Title

glm postestimation — Postestimation tools for glm

Description Remarks and examples Syntax for predict Methods and formulas Menu for predict References Options for predict Also see

Description

The following postestimation commands are available after glm:

Command	Description
contrast	contrasts and ANOVA-style joint tests of estimates
estat ic	Akaike's and Schwarz's Bayesian information criteria (AIC and BIC)
estat summarize	summary statistics for the estimation sample
estat vce	variance-covariance matrix of the estimators (VCE)
estat (svy)	postestimation statistics for survey data
estimates	cataloging estimation results
$forecast^1$	dynamic forecasts and simulations
lincom	point estimates, standard errors, testing, and inference for linear combinations of coefficients
linktest	link test for model specification
${\tt lrtest}^2$	likelihood-ratio test
margins	marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot	graph the results from margins (profile plots, interaction plots, etc.)
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients
predict	predictions, residuals, influence statistics, and other diagnostic measures
predictnl	point estimates, standard errors, testing, and inference for generalized predictions
pwcompare	pairwise comparisons of estimates
suest	seemingly unrelated estimation
test	Wald tests of simple and composite linear hypotheses
testnl	Wald tests of nonlinear hypotheses

¹ forecast is not appropriate with mi or svy estimation results.

 2 lrtest is not appropriate with svy estimation results.

Syntax for predict

predict [type] newvar [if] [in] [, statistic options]	
statistic	Description
Main	
<u>m</u> u	expected value of y ; the default
xb	linear prediction $\eta = \mathbf{x} \widehat{\boldsymbol{\beta}}$
<u>e</u> ta	synonym of xb
stdp	standard error of the linear prediction
<u>a</u> nscombe	Anscombe (1953) residuals
<u>c</u> ooksd	Cook's distance
<u>d</u> eviance	deviance residuals
hat	diagonals of the "hat" matrix
<u>l</u> ikelihood	a weighted average of standardized deviance and standardized Pearson residuals
pearson	Pearson residuals
<u>r</u> esponse	differences between the observed and fitted outcomes
<u>s</u> core	first derivative of the log likelihood with respect to $\mathbf{x}_j \boldsymbol{\beta}$
working	working residuals
options	Description
Options	
<u>nooff</u> set	modify calculations to ignore offset variable
adjusted	adjust deviance residual to speed up convergence
<u>sta</u> ndardized	multiply residual by the factor $(1-h)^{-1/2}$
<u>stu</u> dentized	multiply residual by one over the square root of the estimated scale parameter
modified	modify denominator of residual to be a reasonable estimate of the variance of <i>depvar</i>

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample.

mu, xb, stdp, and score are the only statistics allowed with svy estimation results.

Menu for predict

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

_ Main)

mu, the default, specifies that predict calculate the expected value of y, equal to $g^{-1}(\mathbf{x}\hat{\beta})$ $[ng^{-1}(\mathbf{x}\hat{\beta})$ for the binomial family].

xb calculates the linear prediction $\eta = \mathbf{x}\widehat{\boldsymbol{\beta}}$.

eta is a synonym for xb.

stdp calculates the standard error of the linear prediction.

anscombe calculates the Anscombe (1953) residuals to produce residuals that closely follow a normal distribution.

- cooksd calculates Cook's distance, which measures the aggregate change in the estimated coefficients when each observation is left out of the estimation.
- deviance calculates the deviance residuals. Deviance residuals are recommended by McCullagh and Nelder (1989) and by others as having the best properties for examining the goodness of fit of a GLM. They are approximately normally distributed if the model is correct. They may be plotted against the fitted values or against a covariate to inspect the model's fit. Also see the pearson option below.
- hat calculates the diagonals of the "hat" matrix, analogous to linear regression.
- likelihood calculates a weighted average of standardized deviance and standardized Pearson residuals.
- pearson calculates the Pearson residuals. Pearson residuals often have markedly skewed distributions for nonnormal family distributions. Also see the deviance option above.
- response calculates the differences between the observed and fitted outcomes.
- score calculates the equation-level score, $\partial \ln L / \partial (\mathbf{x}_j \boldsymbol{\beta})$.
- working calculates the working residuals, which are response residuals weighted according to the derivative of the link function.

Options

- nooffset is relevant only if you specified offset(*varname*) for glm. It modifies the calculations made by predict so that they ignore the offset variable; the linear prediction is treated as $\mathbf{x}_j \mathbf{b}$ rather than as $\mathbf{x}_j \mathbf{b}$ + offset_j.
- adjusted adjusts the deviance residual to speed up the convergence to the limiting normal distribution. The adjustment deals with adding to the deviance residual a higher-order term that depends on the variance function family. This option is allowed only when deviance is specified.
- standardized requests that the residual be multiplied by the factor $(1-h)^{-1/2}$, where h is the diagonal of the hat matrix. This operation is done to account for the correlation between *depvar* and its predicted value.
- studentized requests that the residual be multiplied by one over the square root of the estimated scale parameter.
- modified requests that the denominator of the residual be modified to be a reasonable estimate of the variance of *depvar*. The base residual is multiplied by the factor $(k/w)^{-1/2}$, where k is either one or the user-specified dispersion parameter and w is the specified weight (or one if left unspecified).

Remarks and examples

stata.com

Remarks are presented under the following headings:

Predictions Other postestimation commands

Predictions

```
Example 1
```

After glm estimation, predict may be used to obtain various predictions based on the model. In example 2 of [R] glm, we mentioned that the complementary log-log link seemed to fit the data better than the logit link. Now we go back and obtain the fitted values and deviance residuals:

```
. use http://www.stata-press.com/data/r13/ldose
. glm r ldose, family(binomial n) link(logit)
 (output omitted)
. predict mu_logit
(option mu assumed; predicted mean r)
. predict dr_logit, deviance
. quietly glm r ldose, f(binomial n) l(cloglog)
. predict mu_cl
(option mu assumed; predicted mean r)
. predict dr_cl, d
. format mu_logit dr_logit mu_cl dr_cl %9.5f
. list r mu_logit dr_logit mu_cl dr_cl, sep(4)
            mu_logit
                       dr_logit
                                                 dr_cl
        r
                                      mu_cl
```

6 3.45746 1.28368 5.58945 1. 0.18057 2. 13 9.84167 1.05969 11.28067 0.55773 з. 18 22.45139 -1.1961120.95422 -0.80330 4. 28 33.89761 30.36942 -1.59412-0.63439 5. 52 50.09584 0.60614 47.77644 1.28883 6. 53 53.29092 54.14273 -0.52366 -0.12716 7. 61 59.22216 1.25107 61.11331 -0.118788. 60 58.74297 1.59398 59.94723 0.32495

In six of the eight cases, $|dr_logit| > |dr_cl|$. The above represents only one of the many available options for predict. See Hardin and Hilbe (2012) for a more in-depth examination.

Other postestimation commands

Technical note

After glm estimation, you may perform any of the postestimation commands that you would perform after any other kind of estimation in Stata; see [U] 20 Estimation and postestimation commands. Below we test the joint significance of all the interaction terms.

4

```
. use http://www.stata-press.com/data/r13/beetle, clear
. glm r beetle##c.ldose, family(binomial n) link(cloglog)
(output omitted)
. testparm i.beetle beetle#c.ldose
( 1) [r]2.beetle = 0
( 2) [r]3.beetle = 0
( 3) [r]2.beetle#c.ldose = 0
( 4) [r]3.beetle#c.ldose = 0
chi2( 4) = 249.69
Prob > chi2 = 0.0000
```

If you wanted to print the variance-covariance matrix of the estimators, you would type estat vce.

If you use the linktest postestimation command, you must also specify the family() and link() options; see [R] linktest.

Methods and formulas

We follow the terminology used in Methods and formulas of [R] glm.

The deviance residual calculated by predict following glm is $r_j^D = \mathrm{sign}(y_j - \widehat{\mu}_j) \sqrt{d_j^2}$.

The Pearson residual calculated by predict following glm is

$$r_j^P = \frac{y_j - \widehat{\mu}_j}{\sqrt{V(\widehat{\mu}_j)}}$$

where $V(\hat{\mu}_i)$ is the family-specific variance function.

 $V(\hat{\mu}_j) = \begin{cases} \hat{\mu}_j (1 - \hat{\mu}_j / m_j) & \text{if binomial or Bernoulli } (m_j = 1) \\ \hat{\mu}_j^2 & \text{if gamma} \\ 1 & \text{if Gaussian} \\ \hat{\mu}_j^3 & \text{if inverse Gaussian} \\ \hat{\mu}_j + k \hat{\mu}_j^2 & \text{if negative binomial} \\ \hat{\mu}_j & \text{if Poisson} \end{cases}$

The response residuals are given by $r_i^R = y_i - \mu_i$. The working residuals are

$$r_i^W = (y_i - \widehat{\mu}_i) \left(\frac{\partial \eta}{\partial \mu}\right)_i$$

and the score residuals are

$$r_i^S = \frac{y_i - \widehat{\mu}_i}{V(\widehat{\mu}_i)} \left(\frac{\partial \eta}{\partial \mu}\right)_i^{-1}$$

Define $\widehat{W} = V(\widehat{\mu})$ and X to be the covariate matrix. h_i , then, is the *i*th diagonal of the hat matrix given by

$$\widehat{H} = \widehat{W}^{1/2} X (X^T \widehat{W} X)^{-1} X^T \widehat{W}^{1/2}$$

As a result, the likelihood residuals are given by

$$r_i^L = \mathrm{sign}(y_i - \widehat{\mu}_i) \left\{ h_i (r_i^{P\prime})^2 + (1 - h_i) (r_i^{D\prime})^2 \right\}^{1/2}$$

where $r_i^{P'}$ and $r_i^{D'}$ are the standardized Pearson and standardized deviance residuals, respectively. By standardized, we mean that the residual is divided by $\{1 - h_i\}^{1/2}$.

Cook's distance is an overall measure of the change in the regression coefficients caused by omitting the *i*th observation from the analysis. Computationally, Cook's distance is obtained as

$$C_{i} = \frac{(r_{i}^{P})^{2}h_{i}}{k(1-h_{i})}$$

where k is the number of regressors, including the constant. Anscombe residuals are given by

$$r_i^A = \frac{A(y_i) - A(\hat{\mu}_i)}{A'(\hat{\mu}_i) \{V(\hat{\mu}_i)\}^{1/2}}$$

where

$$A(\cdot) = \int \frac{d\mu}{V^{1/3}(\mu)}$$

Deviance residuals may be adjusted (predict, adjusted) to make the following correction:

$$r_i^{Da} = r_i^D + \frac{1}{6}\rho_3(\theta)$$

where $\rho_3(\theta)$ is a family-specific correction. See Hardin and Hilbe (2012) for the exact forms of $\rho_3(\theta)$ for each family.

References

- Anscombe, F. J. 1953. Contribution of discussion paper by H. Hotelling "New light on the correlation coefficient and its transforms". *Journal of the Royal Statistical Society, Series B* 15: 229–230.
- Hardin, J. W., and J. M. Hilbe. 2012. *Generalized Linear Models and Extensions*. 3rd ed. College Station, TX: Stata Press.

McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models. 2nd ed. London: Chapman & Hall/CRC.

Newson, R. B. 2013. Attributable and unattributable risks and fractions and other scenario comparisons. *Stata Journal* 13: 672–698.

Also see

- [R] glm Generalized linear models
- [R] regress postestimation Postestimation tools for regress
- [U] 20 Estimation and postestimation commands