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Syntax

asmprobit depvar
[

indepvars
] [

if
] [

in
] [

weight
]
, case(varname)

alternatives(varname)
[

options
]

options Description

Model
∗case(varname) use varname to identify cases
∗alternatives(varname) use varname to identify the alternatives available for each case
casevars(varlist) case-specific variables
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

Model 2

correlation(correlation) correlation structure of the latent-variable errors
stddev(stddev) variance structure of the latent-variable errors
structural use the structural covariance parameterization; default is the

differenced covariance parameterization
factor(#) use the factor covariance structure with dimension #
noconstant suppress the alternative-specific constant terms
basealternative(# | lbl | str) alternative used for normalizing location
scalealternative(# | lbl | str) alternative used for normalizing scale
altwise use alternativewise deletion instead of casewise deletion

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg,
bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

notransform do not transform variance–covariance estimates to the standard
deviation and correlation metric

nocnsreport do not display constraints
display options control column formats and line width
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Integration

intmethod(seqtype) type of quasi- or pseudouniform point set
intpoints(#) number of points in each sequence
intburn(#) starting index in the Hammersley or Halton sequence
intseed(code | #) pseudouniform random-number seed
antithetics use antithetic draws
nopivot do not use integration interval pivoting
initbhhh(#) use the BHHH optimization algorithm for the first # iterations
favor(speed | space) favor speed or space when generating integration points

Maximization

maximize options control the maximization process

coeflegend display legend instead of statistics

correlation Description

unstructured one correlation parameter for each pair of alternatives; correlations
with the basealternative() are zero; the default

exchangeable one correlation parameter common to all pairs of alternatives;
correlations with the basealternative() are zero

independent constrain all correlation parameters to zero
pattern matname user-specified matrix identifying the correlation pattern
fixed matname user-specified matrix identifying the fixed and free correlation

parameters

stddev Description

heteroskedastic estimate standard deviation for each alternative; standard deviations
for basealternative() and scalealternative() set to one

homoskedastic all standard deviations are one
pattern matname user-specified matrix identifying the standard deviation pattern
fixed matname user-specified matrix identifying the fixed and free standard

deviations

seqtype Description

hammersley Hammersley point set
halton Halton point set
random uniform pseudorandom point set

∗case(varname) and alternatives(varname) are required.
bootstrap, by, jackknife, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu
Statistics > Categorical outcomes > Alternative-specific multinomial probit

Description

asmprobit fits multinomial probit (MNP) models by using maximum simulated likelihood (MSL)
implemented by the Geweke–Hajivassiliou–Keane (GHK) algorithm. By estimating the variance–
covariance parameters of the latent-variable errors, the model allows you to relax the independence
of irrelevant alternatives (IIA) property that is characteristic of the multinomial logistic model.

asmprobit requires multiple observations for each case (decision), where each observation rep-
resents an alternative that may be chosen. The cases are identified by the variable specified in the
case() option, whereas the alternatives are identified by the variable specified in the alternative()
option. The outcome (chosen alternative) is identified by a value of 1 in depvar, with 0 indicating
the alternatives that were not chosen; only one alternative may be chosen for each case.

asmprobit allows two types of independent variables: alternative-specific variables and case-
specific variables. Alternative-specific variables vary across both cases and alternatives and are specified
in indepvars. Case-specific variables vary only across cases and are specified in the casevars()
option.

Options

� � �
Model �

case(varname) specifies the variable that identifies each case. This variable identifies the individuals
or entities making a choice. case() is required.

alternatives(varname) specifies the variable that identifies the alternatives for each case. The
number of alternatives can vary with each case; the maximum number of alternatives is 20.
alternatives() is required.

casevars(varlist) specifies the case-specific variables that are constant for each case(). If there are
a maximum of J alternatives, there will be J −1 sets of coefficients associated with casevars().

constraints(constraints), collinear; see [R] estimation options.

� � �
Model 2 �

correlation(correlation) specifies the correlation structure of the latent-variable errors.

correlation(unstructured) is the most general and has J(J − 3)/2 + 1 unique correlation
parameters. This is the default unless stdev() or structural are specified.

correlation(exchangeable) provides for one correlation coefficient common to all latent
variables, except the latent variable associated with the basealternative() option.

correlation(independent) assumes that all correlations are zero.

correlation(pattern matname) and correlation(fixed matname) give you more flexibil-
ity in defining the correlation structure. See Variance structures later in this entry for more
information.

stddev(stddev) specifies the variance structure of the latent-variable errors.

http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
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stddev(heteroskedastic) is the most general and has J−2 estimable parameters. The standard
deviations of the latent-variable errors for the alternatives specified in basealternative()
and scalealternative() are fixed to one.

stddev(homoskedastic) constrains all the standard deviations to equal one.

stddev(pattern matname) and stddev(fixed matname) give you added flexibility in defining
the standard deviation parameters. See Variance structures later in this entry for more information.

structural requests the J×J structural covariance parameterization instead of the default J−1×J−1
differenced covariance parameterization (the covariance of the latent errors differenced with that
of the base alternative). The differenced covariance parameterization will achieve the same MSL
regardless of the choice of basealternative() and scalealternative(). On the other hand,
the structural covariance parameterization imposes more normalizations that may bound the model
away from its maximum likelihood and thus prevent convergence with some datasets or choices
of basealternative() and scalealternative().

factor(#) requests that the factor covariance structure of dimension # be used. The factor() option
can be used with the structural option but cannot be used with stddev() or correlation().
A # × J (or # × J − 1) matrix, C, is used to factor the covariance matrix as I + C′C, where
I is the identity matrix of dimension J (or J − 1). The column dimension of C depends on
whether the covariance is structural or differenced. The row dimension of C, #, must be less than
or equal to floor((J(J−1)/2−1)/(J−2)), because there are only J(J−1)/2−1 identifiable
variance–covariance parameters. This covariance parameterization may be useful for reducing the
number of covariance parameters that need to be estimated.

If the covariance is structural, the column of C corresponding to the base alternative contains zeros.
The column corresponding to the scale alternative has a one in the first row and zeros elsewhere.
If the covariance is differenced, the column corresponding to the scale alternative (differenced with
the base) has a one in the first row and zeros elsewhere.

noconstant suppresses the J − 1 alternative-specific constant terms.

basealternative(# | lbl | str) specifies the alternative used to normalize the latent-variable location
(also referred to as the level of utility). The base alternative may be specified as a number, label,
or string. The standard deviation for the latent-variable error associated with the base alternative
is fixed to one, and its correlations with all other latent-variable errors are set to zero. The default
is the first alternative when sorted. If a fixed or pattern matrix is given in the stddev()
and correlation() options, the basealternative() will be implied by the fixed standard
deviations and correlations in the matrix specifications. basealternative() cannot be equal to
scalealternative().

scalealternative(# | lbl | str) specifies the alternative used to normalize the latent-variable scale
(also referred to as the scale of utility). The scale alternative may be specified as a number,
label, or string. The default is to use the second alternative when sorted. If a fixed or pattern
matrix is given in the stddev() option, the scalealternative() will be implied by the
fixed standard deviations in the matrix specification. scalealternative() cannot be equal to
basealternative().

If a fixed or pattern matrix is given for the stddev() option, the base alternative and scale
alternative are implied by the standard deviations and correlations in the matrix specifications, and
they need not be specified in the basealternative() and scalealternative() options.

altwise specifies that alternativewise deletion be used when marking out observations due to missing
values in your variables. The default is to use casewise deletion; that is, the entire group of
observations making up a case is deleted if any missing values are encountered. This option does
not apply to observations that are marked out by the if or in qualifier or the by prefix.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that
allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [R] vce option.

If specifying vce(bootstrap) or vce(jackknife), you must also specify basealternative()
and scalealternative().

� � �
Reporting �

level(#); see [R] estimation options.

notransform prevents retransforming the Cholesky-factored variance–covariance estimates to the
correlation and standard deviation metric.

This option has no effect if structural is not specified because the default differenced variance–
covariance estimates have no interesting interpretation as correlations and standard deviations.
notransform also has no effect if the correlation() and stddev() options are specified with
anything other than their default values. Here it is generally not possible to factor the variance–
covariance matrix, so optimization is already performed using the standard deviation and correlation
representations.

nocnsreport; see [R] estimation options.

display options: cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] es-
timation options.

� � �
Integration �

intmethod(hammersley | halton | random) specifies the method of generating the point sets used in
the quasi–Monte Carlo integration of the multivariate normal density. intmethod(hammersley),
the default, uses the Hammersley sequence; intmethod(halton) uses the Halton sequence; and
intmethod(random) uses a sequence of uniform random numbers.

intpoints(#) specifies the number of points to use in the quasi–Monte Carlo integration. If
this option is not specified, the number of points is 50 × J if intmethod(hammersley) or
intmethod(halton) is used and 100 × J if intmethod(random) is used. Larger values of
intpoints() provide better approximations of the log likelihood, but at the cost of added
computation time.

intburn(#) specifies where in the Hammersley or Halton sequence to start, which helps reduce the
correlation between the sequences of each dimension. The default is 0. This option may not be
specified with intmethod(random).

intseed(code | #) specifies the seed to use for generating the uniform pseudorandom sequence. This
option may be specified only with intmethod(random). code refers to a string that records the
state of the random-number generator runiform(); see [R] set seed. An integer value # may
be used also. The default is to use the current seed value from Stata’s uniform random-number
generator, which can be obtained from c(seed).

antithetics specifies that antithetic draws be used. The antithetic draw for the J − 1 vector
uniform-random variables, x, is 1− x.

nopivot turns off integration interval pivoting. By default, asmprobit will pivot the wider intervals
of integration to the interior of the multivariate integration. This improves the accuracy of the
quadrature estimate. However, discontinuities may result in the computation of numerical second-
order derivatives using finite differencing (for the Newton–Raphson optimize technique, tech(nr))

http://www.stata.com/manuals13/rvce_option.pdf#rvce_option
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals13/d.pdf#dformat
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals13/rsetseed.pdf#rsetseed
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when few simulation points are used, resulting in a non–positive-definite Hessian. asmprobit
uses the Broyden–Fletcher–Goldfarb–Shanno optimization algorithm, by default, which does not
require computing the Hessian numerically using finite differencing.

initbhhh(#) specifies that the Berndt–Hall–Hall–Hausman (BHHH) algorithm be used for the initial
# optimization steps. This option is the only way to use the BHHH algorithm along with other
optimization techniques. The algorithm switching feature of ml’s technique() option cannot
include bhhh.

favor(speed | space) instructs asmprobit to favor either speed or space when generating the
integration points. favor(speed) is the default. When favoring speed, the integration points are
generated once and stored in memory, thus increasing the speed of evaluating the likelihood. This
speed increase can be seen when there are many cases or when the user specifies a large number
of integration points, intpoints(#). When favoring space, the integration points are generated
repeatedly with each likelihood evaluation.

For unbalanced data, where the number of alternatives varies with each case, the estimates computed
using intmethod(random) will vary slightly between favor(speed) and favor(space). This
is because the uniform sequences will not be identical, even when initiating the sequences using the
same uniform seed, intseed(code | #). For favor(speed), ncase blocks of intpoints(#)×
J − 2 uniform points are generated, where J is the maximum number of alternatives. For
favor(space), the column dimension of the matrices of points varies with the number of
alternatives that each case has.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize.

The following options may be particularly useful in obtaining convergence with asmprobit:
difficult, technique(algorithm spec), nrtolerance(#), nonrtolerance, and
from(init specs).

If technique() contains more than one algorithm specification, bhhh cannot be one of them. To
use the BHHH algorithm with another algorithm, use the initbhhh() option and specify the other
algorithm in technique().

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with asmprobit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
Variance structures

http://www.stata.com/manuals13/rmaximize.pdf#rmaximizeSyntaxalgorithm_spec
http://www.stata.com/manuals13/rmaximize.pdf#rmaximize
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://stata.com
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Introduction

The MNP model is used with discrete dependent variables that take on more than two outcomes
that do not have a natural ordering. The stochastic error terms are assumed to have a multivariate
normal distribution that is heteroskedastic and correlated. Say that you have a set of J unordered
alternatives that are modeled by a regression of both case-specific and alternative-specific covariates.
A “case” refers to the information on one decision maker. Underlying the model is the set of J latent
variables (utilities),

ηij = xijβ + ziαj + ξij (1)

where i denotes cases and j denotes alternatives. xij is a 1×p vector of alternative-specific variables,
β is a p× 1 vector of parameters, zi is a 1× q vector of case-specific variables, αj is a q× 1 vector
of parameters for the jth alternative, and ξi = (ξi1, . . . , ξiJ) is distributed multivariate normal with
mean zero and covariance matrix Ω. The decision maker selects the alternative whose latent variable
is highest.

Because the MNP model allows for a general covariance structure in ξij , it does not impose the
IIA property inherent in multinomial logistic and conditional logistic models. That is, the MNP model
permits the odds of choosing one alternative over another to depend on the remaining alternatives. For
example, consider the choice of travel mode between two cities: air, train, bus, or car, as a function
of the travel mode cost, travel time (alternative-specific variables), and an individual’s income (a
case-specific variable). The odds of choosing air travel over a bus may not be independent of the train
alternative because both bus and train travel are public ground transportation. That is, the probability
of choosing air travel is Pr(ηair > ηbus, ηair > ηtrain, ηair > ηcar), and the two events ηair > ηbus
and ηair > ηtrain may be correlated.

An alternative to MNP that will allow a nested correlation structure in ξij is the nested logit model
(see [R] nlogit).

The added flexibility of the MNP model does impose a significant computation burden because of
the need to evaluate probabilities from the multivariate normal distribution. These probabilities are
evaluated using simulation techniques because a closed-form solution does not exist. See Methods
and formulas for more information.

Not all the J sets of regression coefficients αj are identifiable, nor are all J(J + 1)/2 elements
of the variance–covariance matrix Ω. As described by Train (2009, sec. 2.5), the model requires
normalization because both the location (level) and scale of the latent variable are irrelevant. Increasing
the latent variables by a constant does not change which ηij is the maximum for decision maker i,
nor does multiplying them by a constant. To normalize location, we choose an alternative, indexed
by k, say, and take the difference between the latent variable k and the J − 1 others,

vijk = ηij − ηik
= (xij − xik)β + zi(αj − αk) + ξij − ξik
= δij′β + ziγj′ + εij′

= λij′ + εij′

(2)

where j′ = j if j < k and j′ = j − 1 if j > k, so that j′ = 1, . . . , J − 1. One can now work with
the (J − 1) × (J − 1) covariance matrix Σ(k) for ε′i = (εi1, . . . , εi,J−1). The kth alternative here
is the basealternative() in asmprobit. From (2), the probability that decision maker i chooses
alternative k, for example, is

Pr(i chooses k) = Pr(vi1k ≤ 0, . . . , vi,J−1,k ≤ 0)

= Pr(εi1 ≤ −λi1, . . . , εi,J−1 ≤ −λi,J−1)

http://www.stata.com/manuals13/rnlogit.pdf#rnlogit
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To normalize for scale, one of the diagonal elements of Σ(k) must be fixed to a constant. In
asmprobit, this is the error variance for the alternative specified by scalealternative(). Thus
there are a total of, at most, J(J−1)/2−1 identifiable variance–covariance parameters. See Variance
structures below for more on this issue.

In fact, the model is slightly more general in that not all cases need to have faced all J alternatives.
The model allows for situations in which some cases chose among all possible alternatives, whereas
other cases were given a choice among a subset of them, and perhaps other cases were given a
choice among a different subset. The number of observations for each case is equal to the number
of alternatives faced.

The MNP model is often motivated using a random-utility consumer-choice framework. Equation
(1) represents the utility that consumer i receives from good j. The consumer purchases the good for
which the utility is highest. Because utility is ordinal, all that matters is the ranking of the utilities
from the alternatives. Thus one must normalize for location and scale.

Example 1

Application of MNP models is common in the analysis of transportation data. Greene (2012,
sec. 18.2.9) uses travel-mode choice data between Sydney and Melbourne to demonstrate estimating
parameters of various discrete-choice models. The data contain information on 210 individuals’
choices of travel mode. The four alternatives are air, train, bus, and car, with indices 1, 2, 3, and 4,
respectively. One alternative-specific variable is travelcost, a measure of generalized cost of travel
that is equal to the sum of in-vehicle cost and a wagelike measure times the amount of time spent
traveling. A second alternative-specific variable is the terminal time, termtime, which is zero for car
transportation. Household income, income, is a case-specific variable.

. use http://www.stata-press.com/data/r13/travel

. list id mode choice travelcost termtime income in 1/12, sepby(id)

id mode choice travel~t termtime income

1. 1 air 0 70 69 35
2. 1 train 0 71 34 35
3. 1 bus 0 70 35 35
4. 1 car 1 30 0 35

5. 2 air 0 68 64 30
6. 2 train 0 84 44 30
7. 2 bus 0 85 53 30
8. 2 car 1 50 0 30

9. 3 air 0 129 69 40
10. 3 train 0 195 34 40
11. 3 bus 0 149 35 40
12. 3 car 1 101 0 40

The model of travel choice is

ηij = β1travelcostij + β2termtimeij + α1jincomei + α0j + ξij

The alternatives can be grouped as air and ground travel. With this in mind, we set the air alternative
to be the basealternative() and choose train as the scaling alternative. Because these are the
first and second alternatives in the mode variable, they are also the defaults.



asmprobit — Alternative-specific multinomial probit regression 9

. asmprobit choice travelcost termtime, case(id) alternatives(mode)
> casevars(income)

(output omitted )
Alternative-specific multinomial probit Number of obs = 840
Case variable: id Number of cases = 210

Alternative variable: mode Alts per case: min = 4
avg = 4.0
max = 4

Integration sequence: Hammersley
Integration points: 200 Wald chi2(5) = 32.05
Log simulated-likelihood = -190.09418 Prob > chi2 = 0.0000

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

mode
travelcost -.00977 .0027834 -3.51 0.000 -.0152253 -.0043146

termtime -.0377095 .0094088 -4.01 0.000 -.0561504 -.0192686

air (base alternative)

train
income -.0291971 .0089246 -3.27 0.001 -.046689 -.0117052
_cons .5616376 .3946551 1.42 0.155 -.2118721 1.335147

bus
income -.0127503 .0079267 -1.61 0.108 -.0282863 .0027857
_cons -.0571364 .4791861 -0.12 0.905 -.9963239 .882051

car
income -.0049086 .0077486 -0.63 0.526 -.0200957 .0102784
_cons -1.833393 .8186156 -2.24 0.025 -3.43785 -.2289357

/lnl2_2 -.5502039 .3905204 -1.41 0.159 -1.31561 .2152021
/lnl3_3 -.6005552 .3353292 -1.79 0.073 -1.257788 .0566779

/l2_1 1.131518 .2124817 5.33 0.000 .7150612 1.547974
/l3_1 .9720669 .2352116 4.13 0.000 .5110606 1.433073
/l3_2 .5197214 .2861552 1.82 0.069 -.0411325 1.080575

(mode=air is the alternative normalizing location)
(mode=train is the alternative normalizing scale)

. estimates store full

By default, the differenced covariance parameterization is used, so the covariance matrix for this
model is 3×3. There are two free variances to estimate and three correlations. To help ensure that the
covariance matrix remains positive definite, asmprobit uses the square root transformation, where it
optimizes on the Cholesky-factored variance–covariance. To ensure that the diagonal elements of the
Cholesky estimates remain positive, we use the log transformation. The estimates labeled /lnl2 2
and /lnl3 3 in the coefficient table are the log-transformed diagonal elements of the Cholesky
matrix. The estimates labeled /l2 1, /l3 1, and /l3 2 are the off-diagonal entries for elements
(2, 1), (3, 1), and (3, 2) of the Cholesky matrix.

Although the transformed parameters of the differenced covariance parameterization are difficult
to interpret, you can view them untransformed by using the estat command. Typing
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. estat correlation

train bus car

train 1.0000
bus 0.8909 1.0000
car 0.7895 0.8951 1.0000

Note: correlations are for alternatives differenced with air

gives the correlations, and typing

. estat covariance

train bus car

train 2
bus 1.600208 1.613068
car 1.37471 1.399703 1.515884

Note: covariances are for alternatives differenced with air

gives the (co)variances.

We can reduce the number of covariance parameters in the model by using the factor model by
Cameron and Trivedi (2005). For large models with many alternatives, the parameter reduction can
be dramatic, but for our example we will use factor(1), a one-dimension factor model, to reduce
by 3 the number of parameters associated with the covariance matrix.
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. asmprobit choice travelcost termtime, case(id) alternatives(mode)
> casevars(income) factor(1)

(output omitted )

Alternative-specific multinomial probit Number of obs = 840
Case variable: id Number of cases = 210

Alternative variable: mode Alts per case: min = 4
avg = 4.0
max = 4

Integration sequence: Hammersley
Integration points: 200 Wald chi2(5) = 107.85
Log simulated-likelihood = -196.85094 Prob > chi2 = 0.0000

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

mode
travelcost -.0093696 .0036329 -2.58 0.010 -.01649 -.0022492

termtime -.0593173 .0064585 -9.18 0.000 -.0719757 -.0466589

air (base alternative)

train
income -.0373511 .0098219 -3.80 0.000 -.0566018 -.0181004
_cons .1092322 .3949529 0.28 0.782 -.6648613 .8833257

bus
income -.0158793 .0112239 -1.41 0.157 -.0378777 .0061191
_cons -1.082181 .4678732 -2.31 0.021 -1.999196 -.1651666

car
income .0042677 .0092601 0.46 0.645 -.0138817 .0224171
_cons -3.765445 .5540636 -6.80 0.000 -4.851389 -2.6795

/c1_2 1.182805 .3060299 3.86 0.000 .5829972 1.782612
/c1_3 1.227705 .3401237 3.61 0.000 .5610747 1.894335

(mode=air is the alternative normalizing location)
(mode=train is the alternative normalizing scale)

The estimates labeled /c1 2 and /c1 3 in the coefficient table are the factor loadings. These factor
loadings produce the following differenced covariance estimates:

. estat covariance

train bus car

train 2
bus 1.182805 2.399027
car 1.227705 1.452135 2.507259

Note: covariances are for alternatives differenced with air

Variance structures

The matrix Ω has J(J+1)/2 distinct elements because it is symmetric. Selecting a base alternative,
normalizing its error variance to one, and constraining the correlations between its error and the other
errors reduces the number of estimable parameters by J . Moreover, selecting a scale alternative and
normalizing its error variance to one reduces the number by one, as well. Hence, there are at most
m = J(J − 1)/2− 1 estimable parameters in Ω.
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In practice, estimating all m parameters can be difficult, so one must often place more restrictions on
the parameters. The asmprobit command provides the correlation() option to specify restrictions
on the J(J − 3)/2 + 1 correlation parameters not already restricted as a result of choosing the base
alternatives, and it provides stddev() to specify restrictions on the J − 2 standard deviations not
already restricted as a result of choosing the base and scale alternatives.

When the structural option is used, asmprobit fits the model by assuming that all m
parameters can be estimated, which is equivalent to specifying correlation(unstructured) and
stddev(heteroskedastic). The unstructured correlation structure means that all J(J − 3)/2 + 1
of the remaining correlation parameters will be estimated, and the heteroskedastic specification means
that all J − 2 standard deviations will be estimated. With these default settings, the log likelihood is
maximized with respect to the Cholesky decomposition of Ω, and then the parameters are transformed
to the standard deviation and correlation form.

The correlation(exchangeable) option forces the J(J − 3)/2 + 1 correlation parameters
to be equal, and correlation(independent) forces all the correlations to be zero. Using the
stddev(homoskedastic) option forces all J standard deviations to be one. These options may help
in obtaining convergence for a model if the default options do not produce satisfactory results. In
fact, when fitting a complex model, it may be advantageous to first fit a simple one and then proceed
with removing the restrictions one at a time.

Advanced users may wish to specify alternative variance structures of their own choosing, and the
next few paragraphs explain how to do so.

correlation(pattern matname) allows you to give the name of a J × J matrix that identifies
a correlation structure. Sequential positive integers starting at 1 are used to identify each correlation
parameter: if there are three correlation parameters, they are identified by 1, 2, and 3. The integers
can be repeated to indicate that correlations with the same number should be constrained to be equal.
A zero or a missing value (.) indicates that the correlation is to be set to zero. asmprobit considers
only the elements of the matrix below the main diagonal.

Suppose that you have a model with four alternatives, numbered 1–4, and alternative 1 is the
base. The unstructured and exchangeable correlation structures identified in the 4×4 lower triangular
matrices are

unstructured exchangeable
1 2 3 4

1 ·
2 0 ·
3 0 1 ·
4 0 2 3 ·




1 2 3 4
1 ·
2 0 ·
3 0 1 ·
4 0 1 1 ·


asmprobit labels these correlation structures unstructured and exchangeable, even though the correla-
tions corresponding to the base alternative are set to zero. More formally: these terms are appropriate
when considering the (J − 1)× (J − 1) submatrix Σ(k) defined in the Introduction above.

You can also use the correlation(fixed matname) option to specify a matrix that specifies
fixed and free parameters. Here the free parameters (those that are to be estimated) are identified by
a missing value, and nonmissing values represent correlations that are to be taken as given. Below
is a correlation structure that would set the correlations of alternative 1 to be 0.5:


1 2 3 4

1 ·
2 0.5 ·
3 0.5 · ·
4 0.5 · · ·


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The order of the elements of the pattern or fixed matrices must be the same as the numeric
order of the alternative levels.

To specify the structure of the standard deviations—the diagonal elements of Ω—you can use the
stddev(pattern matname) option, where matname is a 1× J matrix. Sequential positive integers
starting at 1 are used to identify each standard deviation parameter. The integers can be repeated to
indicate that standard deviations with the same number are to be constrained to be equal. A missing
value indicates that the corresponding standard deviation is to be set to one. In the four-alternative
example mentioned above, suppose that you wish to set the first and second standard deviations to
one and that you wish to constrain the third and fourth standard deviations to be equal; the following
pattern matrix will do that:

(

1 2 3 4
1 · · 1 1 )

Using the stddev(fixed matname) option allows you to identify the fixed and free standard
deviations. Fixed standard deviations are entered as positive real numbers, and free parameters are
identified with missing values. For example, to constrain the first and second standard deviations to
equal one and to allow the third and fourth to be estimated, you would use this fixed matrix:

(

1 2 3 4
1 1 1 · · )

When supplying either the pattern or the fixed matrices, you must ensure that the model is
properly scaled. At least two standard deviations must be constant for the model to be scaled. A
warning is issued if asmprobit detects that the model is not scaled.

The order of the elements of the pattern or fixed matrices must be the same as the numeric
order of the alternative levels.

Example 2

In example 1, we used the differenced covariance parameterization, the default. We now use
the structural option to view the J − 2 standard deviation estimates and the (J − 1)(J − 2)/2
correlation estimates. Here we will fix the standard deviations for the air and train alternatives to
1 and the correlations between air and the rest of the alternatives to 0.
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. asmprobit choice travelcost termtime, case(id) alternatives(mode)
> casevars(income) structural

(output omitted )
Alternative-specific multinomial probit Number of obs = 840
Case variable: id Number of cases = 210

Alternative variable: mode Alts per case: min = 4
avg = 4.0
max = 4

Integration sequence: Hammersley
Integration points: 200 Wald chi2(5) = 32.05
Log simulated-likelihood = -190.09418 Prob > chi2 = 0.0000

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

mode
travelcost -.0097703 .0027834 -3.51 0.000 -.0152257 -.0043149

termtime -.0377103 .0094092 -4.01 0.000 -.056152 -.0192687

air (base alternative)

train
income -.0291975 .0089246 -3.27 0.001 -.0466895 -.0117055
_cons .5616448 .3946529 1.42 0.155 -.2118607 1.33515

bus
income -.01275 .0079266 -1.61 0.108 -.0282858 .0027858
_cons -.0571664 .4791996 -0.12 0.905 -.9963803 .8820476

car
income -.0049085 .0077486 -0.63 0.526 -.0200955 .0102785
_cons -1.833444 .8186343 -2.24 0.025 -3.437938 -.22895

/lnsigma3 -.2447428 .4953363 -0.49 0.621 -1.215584 .7260985
/lnsigma4 -.3309429 .6494493 -0.51 0.610 -1.60384 .9419543

/atanhr3_2 1.01193 .3890994 2.60 0.009 .249309 1.774551
/atanhr4_2 .5786576 .3940461 1.47 0.142 -.1936586 1.350974
/atanhr4_3 .8885204 .5600561 1.59 0.113 -.2091693 1.98621

sigma1 1 (base alternative)
sigma2 1 (scale alternative)
sigma3 .7829059 .3878017 .2965368 2.067
sigma4 .7182462 .4664645 .2011227 2.564989

rho3_2 .766559 .1604596 .244269 .9441061
rho4_2 .5216891 .2868027 -.1912734 .874283
rho4_3 .7106622 .277205 -.2061713 .9630403

(mode=air is the alternative normalizing location)
(mode=train is the alternative normalizing scale)

When comparing this output to that of example 1, we see that we have achieved the same log
likelihood. That is, the structural parameterization using air as the base alternative and train as
the scale alternative applied no restrictions on the model. This will not always be the case. We leave
it up to you to try different base and scale alternatives, and you will see that not all the different
combinations will achieve the same log likelihood. This is not true for the differenced covariance
parameterization: it will always achieve the same log likelihood (and the maximum possible likelihood)
regardless of the base and scale alternatives. This is why it is the default parameterization.
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For an exercise, we can compute the differenced covariance displayed in example 1 by using the
following ado-code.

. estat covariance

air train bus car

air 1
train 0 1

bus 0 .6001436 .6129416
car 0 .3747012 .399619 .5158776

. return list

matrices:
r(cov) : 4 x 4

. matrix cov = r(cov)

. matrix M = (1,-1,0,0 \ 1,0,-1,0 \ 1,0,0,-1)

. matrix cov1 = M*cov*M’

. matrix list cov1

symmetric cov1[3,3]
r1 r2 r3

r1 2
r2 1.6001436 1.6129416
r3 1.3747012 1.399619 1.5158776

The slight difference in the regression coefficients between the example 1 and example 2 coefficient
tables reflects the accuracy of the [M-5] ghk( ) algorithm using 200 points from the Hammersley
sequence.

We now fit the model using the exchangeable correlation matrix and compare the models with a
likelihood-ratio test.

http://www.stata.com/manuals13/m-5ghk.pdf#m-5ghk()


16 asmprobit — Alternative-specific multinomial probit regression

. asmprobit choice travelcost termtime, case(id) alternatives(mode)
> casevars(income) correlation(exchangeable)

(output omitted )
Alternative-specific multinomial probit Number of obs = 840
Case variable: id Number of cases = 210

Alternative variable: mode Alts per case: min = 4
avg = 4.0
max = 4

Integration sequence: Hammersley
Integration points: 200 Wald chi2(5) = 53.60
Log simulated-likelihood = -190.4679 Prob > chi2 = 0.0000

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

mode
travelcost -.0084636 .0020452 -4.14 0.000 -.012472 -.0044551

termtime -.0345394 .0072812 -4.74 0.000 -.0488103 -.0202684

air (base alternative)

train
income -.0290357 .0083226 -3.49 0.000 -.0453477 -.0127237
_cons .5517445 .3719913 1.48 0.138 -.177345 1.280834

bus
income -.0132562 .0074133 -1.79 0.074 -.0277859 .0012735
_cons -.0052517 .4337932 -0.01 0.990 -.8554708 .8449673

car
income -.0060878 .006638 -0.92 0.359 -.0190981 .0069224
_cons -1.565918 .6633007 -2.36 0.018 -2.865964 -.265873

/lnsigmaP1 -.3557589 .1972809 -1.80 0.071 -.7424222 .0309045
/lnsigmaP2 -1.308596 .8872957 -1.47 0.140 -3.047663 .4304719

/atanhrP1 1.116589 .3765488 2.97 0.003 .3785667 1.854611

sigma1 1 (base alternative)
sigma2 1 (scale alternative)
sigma3 .7006416 .1382232 .4759596 1.031387
sigma4 .2701992 .2397466 .0474697 1.537983

rho3_2 .8063791 .131699 .3614621 .9521783
rho4_2 .8063791 .131699 .3614621 .9521783
rho4_3 .8063791 .131699 .3614621 .9521783

(mode=air is the alternative normalizing location)
(mode=train is the alternative normalizing scale)

. lrtest full .

Likelihood-ratio test LR chi2(2) = 0.75
(Assumption: . nested in full) Prob > chi2 = 0.6882

The likelihood-ratio test suggests that a common correlation is a plausible hypothesis, but this could
be an artifact of the small sample size. The labeling of the standard deviation and correlation estimates
has changed from /lnsigma and /atanhr, in the previous example, to /lnsigmaP and /atanhrP.
The “P” identifies the parameter’s index in the pattern matrices used by asmprobit. The pattern
matrices are stored in e(stdpattern) and e(corpattern).
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Technical note
Another way to fit the model with the exchangeable correlation structure in example 2 is to use

the constraint command to define the constraints on the rho parameters manually and then apply
those.

. constraint 1 [atanhr3_2]_cons = [atanhr4_2]_cons

. constraint 2 [atanhr3_2]_cons = [atanhr4_3]_cons

. asmprobit choice travelcost termtime, case(id) alternatives(mode)
> casevars(income) constraints(1 2) structural

With this method, however, we must keep track of what parameterization of the rhos is used in
estimation, and that depends on the options specified.

Example 3

In the last example, we used the correlation(exchangeable) option, reducing the number
of correlation parameters from three to one. We can explore a two–correlation parameter model
by specifying a pattern matrix in the correlation() option. Suppose that we wish to have the
correlation between train and bus be equal to the correlation between bus and car and to have the
standard deviations for the bus and car equations be equal. We will use air as the base category and
train as the scale category.
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. matrix define corpat = J(4, 4, .)

. matrix corpat[3,2] = 1

. matrix corpat[4,3] = 1

. matrix corpat[4,2] = 2

. matrix define stdpat = J(1, 4, .)

. matrix stdpat[1,3] = 1

. matrix stdpat[1,4] = 1

. asmprobit choice travelcost termtime, case(id) alternatives(mode)
> casevars(income) correlation(pattern corpat) stddev(pattern stdpat)

(output omitted )
Alternative-specific multinomial probit Number of obs = 840
Case variable: id Number of cases = 210

Alternative variable: mode Alts per case: min = 4
avg = 4.0
max = 4

Integration sequence: Hammersley
Integration points: 200 Wald chi2(5) = 41.67
Log simulated-likelihood = -190.12871 Prob > chi2 = 0.0000

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

mode
travelcost -.0100335 .0026203 -3.83 0.000 -.0151692 -.0048979

termtime -.0385731 .008608 -4.48 0.000 -.0554445 -.0217018

air (base alternative)

train
income -.029271 .0089739 -3.26 0.001 -.0468595 -.0116824
_cons .56528 .4008037 1.41 0.158 -.2202809 1.350841

bus
income -.0124658 .0080043 -1.56 0.119 -.0281539 .0032223
_cons -.0741685 .4763422 -0.16 0.876 -1.007782 .859445

car
income -.0046905 .0079934 -0.59 0.557 -.0203573 .0109763
_cons -1.897931 .7912106 -2.40 0.016 -3.448675 -.3471867

/lnsigmaP1 -.197697 .2751269 -0.72 0.472 -.7369359 .3415418

/atanhrP1 .9704403 .3286981 2.95 0.003 .3262038 1.614677
/atanhrP2 .5830923 .3690419 1.58 0.114 -.1402165 1.306401

sigma1 1 (base alternative)
sigma2 1 (scale alternative)
sigma3 .8206185 .2257742 .4785781 1.407115
sigma4 .8206185 .2257742 .4785781 1.407115

rho3_2 .7488977 .1443485 .3151056 .9238482
rho4_2 .5249094 .2673598 -.1393048 .863362
rho4_3 .7488977 .1443485 .3151056 .9238482

(mode=air is the alternative normalizing location)
(mode=train is the alternative normalizing scale)

In the call to asmprobit, we did not need to specify the basealternative() and scalealter-
native() options because they are implied by the specifications of the pattern matrices.
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Technical note
If you experience convergence problems, try specifying nopivot, increasing intpoints(),

specifying antithetics, specifying technique(nr) with difficult, or specifying a switching
algorithm in the technique() option. As a last resort, you can use the nrtolerance() and
showtolerance options. Changing the base and scale alternative in the model specification can also
affect convergence if the structural option is used.

Because simulation methods are used to obtain multivariate normal probabilities, the estimates
obtained have a limited degree of precision. Moreover, the solutions are particularly sensitive to the
starting values used. Experimenting with different starting values may help in obtaining convergence,
and doing so is a good way to verify previous results.

If you wish to use the BHHH algorithm along with another maximization algorithm, you must
specify the initbhhh(#) option, where # is the number of BHHH iterations to use before switching
to the algorithm specified in technique(). The BHHH algorithm uses an outer-product-of-gradients
approximation for the Hessian, and asmprobit must perform the gradient calculations differently
than for the other algorithms.

Technical note
If there are no alternative-specific variables in your model, the variance–covariance matrix pa-

rameters are not identifiable. For such a model to converge, you would therefore need to use cor-
relation(independent) and stddev(homoskedastic). A better alternative is to use mprobit,
which is geared specifically toward models with only case-specific variables. See [R] mprobit.

http://www.stata.com/manuals13/rmprobit.pdf#rmprobit
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Stored results
asmprobit stores the following in e():

Scalars
e(N) number of observations
e(N case) number of cases
e(k) number of parameters
e(k alt) number of alternatives
e(k indvars) number of alternative-specific variables
e(k casevars) number of case-specific variables
e(k sigma) number of variance estimates
e(k rho) number of correlation estimates
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(df m) model degrees of freedom
e(ll) log simulated-likelihood
e(N clust) number of clusters
e(const) constant indicator
e(i base) base alternative index
e(i scale) scale alternative index
e(mc points) number of Monte Carlo replications
e(mc burn) starting sequence index
e(mc antithetics) antithetics indicator
e(chi2) χ2

e(p) significance
e(fullcov) unstructured covariance indicator
e(structcov) 1 if structured covariance; 0 otherwise
e(cholesky) Cholesky-factored covariance indicator
e(alt min) minimum number of alternatives
e(alt avg) average number of alternatives
e(alt max) maximum number of alternatives
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise
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Macros
e(cmd) asmprobit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(indvars) alternative-specific independent variable
e(casevars) case-specific variables
e(case) variable defining cases
e(altvar) variable defining alternatives
e(alteqs) alternative equation names
e(alt#) alternative labels
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(correlation) correlation structure
e(stddev) variance structure
e(cov class) class of the covariance structure
e(chi2type) Wald, type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(mc method) technique used to generate sequences
e(mc seed) random-number generator seed
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(mfx dlg) program used to implement estat mfx dialog
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(stats) alternative statistics
e(stdpattern) variance pattern
e(stdfixed) fixed and free standard deviations
e(altvals) alternative values
e(altfreq) alternative frequencies
e(alt casevars) indicators for estimated case-specific coefficients—e(k alt)×e(k casevars)
e(corpattern) correlation structure
e(corfixed) fixed and free correlations
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
The simulated maximum likelihood estimates for the MNP are obtained using ml; see [R] ml.

The likelihood evaluator implements the GHK algorithm to approximate the multivariate distribution
function (Geweke 1989; Hajivassiliou and McFadden 1998; Keane and Wolpin 1994). The technique
is also described in detail by Genz (1992), but Genz describes a more general algorithm where both

http://www.stata.com/manuals13/rml.pdf#rml
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lower and upper bounds of integration are finite. We briefly describe the GHK simulator and refer you
to Bolduc (1999) for the score computations.

As discussed earlier, the latent variables for a J -alternative model are ηij = xijβ + ziαj + ξij ,
for j = 1, . . . , J , i = 1, . . . , n, and ξ′i = (ξi,1, . . . , ξi,J) ∼ MVN(0,Ω). The experimenter observes
alternative k for the ith observation if k = arg max(ηij , j = 1, . . . , J). Let

vij′ = ηij − ηik
= (xij − xik)β + zi(αj − αk) + ξij − ξik
= δij′β + ziγj′ + εij′

where j′ = j if j < k and j′ = j − 1 if j > k, so that j′ = 1, . . . , J − 1. Further, εi =
(εi1, . . . , εi,J−1) ∼ MVN(0,Σ(k)). Σ is indexed by k because it depends on the choice made. We
denote the deterministic part of the model as λij′ = δij′β + zjγj′ , and the probability of this event
is

Pr(yi = k) = Pr(vi1 ≤ 0, . . . , vi,J−1 ≤ 0)

= Pr(εi1 ≤ −λi1, . . . , εi,J−1 ≤ −λi,J−1)

= (2π)
−(J−1)/2 |Σ(k)|−1/2

∫ −λi1

−∞
· · ·
∫ −λi,J−1

−∞
exp

(
− 1

2z
′Σ−1(k)z

)
dz

(3)

Simulated likelihood
For clarity in the discussion that follows, we drop the index denoting case so that for an arbitrary

observation υ′ = (v1, . . . , vJ−1), λ′ = (λ1, . . . , λJ−1), and ε′ = (ε1, . . . , εJ−1).

The Cholesky-factored variance–covariance, Σ = LL′, is lower triangular,

L =


l11 0 . . . 0
l21 l22 . . . 0
...

...
...

lJ−1,1 lJ−1,2 . . . lJ−1,J−1


and the correlated latent-variable errors can be expressed as linear functions of uncorrelated normal
variates, ε = Lζ, where ζ′ = (ζ1, . . . , ζJ−1) and ζj ∼ iid N(0, 1). We now have υ = λ + Lζ, and
by defining

zj =


− λ1
l11

for j = 1

−
λj +

∑j−1
i=1 ljiζi
ljj

for j = 2, . . . , J − 1
(4)

we can express the probability statement (3) as the product of conditional probabilities

Pr(yi = k) = Pr (ζ1 ≤ z1) Pr (ζ2 ≤ z2 | ζ1 ≤ z1) · · ·
Pr (ζJ−1 ≤ zJ−1 | ζ1 ≤ z1, . . . , ζJ−2 ≤ zJ−2)
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because
Pr(v1 ≤ 0) = Pr(λ1 + l11ζ1 ≤ 0)

= Pr

(
ζ1 ≤ −

λ1
l11

)
Pr(v2 ≤ 0) = Pr(λ2 + l21ζ1 + l22ζ2 ≤ 0)

= Pr

(
ζ2 ≤ −

λ2 + l21ζ1
l22

| ζ1 ≤ −
λ1
l11

)
. . .

The Monte Carlo algorithm then must make draws from the truncated standard normal distribution.
It does so by generating J − 1 uniform variates, δj , j = 1, . . . , J − 1, and computing

ζ̃j =


Φ−1

{
δ1Φ

(
− λ1
l11

)}
for j = 1

Φ−1

{
δjΦ

(
−λj −

∑j−1
i=1 ljiζ̃i

ljj

)}
for j = 2, . . . , J − 1

Define z̃j by replacing ζ̃i for ζi in (4) so that the simulated probability for the lth draw is

pl =

J−1∏
j=1

Φ(z̃j)

To increase accuracy, the bounds of integration, λj , are ordered so that the largest integration intervals
are on the inside. The rows and columns of the variance–covariance matrix are pivoted accordingly
(Genz 1992).

For a more detailed description of the GHK algorithm in Stata, see Gates (2006).

Repeated draws are made, say, N , and the simulated likelihood for the ith case, denoted L̂i, is
computed as

L̂i =
1

N

N∑
l=1

pl

The overall simulated log likelihood is
∑
i log L̂i.

If the true likelihood is Li, the error bound on the approximation can be expressed as

|L̂i − Li| ≤ V (Li)DN{(δi)}

where V (Li) is the total variation of Li and DN is the discrepancy, or nonuniformity, of the set of ab-
scissas. For the uniform pseudorandom sequence, δi, the discrepancy is of orderO{(log logN/N)1/2}.
The order of discrepancy can be improved by using quasirandom sequences.

Quasi–Monte Carlo integration is carried out by asmprobit by replacing the uniform deviates
with either the Halton or the Hammersley sequences. These sequences spread the points more evenly
than the uniform random sequence and have a smaller order of discrepancy, O

[
{(logN)J−1}/N

]
and O

[
{(logN)J−2}/N

]
, respectively. The Halton sequence of dimension J − 1 is generated from

the first J − 1 primes, pk, so that on draw l we have hl = {rp1(l), rp2(l), . . . , rpJ−1
(l)}, where
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rpk(l) =

q∑
j=0

bjk(l)p−j−1k ∈ (0, 1)

is the radical inverse function of l with base pk so that
∑q
j=0 bjk(l)pjk = l, where pqk ≤ l < pq+1

k
(Fang and Wang 1994).

This function is demonstrated with base p3 = 5 and l = 33, which generates r5(33). Here q = 2,
b0,3(33) = 3, b1,5(33) = 1, and b2,5(33) = 1, so that r5(33) = 3/5 + 1/25 + 1/625.

The Hammersley sequence uses an evenly spaced set of points with the first J − 2 components
of the Halton sequence

hl =

{
2l − 1

2N
, rp1(l), rp2(l), . . . , rpJ−2

(l)

}
for l = 1, . . . , N .

For a more detailed description of the Halton and Hammersley sequences, see Drukker and
Gates (2006).

Computations for the derivatives of the simulated likelihood are taken from Bolduc (1999). Bolduc
gives the analytical first-order derivatives for the log of the simulated likelihood with respect to
the regression coefficients and the parameters of the Cholesky-factored variance–covariance matrix.
asmprobit uses these analytical first-order derivatives and numerical second-order derivatives.

This command supports the clustered version of the Huber/White/sandwich estimator of the
variance using vce(robust) and vce(cluster clustvar). See [P] robust, particularly Maximum
likelihood estimators and Methods and formulas. Specifying vce(robust) is equivalent to specifying
vce(cluster casevar), where casevar is the variable that identifies the cases.
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