
Title stata.com

trace — Debug Stata programs

Syntax Description Options Remarks and examples Also see

Syntax
Whether to trace execution of programs

set trace
{
on | off

}
Show # levels in tracing nested programs

set tracedepth #

Whether to show the lines after macro expansion

set traceexpand
{
on | off

} [
, permanently

]
Whether to display horizontal separator lines

set tracesep
{
on | off

} [
, permanently

]
Whether to indent lines according to nesting level

set traceindent
{
on | off

} [
, permanently

]
Whether to display nesting level

set tracenumber
{
on | off

} [
, permanently

]
Highlight pattern in trace output

set tracehilite "pattern"
[
, word

]
Description

set trace on traces the execution of programs for debugging. set trace off turns off tracing
after it has been set on.

set tracedepth specifies how many levels to descend in tracing nested programs. The default
is 32000, which is equivalent to ∞.

set traceexpand indicates whether the lines before and after macro expansion are to be shown.
The default is on.

set tracesep indicates whether to display a horizontal separator line that displays the name of
the subroutine whenever a subroutine is entered or exited. The default is on.

1

http://stata.com


2 trace — Debug Stata programs

set traceindent indicates whether displayed lines of code should be indented according to the
nesting level. The default is on.

set tracenumber indicates whether the nesting level should be displayed at the beginning of
the line. Lines in the main program are preceded with 01; lines in subroutines called by the main
program, with 02; etc. The default is off.

set tracehilite causes the specified pattern to be highlighted in the trace output.

Options
permanently specifies that, in addition to making the change right now, the traceexpand, tracesep,

traceindent, and tracenumber settings be remembered and become the default settings when
you invoke Stata.

word highlights only tokens that are delimited by nonalphanumeric characters. These would include
tokens at the beginning or end of each line that are delimited by nonalphanumeric characters.

Remarks and examples stata.com

The set trace commands are extremely useful for debugging your programs.

Example 1

Stata does not normally display the lines of your program as it executes them. With set trace
on, however, it does:

. program list simple

simple:
1. args msg
2. if ‘"‘msg’"’=="hello" {
3. display "you said hello"
4. }
5. else display "you did not say hello"
6. display "good-bye"

. set trace on

. simple
begin simple

- args msg
- if ‘"‘msg’"’=="hello" {
= if ‘""’=="hello" {

display "you said hello"
}

- else display "you did not say hello"
you did not say hello

- display "good-bye"
good-bye

end simple

. set trace off

Lines that are executed are preceded by a dash. The line is shown before macro expansion, just as
it was coded. If the line has any macros, it is shown again, this time preceded by an equal sign and
with the macro expanded, showing the line exactly as Stata sees it.

In our simple example, Stata substituted nothing for ‘msg’, as we can see by looking at the
macro-expanded line. Because nothing is not equal to “hello”, Stata skipped the display of “you said
hello”, so a dash did not precede this line.

http://stata.com


trace — Debug Stata programs 3

Stata then executed lines 5 and 6. (They are not reshown preceded by an equal sign because they
contained no macros.)

To suppress the printing of the macro-expanded lines, type set traceexpand off.

To suppress the printing of the trace separator lines,

begin simple

end simple

type set tracesep off.

The output from our program is interspersed with the lines that caused the output. This can be
greatly useful when our program has an error. For instance, we have written a more useful program
called myprog. Here is what happens when we run it:

. myprog mpg, prefix("new")
invalid syntax
r(198);

We did not expect this, and, look as we will at our program code, we cannot spot the error. Our
program contains many lines of code, however, so we have no idea even where to look. By setting
trace on, we can quickly find the error:

. set trace on

. myprog mpg, prefix("new")
begin myprog

- version 13
- syntax varname , [Prefix(string)]
- local newname "‘prefix’‘varname’
= local newname "new

invalid syntax
end myprog

r(198);

The error was close to the top—we omitted the closing quote in the definition of the local newname
macro.

Technical note
If you are looking for a command similar to set trace for use in Mata, see mata set matalnum

in [M-3] mata set.

Example 2

set tracedepth, set tracesep, set traceindent, and set tracenumber are useful when
debugging nested programs. Imagine that we have a program called myprog1, which calls myprog2,
which then calls a modified version of our simple program from example 1.

With the default settings, we get:

. program list _all

simple2:
1. args msg
2. if ‘"‘msg’"’=="hello" {
3. display "you said hello"
4. }

http://www.stata.com/manuals13/perror.pdf#perrorRemarksandexamplesr(198)
http://www.stata.com/manuals13/perror.pdf#perrorRemarksandexamplesr(198)
http://www.stata.com/manuals13/m-3mataset.pdf#m-3mataset


4 trace — Debug Stata programs

5. else {
6. display "you did not say hello"
7. }

myprog2:
1. args msg
2. simple2 ‘"‘msg’"’
3. display "good"

myprog1:
1. args msg
2. myprog2 ‘"‘msg’"’
3. display "bye"

. set trace on

. myprog1 hello
begin myprog1

- args msg
- myprog2 ‘"‘msg’"’
= myprog2 ‘"hello"’

begin myprog2
- args msg
- simple2 ‘"‘msg’"’
= simple2 ‘"hello"’

begin simple2
- args msg
- if ‘"‘msg’"’=="hello" {
= if ‘"hello"’=="hello" {
- display "you said hello"

you said hello
- }
- else {

display "you did not say hello"
}

end simple2
- display "good"

good
end myprog2

- display "bye"
bye

end myprog1

. set trace off

To see the nesting level for each line, you could use set tracenumber on.
. set trace on

. set tracenumber on

. myprog1 hello
begin myprog1

01 - args msg
01 - myprog2 ‘"‘msg’"’

= myprog2 ‘"hello"’
begin myprog2

02 - args msg
02 - simple2 ‘"‘msg’"’

= simple2 ‘"hello"’
begin simple2

03 - args msg
03 - if ‘"‘msg’"’=="hello" {

= if ‘"hello"’=="hello" {
03 - display "you said hello"
you said hello
03 - }
03 - else {



trace — Debug Stata programs 5

03 display "you did not say hello"
03 }

end simple2
02 - display "good"
good

end myprog2
01 - display "bye"
bye

end myprog1

. set tracenumber off

. set trace off

If you are interested only in seeing a trace of the first two nesting levels, you could set
tracedepth 2.

. set trace on

. set tracedepth 2

. myprog1 hello
begin myprog1

- args msg
- myprog2 ‘"‘msg’"’
= myprog2 ‘"hello"’

begin myprog2
- args msg
- simple2 ‘"‘msg’"’
= simple2 ‘"hello"’

you said hello
- display "good"

good
end myprog2

- display "bye"
bye

end myprog1

. set tracedepth 32000

. set trace off

By setting tracedepth to 2, the trace of simple2 is not shown.

Finally, if you did not want each nested level to be indented in the trace output, you could set
traceindent off.

. set trace on

. set traceindent off

. myprog1 hello
begin myprog1

- args msg
- myprog2 ‘"‘msg’"’
= myprog2 ‘"hello"’

begin myprog2
- args msg
- simple2 ‘"‘msg’"’
= simple2 ‘"hello"’

begin simple2
- args msg
- if ‘"‘msg’"’=="hello" {
= if ‘"hello"’=="hello" {
- display "you said hello"
you said hello
- }
- else {



6 trace — Debug Stata programs

display "you did not say hello"
}

end simple2
- display "good"
good

end myprog2
- display "bye"
bye

end myprog1

. set traceindent on

. set trace off

Also see
[P] program — Define and manipulate programs

[R] query — Display system parameters

[R] set — Overview of system parameters

[U] 18 Programming Stata

http://www.stata.com/manuals13/pprogram.pdf#pprogram
http://www.stata.com/manuals13/rquery.pdf#rquery
http://www.stata.com/manuals13/rset.pdf#rset
http://www.stata.com/manuals13/u18.pdf#u18ProgrammingStata

