety that it never declares a contrast
significant if the overall F test is not significant.

Turning the test around, Stata calculates a significance level

ê = F

(
t2

k − 1
, k − 1, ν

)
For instance, you have a calculated t statistic of 4.0 with 50 degrees of freedom. The simple t test says
that the significance level is 0.00021. The F test equivalent, 16 with 1 and 50 degrees of freedom,
says the same. If you are comparing three means, however, you calculate an F test of 8.0 with 2 and
50 degrees of freedom, which says that the significance level is 0.0010.
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Also see
[R] anova — Analysis of variance and covariance

[R] loneway — Large one-way ANOVA, random effects, and reliability

[PSS] power oneway — Power analysis for one-way analysis of variance
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