lnskew0 — Find zero-skewness log or Box–Cox transform

Syntax

Zero-skewness log transform

```
lnskew0 newvar = exp [ if ] [ in ] [ , options ]
```

Zero-skewness Box–Cox transform

```
bcskew0 newvar = exp [ if ] [ in ] [ , options ]
```

Options

<table>
<thead>
<tr>
<th>Main</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>delta(#)</code></td>
<td>increment for derivative of skewness function; default is delta(0.02) for lnskew0 and delta(0.01) for bcskew0</td>
</tr>
<tr>
<td><code>zero(#)</code></td>
<td>value for determining convergence; default is zero(0.001)</td>
</tr>
<tr>
<td><code>level(#)</code></td>
<td>set confidence level; default is level(95)</td>
</tr>
</tbody>
</table>

Menu

lnskew0

Data > Create or change data > Other variable-creation commands > Zero-skewness log transform

bcskew0

Data > Create or change data > Other variable-creation commands > Box-Cox transform

Description

`lnskew0` creates `newvar = ln(±exp − k)`, choosing `k` and the sign of `exp` so that the skewness of `newvar` is zero.

`bcskew0` creates `newvar = (exp^λ − 1)/λ`, the Box–Cox power transformation (Box and Cox 1964), choosing `λ` so that the skewness of `newvar` is zero. `exp` must be strictly positive. Also see [R] boxcox for maximum likelihood estimation of `λ`.

Options

- `delta(#)` specifies the increment used for calculating the derivative of the skewness function with respect to `k` (lnskew0) or `λ` (bcskew0). The default values are 0.02 for lnskew0 and 0.01 for bcskew0.
zero(#) specifies a value for skewness to determine convergence that is small enough to be considered zero and is, by default, 0.001.

level(#) specifies the confidence level for the confidence interval for \(k \) (lnskew0) or \(\lambda \) (bcskew0). The confidence interval is calculated only if level() is specified. # is specified as an integer; 95 means 95% confidence intervals. The level() option is honored only if the number of observations exceeds 7.

Remarks and examples

Example 1: lnskew0

Using our automobile dataset (see \texttt{[U] 1.2.2 Example datasets}), we want to generate a new variable equal to ln(mpg – \(k \)) to be approximately normally distributed. mpg records the miles per gallon for each of our cars. One feature of the normal distribution is that it has skewness 0.

```
. use http://www.stata-press.com/data/r13/auto
    (1978 Automobile Data)
. lnskew0 lnmpg = mpg
```

<table>
<thead>
<tr>
<th>Transform</th>
<th>k</th>
<th>[95% Conf. Interval]</th>
<th>Skewness</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(mpg-k)</td>
<td>5.383659</td>
<td>(not calculated)</td>
<td>-7.05e-06</td>
</tr>
</tbody>
</table>

This created the new variable \(\text{lnmpg} = \ln(\text{mpg} - 5.384) \):

```
. describe lnmpg
  storage  display  value
  variable name  type  format  label  variable label
  lnmpg  float  %9.0g  ln(mpg-5.383659)
```

Because we did not specify the level() option, no confidence interval was calculated. At the outset, we could have typed

```
. use http://www.stata-press.com/data/r13/auto, clear
    (Automobile Data)
. lnskew0 lnmpg = mpg, level(95)
```

<table>
<thead>
<tr>
<th>Transform</th>
<th>k</th>
<th>[95% Conf. Interval]</th>
<th>Skewness</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(mpg-k)</td>
<td>5.383659</td>
<td>-17.12339 9.892416</td>
<td>-7.05e-06</td>
</tr>
</tbody>
</table>

The confidence interval is calculated under the assumption that \(\ln(\text{mpg} - k) \) really does have a normal distribution. It would be perfectly reasonable to use lnskew0, even if we did not believe that the transformed variable would have a normal distribution—if we literally wanted the zero-skewness transform—although, then the confidence interval would be an approximation of unknown quality to the true confidence interval. If we now wanted to test the believability of the confidence interval, we could also test our new variable \(\text{lnmpg} \) by using swilk (see \texttt{[R] swilk}) with the lnnormal option.

Technical note

lnskew0 and bcskew0 report the resulting skewness of the variable merely to reassure you of the accuracy of its results. In our example above, lnskew0 found \(k \) such that the resulting skewness was \(-7 \times 10^{-6}\), a number close enough to zero for all practical purposes. If we wanted to make it even smaller, we could specify the zero() option. Typing lnskew0 new=mpg, zero(1e-8) changes the estimated \(k \) to 5.383552 from 5.383659 and reduces the calculated skewness to \(-2 \times 10^{-11}\).
When you request a confidence interval, `lnskew0` may report the lower confidence interval as ‘. .’, which should be taken as indicating the lower confidence limit \(k_L = -\infty \). (This cannot happen with `bcskew0`.)

As an example, consider a sample of size \(n \) on \(x \) and assume that the skewness of \(x \) is positive, but not significantly so, at the desired significance level—say, 5%. Then no matter how large and negative you make \(k_L \), there is no value extreme enough to make the skewness of \(\ln(x - k_L) \) equal the corresponding percentile (97.5 for a 95% confidence interval) of the distribution of skewness in a normal distribution of the same sample size. You cannot do this because the distribution of \(\ln(x - k_L) \) tends to that of \(x \)—apart from location and scale shift—as \(x \to \infty \). This “problem” never applies to the upper confidence limit, \(k_U \), because the skewness of \(\ln(x - k_U) \) tends to \(-\infty\) as \(k \) tends upward to the minimum value of \(x \).

\[\text{Example 2: bcskew0} \]

In example 1, using `lnskew0` with a variable such as \(\text{mpg} \) is probably undesirable. \(\text{mpg} \) has a natural zero, and we are shifting that zero arbitrarily. On the other hand, use of `lnskew0` with a variable such as temperature measured in Fahrenheit or Celsius would be more appropriate, as the zero is indeed arbitrary.

For a variable like \(\text{mpg} \), it makes more sense to use the Box–Cox power transform (Box and Cox 1964):

\[y(\lambda) = \frac{y^\lambda - 1}{\lambda} \]

\(\lambda \) is free to take on any value, but \(y(1) = y - 1 \), \(y(0) = \ln(y) \), and \(y(-1) = 1 - 1/y \).

`bcskew0` works like `lnskew0`:

\[
\begin{array}{lcccc}
\text{Transform} & L & [95\% \text{ Conf. Interval}] & \text{Skewness} \\
{\text{mpg}^L - 1}/L & -.3673283 & -1.212752 & .4339645 & .0001898 \\
\end{array}
\]

The 95% confidence interval includes \(\lambda = -1 \) (\(\lambda \) is labeled \(L \) in the output), which has a rather more pleasing interpretation—gallons per mile—than \((\text{mpg}^{-0.3673} - 1)/(-0.3673) \). The confidence interval, however, is calculated assuming that the power transformed variable is normally distributed. It makes perfect sense to use `bcskew0`, even when you do not believe that the transformed variable will be normally distributed, but then the confidence interval is an approximation of unknown quality. If you believe that the transformed data are normally distributed, you can alternatively use `boxcox` to estimate \(\lambda \); see \(\texttt{[R] boxcox} \).

\[\text{Stored results} \]

`lnskew0` and `bcskew0` store the following in \(r() \):

Scalars

- \(r(gamma) \) \(k \) (\(\text{lnskew0} \))
- \(r(lambda) \) \(\lambda \) (\(\text{bcskew0} \))
- \(r(lb) \) lower bound of confidence interval
- \(r(ub) \) upper bound of confidence interval
- \(r(skewness) \) resulting skewness of transformed variable
Methods and formulas

Skewness is as calculated by `summarize`; see [R] summarize. Newton’s method with numeric, uncentered derivatives is used to estimate k (lnskew0) and λ (bcskew0). For lnskew0, the initial value is chosen so that the minimum of $x - k$ is 1, and thus $\ln(x - k)$ is 0. bcskew0 starts with $\lambda = 1$.

Acknowledgment

lnskew0 and bcskew0 were written by Patrick Royston of the MRC Clinical Trials Unit, London, and coauthor of the Stata Press book *Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model*.

Reference

Also see

[R] boxcox — Box–Cox regression models
[R] ladder — Ladder of powers
[R] swilk — Shapiro–Wilk and Shapiro–Francia tests for normality