stata.com

Title

glogit - Logit and probit regression for grouped data

Syntax Menu Description Options for blogit and bprobit Options for glogit and gprobit Remarks and examples Stored results Methods and formulas References Also see Syntax Logistic regression for grouped data $blogit pos_var pop_var [indepvars] [if] [in] [, blogit_options]$ Probit regression for grouped data bprobit pos_var pop_var [indepvars] [if] [in] [, bprobit_options] Weighted least-squares logistic regression for grouped data glogit pos_var pop_var [indepvars] [if] [in] [, glogit_options] Weighted least-squares probit regression for grouped data gprobit pos_var pop_var [indepvars] [if] [in] [, gprobit_options] blogit_options Description Model suppress constant term noconstant asis retain perfect predictor variables offset(varname) include varname in model with coefficient constrained to 1 constraints(*constraints*) apply specified linear constraints collinear keep collinear variables SE/Robust vce(vcetype) *vcetype* may be oim, robust, cluster *clustvar*, bootstrap, or jackknife Reporting level(#) set confidence level; default is level(95) report odds ratios or do not display constraints nocnsreport control column formats, row spacing, line width, display of omitted display_options variables and base and empty cells, and factor-variable labeling

Maximization	
maximize_options	control the maximization process; seldom used
<u>nocoe</u> f	do not display coefficient table; seldom used
<u>coefl</u> egend	display legend instead of statistics

2 glogit — Logit and probit regression for grouped data

bprobit_options	Description
Model	
<u>nocon</u> stant	suppress constant term
asis	retain perfect predictor variables
offset(<i>varname</i>)	include varname in model with coefficient constrained to 1
constraints(<i>constraints</i>)	apply specified linear constraints
<u>col</u> linear	keep collinear variables
SE/Robust	
vce(vcetype)	<i>vcetype</i> may be oim, <u>r</u> obust, <u>cl</u> uster <i>clustvar</i> , <u>boot</u> strap, or <u>jack</u> knife
Reporting	
<u>l</u> evel(#)	set confidence level; default is level(95)
nocnsreport	do not display constraints
display_options	control column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling
Maximization	
maximize_options	control the maximization process; seldom used
<u>nocoe</u> f	do not display coefficient table; seldom used
<u>coefl</u> egend	display legend instead of statistics
glogit_options	Description
SE	
vce(<i>vcetype</i>)	<i>vcetype</i> may be ols, <u>boot</u> strap, or <u>jackknife</u>
Reporting	
<u>l</u> evel(#)	set confidence level; default is level(95)
or	report odds ratios
display_options	control column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling
<u>coefl</u> egend	display legend instead of statistics
gprobit_options	Description
SE	
vce(vcetype)	vcetype may be ols, bootstrap, or jackknife
Reporting	
<u>l</u> evel(#)	set confidence level; default is level(95)
display_options	control column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling
<u>coefl</u> egend	display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, by, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands. fp is allowed with blogit and bprobit.

nocoef and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

blogit

Statistics > Binary outcomes > Grouped data > Logit regression for grouped data

bprobit

Statistics > Binary outcomes > Grouped data > Probit regression for grouped data

glogit

Statistics > Binary outcomes > Grouped data > Weighted least-squares logit regression

gprobit

Statistics > Binary outcomes > Grouped data > Weighted least-squares probit regression

Description

blogit and bprobit produce maximum-likelihood logit and probit estimates on grouped ("blocked") data; glogit and gprobit produce weighted least-squares estimates. In the syntax diagrams above, *pos_var* and *pop_var* refer to variables containing the total number of positive responses and the total population.

See [R] logistic for a list of related estimation commands.

Options for blogit and bprobit

_ Model

noconstant; see [R] estimation options.

asis forces retention of perfect predictor variables and their associated perfectly predicted observations and may produce instabilities in maximization; see [R] probit.

offset(varname), constraints(constraints), collinear; see [R] estimation options.

SE/Robust

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce_option.

Reporting

4 glogit — Logit and probit regression for grouped data

or (blogit only) reports the estimated coefficients transformed to odds ratios, that is, e^b rather than b. Standard errors and confidence intervals are similarly transformed. This option affects how results are displayed, not how they are estimated. or may be specified at estimation or when replaying previously estimated results.

nocnsreport; see [R] estimation options.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch; see [R] estimation options.

Maximization

maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. These options are seldom used.

The following options are available with blogit and bprobit but are not shown in the dialog box:

nocoef specifies that the coefficient table not be displayed. This option is sometimes used by program writers but is useless interactively.

coeflegend; see [R] estimation options.

Options for glogit and gprobit

SE

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (ols) and that use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce_option.

vce(ols), the default, uses the standard variance estimator for ordinary least-squares regression.

Reporting

level(#); see [R] estimation options.

- or (glogit only) reports the estimated coefficients transformed to odds ratios, that is, e^b rather than b. Standard errors and confidence intervals are similarly transformed. This option affects how results are displayed, not how they are estimated. or may be specified at estimation or when replaying previously estimated results.
- display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch; see [R] estimation options.

The following option is available with glogit and gprobit but is not shown in the dialog box: coeflegend; see [R] estimation options.

Remarks and examples

stata.com

Remarks are presented under the following headings:

Maximum likelihood estimates Weighted least-squares estimates

Maximum likelihood estimates

blogit produces the same results as logit and logistic, and bprobit produces the same results as probit, but the "blocked" commands accept data in a slightly different "shape". Consider the following two datasets:

```
. use http://www.stata-press.com/data/r13/xmpl1
```

. list, sepby(agecat)

	agecat	exposed	died	pop
1.	0	0	0	115
2.	0	0	1	5
з.	0	1	0	98
4.	0	1	1	8
5.	1	0	0	69
6.	1	0	1	16
7.	1	1	0	76
8.	1	1	1	22

. use http://www.stata-press.com/data/r13/xmpl2

. list

	agecat	exposed	deaths	pop
1.	0	0	5	120
2.	0	1	8	106
з.	1	0	16	85
4.	1	1	22	98

These two datasets contain the same information; observations 1 and 2 of xmpl1 correspond to observation 1 of xmpl2, observations 3 and 4 of xmpl1 correspond to observation 2 of xmpl2, and so on.

The first observation of xmpl1 says that for agecat==0 and exposed==0, 115 subjects did not die (died==0). The second observation says that for the same agecat and exposed groups, five subjects did die (died==1). In xmpl2, the first observation says that there were five deaths of a population of 120 in agecat==0 and exposed==0. These are two different ways of saying the same thing. Both datasets are transcriptions from the following table, reprinted in Rothman, Greenland, and Lash (2008, 260), for age-specific deaths from all causes for tolbutamide and placebo treatment groups (University Group Diabetes Program 1970):

	Age th	rough 54	Age 55 and abov		
	Tolbutamide	Placebo	Tolbutamide	Placebo	
Dead	8	5	22	16	
Surviving	98	115	76	79	

The data in xmpl1 are said to be "fully relational", which is computer jargon meaning that each observation corresponds to one cell of the table. Stata typically prefers data in this format. The second form of storing these data in xmpl2 is said to be "folded", which is computer jargon for something less than fully relational.

blogit and bprobit deal with "folded" data and produce the same results that logit and probit would have if the data had been stored in the "fully relational" representation.

Example 1

. .

For the tolbutamide data, the fully relational representation is preferred. We could then use logistic, logit, and any of the epidemiological table commands; see [R] logistic, [R] logit, and [ST] epitab. Nevertheless, there are occasions when the folded representation seems more natural. With blogit and bprobit, we avoid the tedium of having to unfold the data:

. use http://w	ww.stata-pres	ss.com/data/	r13/xmpl2	2			
. blogit death	ns pop agecat	exposed, or					
Logistic regre Log likelihood	ession for gro 1 = -142.6212	ouped data		Numbe LR ch Prob Pseud	r of obs i2(2) > chi2 o R2	= = = =	409 22.47 0.0000 0.0730
_outcome	Odds Ratio	Std. Err.	z	P> z	[95% C	Conf.	Interval]
agecat exposed _cons	4.216299 1.404674 .0513818	1.431519 .4374454 .0170762	4.24 1.09 -8.93	0.000 0.275 0.000	2.1673 .76294 .02678	361 151 368	8.202223 2.586175 .0985593

If we had not specified the or option, results would have been presented as coefficients instead of as odds ratios. The estimated odds ratio of death for tolbutamide exposure is 1.40, although the 95% confidence interval includes 1. (By comparison, these data, in fully relational form and analyzed using the cs command [see [ST] **epitab**], produce a Mantel-Haenszel weighted odds ratio of 1.40 with a 95% confidence interval of 0.76 to 2.59.)

We can see the underlying coefficients by replaying the estimation results and not specifying the or option:

. blogit							
Logistic regre	ession for gro	ouped data		Numbe	r of obs	=	409
• •		-		LR ch	i2(2)	=	22.47
				Prob	> chi2	=	0.0000
Log likelihood	d = -142.6212	2		Pseud	lo R2	=	0.0730
_outcome	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
agecat	1.438958	.3395203	4.24	0.000	.7735	101	2.104405
exposed	.3398053	.3114213	1.09	0.275	2705	692	.9501798
_cons	-2.968471	.33234	-8.93	0.000	-3.619	846	-2.317097

4

Example 2

bprobit works like blogit, substituting the probit for the logit-likelihood function.

. bprobit deat	ths pop ageca	t exposed					
Probit regress	Probit regression for grouped data						409
0		•		LR ch	i2(2)	=	22.58
				Prob	> chi2	=	0.0000
Log likelihood	1 = -142.56478	3		Pseud	lo R2	=	0.0734
_outcome	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
agecat	.7542049	.1709692	4.41	0.000	.4191	114	1.089298
exposed	.1906236	.1666059	1.14	0.253	1359	179	.5171651
_cons	-1.673973	.1619594	-10.34	0.000	-1.991	408	-1.356539

Weighted least-squares estimates

Example 3

We have state data for the United States on the number of marriages (marriage), the total population aged 18 years or more (pop18p), and the median age (medage). The dataset excludes Nevada, so it has 49 observations. We now wish to estimate a logit equation for the marriage rate. We will include age squared by specifying the term c.medage#c.medage:

. use http://www.stata-press.com/data/r13/census7 (1980 Census data by state)

. glogit marriage pop18p medage c.medage#c.medage

Weighted LS logistic regression for grouped data

Source	SS	df		MS		Number of obs	=	49
Model Residual	.71598314 1.27772858	2 46	.357 .0277	799157 76708		Prob > F R-squared	=	0.0000
Total	1.99371172	48	.0415	35661		Adj R-squared Root MSE	=	.16666
	Coef.	Std. H	Err.	t	P> t	[95% Conf.	In	terval]
medage	6459349	. 28283	381	-2.28	0.027	-1.215258		0766114
c.medage# c.medage	.0095414	.00466	508	2.05	0.046	.0001598		0189231
_cons	6.503833	4.2889	977	1.52	0.136	-2.129431		15.1371

4

▷ Example 4

We could just as easily have fit a grouped-probit model by typing gprobit rather than glogit:

Source	SS	df		MS		Number of obs	=	49
Model Residual	.108222962 .192322476	2 46	.054 .004	111481		Prob > F R-squared	=	0.0000
Total	.300545438	48	.006	261363		Root MSE	=	.06466
	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
medage	2755007	.1121	042	-2.46	0.018	5011548		0498466
c.medage# c.medage	.0041082	.0018	422	2.23	0.031	.0004001		0078163
_cons	2.357708	1.704	446	1.38	0.173	-1.073164	5	.788579

. gprobit marriage pop18p medage c.medage#c.medage Weighted LS probit regression for grouped data

Stored results

blogit and bprobit store the following in e():

Scalars

e(N)	number of observations
e(N_cds)	number of completely determined successes
e(N_cdf)	number of completely determined failures
e(k)	number of parameters
e(k_eq)	number of equations in e(b)
e(k_eq_model)	number of equations in overall model test
e(k_dv)	number of dependent variables
e(df_m)	model degrees of freedom
e(r2_p)	pseudo-R-squared
e(11)	log likelihood
e(11_0)	log likelihood, constant-only model
e(N_clust)	number of clusters
e(chi2)	χ^2
e(p)	significance of model test
e(rank)	rank of e(V)
e(ic)	number of iterations
e(rc)	return code
e(converged)	1 if converged, 0 otherwise

Macros	
e(cmd)	blogit or bprobit
e(cmdline)	command as typed
e(depvar)	variable containing number of positive responses and variable containing population size
e(wtype)	weight type
e(wexp)	weight expression
e(title)	title in estimation output
e(clustvar)	name of cluster variable
e(offset)	linear offset variable
e(chi2type)	Wald or LR; type of model χ^2 test
e(vce)	vcetype specified in vce()
e(vcetype)	title used to label Std. Err.
e(opt)	type of optimization
e(which)	max or min; whether optimizer is to perform maximization or minimization
e(ml_method)	type of ml method
e(user)	name of likelihood-evaluator program
e(technique)	maximization technique
e(properties)	b V
e(predict)	program used to implement predict
e(marginsok)	predictions allowed by margins
e(asbalanced)	factor variables fvset as asbalanced
e(asobserved)	factor variables fvset as asobserved
Matrices	
e(b)	coefficient vector
e(Cns)	constraints matrix
e(ilog)	iteration log (up to 20 iterations)
e(gradient)	gradient vector
e(mns)	vector of means of the independent variables
e(rules)	information about perfect predictors
e(V)	variance-covariance matrix of the estimators
e(V_modelbased)	model-based variance
Functions	
e(sample)	marks estimation sample

glogit and gprobit store the following in e():

number of observations
model sum of squares
model degrees of freedom
residual sum of squares
residual degrees of freedom
<i>R</i> -squared
adjusted R-squared
F statistic
root mean squared error
rank of e(V)
glogit or gprobit
command as typed
variable containing number of positive responses and variable containing population size
ols
title in estimation output
vcetype specified in vce()
title used to label Std. Err.
b V
program used to implement predict
predictions allowed by margins
factor variables fvset as asbalanced
factor variables fvset as asobserved

Matrices	
e(b)	coefficient vector
e(V)	variance-covariance matrix of the estimators
Functions	
e(sample)	marks estimation sample

Methods and formulas

Methods and formulas are presented under the following headings:

Maximum likelihood estimates Weighted least-squares estimates

Maximum likelihood estimates

The results reported by blogit and bprobit are obtained by maximizing a weighted logit- or probit-likelihood function. Let F() denote the normal- or logistic-likelihood function. The likelihood of observing each observation in the data is then

$$F(\beta x)^s \{1 - F(\beta x)\}^{t-s}$$

where s is the number of successes and t is the population. The term above is counted as contributing s + (t - s) = t degrees of freedom. All of this follows directly from the definitions of logit and probit.

blogit and bprobit support the Huber/White/sandwich estimator of the variance and its clustered version using vce(robust) and vce(cluster *clustvar*), respectively. See [P] **_robust**, particularly *Maximum likelihood estimators* and *Methods and formulas*.

Weighted least-squares estimates

The logit function is defined as the log of the odds ratio. If there is one explanatory variable, the model can be written as

$$\log\left(\frac{p_j}{1-p_j}\right) = \beta_0 + \beta_1 x_j + \epsilon_j \tag{1}$$

where p_j represents successes divided by population for the *j*th observation. (If there is more than one explanatory variable, we simply interpret β_1 as a row vector and x_j as a column vector.) The large-sample expectation of ϵ_j is zero, and its variance is

$$\sigma_j^2 = \frac{1}{n_j p_j (1 - p_j)}$$

where n_j represents the population for observation j. We can thus apply weighted least squares to the observations, with weights proportional to $n_j p_j (1 - p_j)$.

As in any feasible generalized least-squares problem, estimation proceeds in two steps. First, we fit (1) by OLS and compute the predicted probabilities as

$$\widehat{p}_j = \frac{\exp(\widehat{\beta_0} + \widehat{\beta_1} x_j)}{1 + \exp(\widehat{\beta_0} + \widehat{\beta_1} x_j)}$$

In the second step, we fit (1) by using analytic weights equal to $n_j \hat{p}_j (1 - \hat{p}_j)$.

For gprobit, write $\Phi(\cdot)$ for the cumulative normal distribution, and define z_j implicitly by $\Phi(z_j) = p_j$, where p_j is the fraction of successes for observation j. The probit model for one explanatory variable can be written as

$$\Phi^{-1}(p_j) = \beta_0 + \beta_1 x_j + \epsilon_j$$

(If there is more than one explanatory variable, we simply interpret β_1 as a row vector and x_j as a column vector.)

The expectation of ϵ_i is zero, and its variance is given by

$$\sigma_j^2 = \frac{p_j(1-p_j)}{n_j \phi^2 \{\Phi^{-1}(p_j)\}}$$

where $\phi(\cdot)$ represents the normal density (Amemiya 1981, 1498). We can thus apply weighted least squares to the observations with weights proportional to $1/\sigma_j^2$. As for grouped logit, we use a two-step estimator to obtain the weighted least-squares estimates.

References

Amemiya, T. 1981. Qualitative response models: A survey. Journal of Economic Literature 19: 1483–1536.

- Hosmer, D. W., Jr., S. A. Lemeshow, and R. X. Sturdivant. 2013. Applied Logistic Regression. 3rd ed. Hoboken, NJ: Wiley.
- Judge, G. G., W. E. Griffiths, R. C. Hill, H. Lütkepohl, and T.-C. Lee. 1985. The Theory and Practice of Econometrics. 2nd ed. New York: Wiley.
- Rothman, K. J., S. Greenland, and T. L. Lash. 2008. *Modern Epidemiology*. 3rd ed. Philadelphia: Lippincott Williams & Wilkins.

University Group Diabetes Program. 1970. A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes, II: Mortality results. *Diabetes* 19, supplement 2: 789–830.

Also see

- [R] glogit postestimation Postestimation tools for glogit, gprobit, blogit, and bprobit
- [R] logistic Logistic regression, reporting odds ratios
- [R] logit Logistic regression, reporting coefficients
- [R] probit Probit regression
- [R] scobit Skewed logistic regression
- [U] 20 Estimation and postestimation commands