bootstrap postestimation — Postestimation tools for bootstrap

Description	Syntax for predict
Menu for estat	Options for estat bootstrap
Also see	

Syntax for estat bootstrap Remarks and examples

Description

The following postestimation command is of special interest after bootstrap:

Command	Description
estat bootstrap	percentile-based and bias-corrected CI tables

The following standard postestimation commands are also available:

Command	Description			
* contrast	contrasts and ANOVA-style joint tests of estimates			
estat ic	Akaike's and Schwarz's Bayesian information criteria (AIC and BIC)			
estat summarize	summary statistics for the estimation sample			
estat vce	variance-covariance matrix of the estimators (VCE)			
estimates	cataloging estimation results			
*hausman	Hausman's specification test			
*lincom	point estimates, standard errors, testing, and inference for linear combinations of coefficients			
*margins	marginal means, predictive margins, marginal effects, and average marginal effects			
*marginsplot	graph the results from margins (profile plots, interaction plots, etc.)			
*nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients			
*predict	predictions, residuals, influence statistics, and other diagnostic measures			
*predictnl	point estimates, standard errors, testing, and inference for generalized predictions			
*pwcompare	pairwise comparisons of estimates			
*test	Wald tests of simple and composite linear hypotheses			
*testnl	Wald tests of nonlinear hypotheses			

*This postestimation command is allowed if it may be used after *command*.

Special-interest postestimation command

estat bootstrap displays a table of confidence intervals for each statistic from a bootstrap analysis.

Syntax for predict

The syntax of predict (and even if predict is allowed) following bootstrap depends upon the *command* used with bootstrap. If predict is not allowed, neither is predictnl.

Syntax for estat bootstrap

estat <u>boot</u>strap |, options |

options	Description		
bc	bias-corrected CIs; the default		
bca	bias-corrected and accelerated (BC_a) CIs		
<u>nor</u> mal	normal-based CIs		
\underline{p} ercentile	percentile CIs		
all	all available CIs		
<u>nohead</u> er	suppress table header		
nolegend	suppress table legend		
verbose	display the full table legend		

bc, bca, normal, and percentile may be used together.

Menu for estat

Statistics > Postestimation > Reports and statistics

Options for estat bootstrap

bc is the default and displays bias-corrected confidence intervals.

bca displays bias-corrected and accelerated confidence intervals. This option assumes that you also specified the bca option on the bootstrap prefix command.

normal displays normal approximation confidence intervals.

percentile displays percentile confidence intervals.

all displays all available confidence intervals.

noheader suppresses display of the table header. This option implies nolegend.

nolegend suppresses display of the table legend, which identifies the rows of the table with the expressions they represent.

verbose requests that the full table legend be displayed.

Remarks and examples

(BC)

(N)

(P)

(BC)

.6170642

46.70269

46.07086

46.63227

.5743973 (BCa)

47.02108 (BCa)

-4.155504

-4.216531

25.50002

24.48569

25.59799

25.85658

Example 1

The estat bootstrap postestimation command produces a table containing the observed value of the statistic, an estimate of its bias, the bootstrap standard error, and up to four different confidence intervals.

If we were interested merely in getting bootstrap standard errors for the model coefficients, we could use the bootstrap prefix with our estimation command. If we were interested in performing a thorough bootstrap analysis of the model coefficients, we could use the estat bootstrap postestimation command after fitting the model with the bootstrap prefix.

Using example 1 from [R] **bootstrap**, we need many more replications for the confidence interval types other than the normal based, so let's rerun the estimation command. We will reset the randomnumber seed—in case we wish to reproduce the results—increase the number of replications, and save the bootstrap distribution as a dataset called bsauto.dta.

```
. use http://www.stata-press.com/data/r13/auto
```

(1978 Automobile Data)

```
. set seed 1
```

. bootstrap _b, reps(1000) saving(bsauto) bca: regress mpg weight gear foreign (output omitted)

```
. estat bootstrap, all
```

```
74
Linear regression
                                                    Number of obs
                                                                        =
                                                    Replications
                                                                        =
                                                                                1000
                   Observed
                                            Bootstrap
                       Coef.
                                   Bias
                                            Std. Err.
                                                        [95% Conf. Interval]
         mpg
      weight
                 -.00613903
                                .0000567
                                              .000628
                                                        -.0073699
                                                                    -.0049082
                                                                                  (N)
                                                        -.0073044
                                                                    -.0048548
                                                                                 (P)
                                                        -.0074355
                                                                     -.004928
                                                                                (BC)
                                                        -.0075282
                                                                   -.0050258 (BCa)
                  1.4571134
                               .1051696
                                           1.4554785
                                                        -1.395572
                                                                     4.309799
                                                                                 (N)
  gear_ratio
                                                        -1.262111
                                                                     4.585372
                                                                                 (P)
                                                                     4.174376
                                                                                (BC)
                                                        -1.523927
                                                         -1.492223
                                                                     4.231356 (BCa)
     foreign
                 -2.2216815 -.0196361
                                           1.2023286
                                                        -4.578202
                                                                     .1348393
                                                                                 (N)
                                                                     .2677989
                                                        -4.442199
                                                                                 (P)
```

(N) normal confidence interval

_cons

(P) percentile confidence interval

(BC) bias-corrected confidence interval

36.101353

(BCa) bias-corrected and accelerated confidence interval

-.502281

The estimated standard errors here differ from our previous estimates using only 100 replications by, respectively, 8%, 3%, 11%, and 6%; see example 1 of [R] **bootstrap**. So much for our advice that 50-200 replications are good enough to estimate standard errors. Well, the more replications the better—that advice you should believe.

5.4089441

4 bootstrap postestimation — Postestimation tools for bootstrap

Which of the methods to compute confidence intervals should we use? If the statistic is unbiased, the percentile (P) and bias-corrected (BC) methods should give similar results. The bias-corrected confidence interval will be the same as the percentile confidence interval when the observed value of the statistic is equal to the median of the bootstrap distribution. Thus, for unbiased statistics, the two methods should give similar results as the number of replications becomes large. For biased statistics, the bias-corrected method should yield confidence intervals with better coverage probability (closer to the nominal value of 95% or whatever was specified) than the percentile method. For statistics with variances that vary as a function of the parameter of interest, the bias-corrected and accelerated method (BC_a) will typically have better coverage probability than the others.

When the bootstrap distribution is approximately normal, all these methods should give similar confidence intervals as the number of replications becomes large. If we examine the normality of these bootstrap distributions using, say, the pnorm command (see [R] diagnostic plots), we see that they closely follow a normal distribution. Thus here, the normal approximation would also be a valid choice. The chief advantage of the normal-approximation method is that it (supposedly) requires fewer replications than the other methods. Of course, it should be used only when the bootstrap distribution exhibits normality.

We can load bsauto.dta containing the bootstrap distributions for these coefficients:

. use bsauto (bootstrap: regress)								
. describe *								
variable name	storage type	display format	value label	variable label				
_b_weight	float	%9.0g		_b[weight]				
_b_gear_ratio	float	%9.0g		_b[gear_ratio]				
_b_foreign	float	%9.0g		_b[foreign]				
_b_cons	float	%9.0g		_b[_cons]				

We can now run other commands, such as pnorm, on the bootstrap distributions. As with all standard estimation commands, we can use the bootstrap command to replay its output table. The default variable names assigned to the statistics in exp_list are _bs_1, _bs_2, ..., and each variable is labeled with the associated expression. The naming convention for the extended expressions _b and _se is to prepend _b_ and _se_, respectively, onto the name of each element of the coefficient vector. Here the first coefficient is _b[weight], so bootstrap named it _b_weight.

4

Also see

- [R] **bootstrap** Bootstrap sampling and estimation
- [U] 20 Estimation and postestimation commands