
Title stata.com

matrix accum — Form cross-product matrices

Syntax Description Options Remarks and examples
Stored results Reference Also see

Syntax

Accumulate cross-product matrices to form X′X

matrix accum A = varlist
[

if
] [

in
] [

weight
] [

, noconstant

deviations means(m) absorb(varname)
]

Accumulate cross-product matrices to form X′BX

matrix glsaccum A = varlist
[

if
] [

in
] [

weight
]
, group(groupvar)

glsmat(W | stringvar) row(rowvar)
[
noconstant

]
Accumulate cross-product matrices to form

∑
X′ieie

′
iXi

matrix opaccum A = varlist
[

if
] [

in
]
, group(groupvar)

opvar(opvar)
[
noconstant

]
Accumulate first variable against remaining variables

matrix vecaccum a = varlist
[

if
] [

in
] [

weight
] [

, noconstant
]

varlist in matrix accum and in matrix vecaccum may contain factor variables (except for the first variable in
matrix vecaccum varlist); see [U] 11.4.3 Factor variables.

varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

Description
matrix accum accumulates cross-product matrices from the data to form A = X′X.

matrix glsaccum accumulates cross-product matrices from the data by using a specified inner
weight matrix to form A = X′BX, where B is a block diagonal matrix.

matrix opaccum accumulates cross-product matrices from the data by using an inner weight
matrix formed from the outer product of a variable in the data to form

A = X′1e1e
′
1X1 +X′2e2e

′
2X2 + · · ·+X′KeKe′KXK

where Xi is a matrix of observations from the ith group of the varlist variables and ei is a vector
formed from the observations in the ith group of the opvar variable.

matrix vecaccum accumulates the first variable against the remaining variables in varlist to form
a row vector of accumulated inner products to form a = x′1X, where X = (x2,x3, . . .).

Also see [M-5] cross() for other routines for forming cross-product matrices.

1

http://stata.com
http://www.stata.com/manuals13/u11.pdf#u11.4varlists
http://www.stata.com/manuals13/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals13/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u11.pdf#u11.4varlists
http://www.stata.com/manuals13/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals13/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals13/u11.pdf#u11.4varlists
http://www.stata.com/manuals13/u11.pdf#u11.4varlists
http://www.stata.com/manuals13/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals13/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals13/u11.pdf#u11.4varlists
http://www.stata.com/manuals13/u11.pdf#u11.4varlists
http://www.stata.com/manuals13/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals13/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals13/u11.pdf#u11.4.3Factorvariables
http://www.stata.com/manuals13/u11.pdf#u11.4.4Time-seriesvarlists
http://www.stata.com/manuals13/u11.pdf#u11.1.6weight
http://www.stata.com/manuals13/u11.pdf#u11.4varlists
http://www.stata.com/manuals13/m-5cross.pdf#m-5cross()

2 matrix accum — Form cross-product matrices

Options
noconstant suppresses the addition of a “constant” to the X matrix. If noconstant is not specified,

it is as if a column of 1s is added to X before the accumulation begins. For instance, for matrix
accum without noconstant, X′X is really (X,1)′(X,1), resulting in(

X′X X′1
1′X 1′1

)
Thus the last row and column contain the sums of the columns of X, and the element in the last
row and column contains the number of observations. If p variables are specified in varlist, the
resulting matrix is (p+ 1)× (p+ 1). Specifying noconstant suppresses the addition of this row
and column (or just the column for matrix vecaccum).

deviations, allowed only with matrix accum, causes the accumulation to be performed in terms
of deviations from the mean. If noconstant is not specified, the accumulation of X is done in
terms of deviations, but the added row and column of sums are not in deviation format (in which
case they would be zeros). With noconstant specified, the resulting matrix, divided through by
N − 1, where N is the number of observations, is a covariance matrix.

means(m), allowed only with matrix accum, creates matrix m: 1× (p+ 1) or 1× p (depending
on whether noconstant is also specified) containing the means of X.

absorb(varname), allowed only with matrix accum, specifies that matrix accum compute the
accumulations in terms of deviations from the mean within the absorption groups identified by
varname.

group(groupvar) is required with matrix glsaccum and matrix opaccum and is not allowed
otherwise. In the two cases where it is required, it specifies the name of a variable that identifies
groups of observations. The data must be sorted by groupvar.

In matrix glsaccum, groupvar identifies the observations to be individually weighted by glsmat().

In matrix opaccum, groupvar identifies the observations to be weighted by the outer product of
opvar().

glsmat(W | stringvar), required with matrix glsaccum and not allowed otherwise, specifies the
name of the matrix or the name of a string variable in the dataset that contains the name of the
matrix that is to be used to weight the observations in group(). stringvar must be str8 or less.

row(rowvar), required with matrix glsaccum and not allowed otherwise, specifies the name of a
numeric variable containing the row numbers that specify the row and column of the glsmat()
matrix to use in the inner-product calculation.

opvar(opvar), required with matrix opaccum, specifies the variable used to form the vector whose
outer product forms the weighting matrix.

Remarks and examples stata.com

Remarks are presented under the following headings:

matrix accum
matrix glsaccum
matrix opaccum
matrix vecaccum
Treatment of user-specified weights

http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u11.pdf#u11.4varlists
http://stata.com

matrix accum — Form cross-product matrices 3

matrix accum

matrix accum is a straightforward command that accumulates one matrix that holds X′X and
X′y, which is typically used in b = (X′X)−1X′y. Say that we wish to run a regression of the
variable price on mpg and weight. We can begin by accumulating the full cross-product matrix for
all three variables:

. use http://www.stata-press.com/data/r13/auto

. matrix accum A = price weight mpg
(obs=74)

. matrix list A

symmetric A[4,4]
price weight mpg _cons

price 3.448e+09
weight 1.468e+09 7.188e+08

mpg 9132716 4493720 36008
_cons 456229 223440 1576 74

In our accumulation, matrix accum automatically added a constant; we specified three variables and
got back a 4× 4 matrix. The constant term is always added last. In terms of our regression model,
the matrix we just accumulated has y = price and X = (weight, mpg, cons) and can be written
as

A =
(
y,X

)′(
y,X

)
=

(
y′y y′X
X′y X′X

)
Thus we can extract X′X from the submatrix of A beginning at the second row and column, and
we can extract X′y from the first column of A, omitting the first row:

. matrix XX = A[2...,2...]

. matrix list XX

symmetric XX[3,3]
weight mpg _cons

weight 7.188e+08
mpg 4493720 36008

_cons 223440 1576 74

. matrix Xy = A[2...,1]

. matrix list Xy

Xy[3,1]
price

weight 1.468e+09
mpg 9132716

_cons 456229

We can now calculate b = (X′X)−1X′y:

. matrix b = invsym(XX)*Xy

. matrix list b

b[3,1]
price

weight 1.7465592
mpg -49.512221

_cons 1946.0687

The same result could have been obtained directly from A:

. matrix b = invsym(A[2...,2...])*A[2...,1]

4 matrix accum — Form cross-product matrices

Technical note

matrix accum, with the deviations and noconstant options, can also be used to obtain
covariance matrices. The covariance between variables xi and xj is defined as

Cij =

∑n
k=1(xik − xi)(xjk − xj)

n− 1

Without the deviations option, matrix accum calculates a matrix with elements

Rij =

n∑
k=1

xikxjk

and with the deviations option,

Aij =

n∑
k=1

(xik − xi)(xjk − xj)

Thus the covariance matrix C = A/(n− 1).

. matrix accum Cov = price weight mpg, deviations noconstant
(obs=74)

. matrix Cov = Cov/(r(N)-1)

. matrix list Cov

symmetric Cov[3,3]
price weight mpg

price 8699526
weight 1234674.8 604029.84

mpg -7996.2829 -3629.4261 33.472047

In addition to calculating the cross-product matrix, matrix accum records the number of observations
in r(N), a feature we use in calculating the normalizing factor. With the corr() matrix function
defined in [P] matrix define, we can convert the covariance matrix into a correlation matrix:

. matrix P = corr(Cov)

. matrix list P

symmetric P[3,3]
price weight mpg

price 1
weight .53861146 1

mpg -.46859669 -.80717486 1

matrix glsaccum

matrix glsaccum is a generalization of matrix accum useful in producing GLS-style weighted
accumulations. Whereas matrix accum produces matrices of the form X′X, matrix glsaccum
produces matrices of the form X′BX, where

B =

W1 0 . . . 0
0 W2 . . . 0
...

...
. . .

...
0 0 . . . WK

http://www.stata.com/manuals13/pmatrixdefine.pdf#pmatrixdefine

matrix accum — Form cross-product matrices 5

The matrices Wk, k = 1, . . . ,K are called the weighting matrices for observation group k. In
the matrices above, each of the Wk matrices is square, but there is no assumption that they all have
the same dimension. By writing

X =

X1

X2
...

XK

the accumulation made by matrix glsaccum can be written as

X′BX = X′1W1X1 +X′2W2X2 + · · ·+X′KWKXK

matrix glsaccum requires you to specify three options: group(groupvar), glsmat(stringvar) or
glsmat(matvar), and row(rowvar). Observations sharing the same value of groupvar are said to
be in the same observation group—this specifies the group, k, in which they are to be accumulated.
Before calling matrix glsaccum, you must sort the data by groupvar. How Wk is assembled is
the subject of the other two options.

Think of there being a superweighting matrix for the group, which we will call Vk. Vk is
specified by glsmat(). The same supermatrix can be used for all observations by specifying a
matname as the argument to glsmat(), or, if a variable name is specified, different supermatrices
can be specified—the contents of the variable will be used to obtain the particular name of the
supermatrix. (More correctly, the contents of the variable for the first observation in the group will
be used: supermatrices can vary across groups but must be the same within group.)

Weighting matrix Wk is made from supermatrix Vk by selecting the rows and columns specified
in row(rowvar). In the simple case, Wk = Vk. This happens when there are m observations in the
group and the first observation in the group has rowvar = 1, the second has rowvar = 2, and so on.
To fix ideas, let m = 3 and write

V1 =

 v11 v12 v13
v21 v22 v23
v31 v32 v33

V need not be symmetric. Let’s pretend that the first 4 observations in our dataset contain

obs. no. groupvar rowvar
1 1 1
2 1 2
3 1 3
4 2 . . .

In these data, the first 3 observations are in the first group because they share an equal groupvar.
It is not important that groupvar happens to equal 1; it is important that the values are equal. The
rowvars are, in order, 1, 2, and 3, so W1 is formed by selecting the first row and column of V1,
then the second row and column of V1, and finally the third row and column of V1:

W1 =

 v11 v12 v13
v21 v22 v23
v31 v32 v33

6 matrix accum — Form cross-product matrices

or W1 = V1. Now consider the same data, but reordered:

obs. no. groupvar rowvar
1 1 2
2 1 1
3 1 3
4 2 . . .

W1 is now formed by selecting the second row and column, then the first row and column, and
finally the third row and column of V1. These steps can be performed sequentially, reordering first
the rows and then the columns; the result is

W1 =

 v22 v21 v23
v12 v11 v13
v32 v31 v33

This reorganization of the W1 matrix exactly undoes the reorganization of the X1 matrix, so
X′1W1X1 remains unchanged. Given how Wk is assembled from Vk, the order of the row numbers
in the data does not matter.

matrix glsaccum is willing to carry this concept even further. Consider the following data:

obs. no. groupvar rowvar
1 1 1
2 1 3
3 1 3
4 2 . . .

Now rowvar equals 1 followed by 3 twice, so the first row and column of V1 are selected, followed
by the third row and column twice; the second column is never selected. The resulting weighting
matrix is

W1 =

 v11 v13 v13
v31 v33 v33
v31 v33 v33

Such odd weighting would not occur in, say, time-series analysis, where the matrix might be weighting
lags and leads. It could well occur in an analysis of individuals in families, where 1 might indicate
the head of household, 2 a spouse, and 3 a child. In fact, such a case could be handled with a 3× 3
superweighting matrix V , even if the family became large: the appropriate weighting matrix Wk

would be assembled, on a group-by-group (family-by-family) basis, from the underlying supermatrix.

matrix opaccum

matrix opaccum is a special case of matrix glsaccum. matrix glsaccum calculates results of
the form

A = X′1W1X1 +X′2W2X2 + · · ·+X′KWKXK

Often Wi is simply the outer product of another variable in the dataset; that is,

Wi = eie
′
i

matrix accum — Form cross-product matrices 7

where ei is the ni× 1 vector formed from the ni groupvar() observations of the variable specified
in opvar(). The data must be sorted by groupvar.

Example 1

Suppose that we have a panel dataset that contains five variables: id, t, e (a residual), and
covariates x1 and x2. Further suppose that we need to compute

A = X′1e1e
′
1X1 +X′2e2e

′
2X2 + · · ·+X′KeKe′KXK

where Xi contains the observations on x1 and x2 when id==i and ei contains the observations on
e when id==i.

Below is the output from xtdescribe for our example data. There are 11 groups and the number
of observations per group is not constant.

. use http://www.stata-press.com/data/r13/maccumxmpl

. xtdescribe, patterns(11)

id: 1, 2, ..., 11 n = 11
t: 1, 2, ..., 15 T = 15

Delta(t) = 1 unit
Span(t) = 15 periods
(id*t uniquely identifies each observation)

Distribution of T_i: min 5% 25% 50% 75% 95% max
5 5 7 10 13 15 15

Freq. Percent Cum. Pattern

1 9.09 9.09 11111..........
1 9.09 18.18 111111.........
1 9.09 27.27 1111111........
1 9.09 36.36 11111111.......
1 9.09 45.45 111111111......
1 9.09 54.55 1111111111.....
1 9.09 63.64 11111111111....
1 9.09 72.73 111111111111...
1 9.09 81.82 1111111111111..
1 9.09 90.91 11111111111111.
1 9.09 100.00 111111111111111

11 100.00 XXXXXXXXXXXXXXX

If we were to calculate A with matrix glsaccum, we would need to form 11 matrices and store
their names in a string variable before calling matrix glsaccum. This step slows down matrix
glsaccum when there are many groups. Also all the information contained in the Wi matrices
is contained in the variable e. It is this structure that matrix opaccum exploits to make a faster
command for this type of problem:

. sort id t

. matrix opaccum A = x1 x2, group(id) opvar(e)

8 matrix accum — Form cross-product matrices

matrix vecaccum
The first variable in varlist is treated differently from the others by matrix vecaccum. Think of

the first variable as specifying vector y and the remaining variables as specifying matrix X. matrix
vecaccum makes the accumulation y′X to return a row vector with elements

ai =

n∑
k=1

ykxki

Like matrix accum, matrix vecaccum adds a constant, cons, to X unless noconstant is specified.

matrix vecaccum serves two purposes. First, terms like y′X often occur in calculating derivatives
of likelihood functions; matrix vecaccum provides a fast way of calculating them. Second, it is
useful in time-series accumulations of the form

C =

T∑
t=1

k∑
δ=−k

x′t−δxtWδrt−δrt

In this calculation, X is an observation matrix with elements xtj , with t indexing time (observations)
and j variables, t = 1, . . . , T and j = 1, . . . , p. xt (1× p) refers to the tth row of this matrix. Thus
C is a p× p matrix.

The Newey–West covariance matrix uses the definition Wδ = 1−|δ|/(k+1) for δ ≤ k. To make
the calculation, the user (programmer) cycles through each of the j variables, forming

ztj =

k∑
δ=−k

x(t−δ)jWδrt−δrt

Writing zj = (z1j , z2j , . . . , zTj)
′, we can then say that C is

C =

p∑
j=1

z′jX

In this derivation, the user must decide in advance the maximum lag length, k, such that observations
that are far apart in time must have increasingly small covariances to establish the convergence results.

The Newey–West estimator is in the class of generalized method-of-moments (GMM) estimators.
The choice of a maximum lag length, k, is a reflection of the length in time beyond which the
autocorrelation becomes negligible for estimating the variance matrix. The code fragment given
below is merely for illustration of the matrix commands, because Stata includes estimation with the
Newey–West covariance matrix in the newey command. See [TS] newey or Greene (2012, 920) for
details on this estimator.

Calculations like z′jX are made by matrix vecaccum, and zj can be treated as a temporary
variable in the dataset.

assume ‘1’,‘2’, etc., contain the xs including constant
assume ‘r’ contains the r variable
assume ‘k’ contains the k range
tempname C factor t c
tempvar z

local p : word count ‘*’
matrix ‘C’ = J(‘p’,‘p’,0)
gen double ‘z’ = 0
forvalues d = 0/‘k’ {

/* Add each submatrix twice except for
the lag==0 case */

scalar ‘factor’ = cond(‘d’>0, 1, .5)

http://www.stata.com/manuals13/tsnewey.pdf#tsnewey

matrix accum — Form cross-product matrices 9

local w = (1 - ‘d’/(‘k’+1))
capture mat drop ‘t’
forvalues j = 1/‘p’ {

replace ‘z’ = ‘‘j’’[_n-‘d’]*‘w’*‘r’[_n-‘d’]*‘r’
mat vecaccum ‘c’ = ‘z’ ‘*’, nocons
mat ‘t’ = ‘t’ \ ‘c’

}
mat ‘C’ = ‘C’ + (‘t’ + ‘t’’)*‘factor’

}
local ‘p’ = "_cons" // Rename last var to _cons
mat rownames ‘C’ = ‘*’
mat colnames ‘C’ = ‘*’
assume inverse and scaling for standard-error reports

Treatment of user-specified weights

matrix accum, matrix glsaccum, and matrix vecaccum all allow weights. Here is how they
are treated:

All three commands can be thought of as returning something of the form X′1BX2. matrix
accum, X1 = X2 and B = I; for matrix glsaccum, X1 = X2; and matrix vecaccum, B = I,
X1 is a column vector and X2 is a matrix.

The commands really calculate X′1W
1/2BW1/2X2, where W is a diagonal matrix. If no

weights are specified, W = I. Now assume that weights are specified, and let v: 1 × n be the
specified weights. If fweights or pweights are specified, W = diag(v). If aweights are specified,
W = diag{v/(1′v)(1′1)}, meaning that the weights are normalized to sum to the number of
observations. If iweights are specified, they are treated like fweights, except that the elements of
v are not restricted to be positive integers.

Stored results
matrix accum, matrix glsaccum, matrix opaccum, and matrix vecaccum store the number

of observations in r(N). matrix accum stores the number of absorption groups in r(k absorb).
matrix glsaccum (with aweights) and matrix vecaccum also store the sum of the weight in
r(sum w), but matrix accum does not.

Reference
Greene, W. H. 2012. Econometric Analysis. 7th ed. Upper Saddle River, NJ: Prentice Hall.

Also see
[P] matrix — Introduction to matrix commands

[M-4] statistical — Statistical functions

[R] ml — Maximum likelihood estimation

[U] 14 Matrix expressions

http://www.stata.com/bookstore/ea.html
http://www.stata.com/manuals13/pmatrix.pdf#pmatrix
http://www.stata.com/manuals13/m-4statistical.pdf#m-4statistical
http://www.stata.com/manuals13/rml.pdf#rml
http://www.stata.com/manuals13/u14.pdf#u14Matrixexpressions

