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makecns — Constrained estimation

Syntax Description Options Remarks and examples Stored results Also see

Syntax
Build constraints

makecns
[

clist |matname
] [

, options
]

Create constraint matrix

matcproc T a C

where clist is a list of constraint numbers, separated by commas or dashes; matname is an existing
matrix representing the constraints and must have one more column than the e(b) and e(V)
matrices.

T, a, and C are names of new or existing matrices.

options Description

nocnsnotes do not display notes when constraints are dropped
displaycns display the system-stored constraint matrix
r return the accepted constraints in r(); this option overrides displaycns

Description
makecns is a programmer’s command that facilitates adding constraints to estimation commands.

makecns will create a constraint matrix and displays a note for each constraint that is dropped
because of an error. The constraint matrix is stored in e(Cns).

matcproc returns matrices helpful for performing constrained estimation, including the constraint
matrix.

If your interest is simply in using constraints in a command that supports constrained estimation,
see [R] constraint.

Options
nocnsnotes prevents notes from being displayed when constraints are dropped.

displaycns displays the system-stored constraint matrix in readable form.

r returns the accepted constraints in r(). This option overrides displaycns.
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Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
Overview
Mathematics
Linkage of the mathematics to Stata

Introduction

Users of estimation commands that allow constrained estimation define constraints with the
constraint command; they indicate which constraints they want to use by specifying the con-
straints(clist) option to the estimation command. This entry concerns programming such sophisti-
cated estimators. If you are programming using ml, you can ignore this entry. Constraints are handled
automatically (and if you were to look inside the ml code, you would find that it uses makecns).

Before reading this entry, you should be familiar with constraints from a user’s perspective; see
[R] constraint. You should also be familiar with programming estimation commands that do not
include constraints; see [P] ereturn.

Overview

You have an estimation command and wish to allow a set of linear constraints to be specified
for the parameters by the user and then to produce estimates subject to those constraints. Stata will
do most of the work for you. First, it will collect the constraints—all you have to do is add an
option to your estimation command to allow the user to specify which constraints to use. Second, it
will process those constraints, converting them from algebraic form (such as group1=group2) to a
constraint matrix. Third, it will convert the constraint matrix into two matrices that will, for maximum
likelihood estimation, allow you to write your routine almost as if there were no constraints.

There will be a “reduced-form” parameter vector, bc, which your likelihood-calculation routine
will receive. That vector, multiplied by one of the almost magical matrices and then added to the
other, can be converted into a regular parameter vector with the constraints applied, so other than the
few extra matrix calculations, you can calculate the likelihood function as if there were no constraints.
You can do the same thing with respect to the first and second derivatives (if you are calculating
them), except that, after getting them, you will need to perform another matrix multiplication or two
to convert them into the reduced form.

Once the optimum is found, you will have reduced-form parameter vector bc and variance–
covariance matrix Vc. Both can be easily converted into full-form-but-constrained b and V.

Finally, you will ereturn post the results along with the constraint matrix Stata made up for you
in the first place. You can, with a few lines of program code, arrange it so that, every time results
are replayed, the constraints under which they were produced are redisplayed in standard algebraic
format.

Mathematics

Let Rb′ = r be the constraint for R, a c × p constraint matrix imposing c constraints on p
parameters; b, a 1× p parameter vector; and r, a c× 1 vector of constraint values.
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We wish to construct a p× k matrix, T, that takes b into a reduced-rank form, where k = p− c.
There are obviously many T matrices that will do this; we choose one with the properties

bc = b0T

b = bcT
′ + a

where bc is a reduced-form projection of any solution b0; that is, bc is a vector of lesser dimension
(1× k rather than 1× p) that can be treated as if it were unconstrained. The second equation says
that bc can be mapped back into a higher-dimensioned, properly constrained b; 1× p vector a is a
constant that depends only on R and r.

With such a T matrix and a vector, you can engage in unconstrained optimization of bc. If the
estimate bc with variance–covariance matrix Vc is produced, it can be mapped back into b = bcT

′+a
and V = TVcT

′. The resulting b and V can then be posted.

Technical note

So, how did we get so lucky? This happy solution arises if

T = first k eigenvectors of I−R′(RR′)−1R (p× k)
L = last c eigenvectors of I−R′(RR′)−1R (p× c)

a = r′(L′R′)−1L′

because (
bc, r

′) = b
(
T,R′

)
If R consists of a set of consistent constraints, then it is guaranteed to have rank c. Thus RR′ is a
c× c invertible matrix.

We will now show that RT = 0 and R(LL′) = R.

Because R: c× p is assumed to be of rank c, the first k eigenvalues of P = I−R′(RR′)−1R
are positive and the last c are zero. Break R into a basis spanned by these components. If R had
any components in the first k, they could not be annihilated by P, contradicting

RP = R−RR′(RR′)−1R = 0

Therefore, T and R are orthogonal to each other. Because (T,L) is an orthonormal basis, (T,L)′

is its inverse, so (T,L)(T,L)′ = I. Thus

TT′ + LL′ = I

(TT′ + LL′)R′ = R′

(LL′)R′ = R′

So we conclude that r = bR(LL′). RL is an invertible c× c matrix, so{
bc, r

′(L′R)−1
}
= b

(
T,L

)
Remember, (T,L) is a set of eigenvectors, meaning (T,L)−1 = (T,L)′, so b = bcT

′ +
r′(L′R′)−1L′.
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If a solution is found by likelihood methods, the reduced-form parameter vector is passed to
the maximizer and from there to the program that computes a likelihood value from it. To find the
likelihood value, the inner routines can compute b = bcT

′ + a. The routine may then go on to
produce a set of 1× p first derivatives, d, and p× p second derivatives, H, even though the problem
is of lesser dimension. These matrices can be reduced to the k-dimensional space via

dc = dT

Hc = T′HT

Technical note
Alternatively, if a solution were to be found by direct matrix methods, the programmer must derive

a new solution based on b = bcT
′+ a. For example, the least-squares normal equations come from

differentiating (y −Xb)2. Setting the derivative with respect to b to zero results in

T′X′
{
y −X(Tb′c + a′)

}
= 0

yielding
b′c = (T′X′XT)−1(T′X′y −T′X′Xa′)

b′ = T
{
(T′X′XT)−1(T′X′y −T′X′Xa′)

}
+ a′

Using the matrices T and a, the solution is not merely to constrain the b′ obtained from an unconstrained
solution (X′X)−1X′y, even though you might know that, here, with further substitutions this could
be reduced to

b′ = (X′X)−1X′y + (X′X)−1R′{R(X′X)−1R′}−1{r−R(X′X)−1X′y}

Linkage of the mathematics to Stata

Users define constraints using the constraint command; see [R] constraint. The constraints are
numbered, and Stata stores them in algebraic format—the same format in which the user typed them.
Stata does this because, until the estimation problem is defined, it cannot know how to interpret the
constraint. Think of the constraint b[group1]= b[group2], meaning that two coefficients are to
be constrained to equality, along with the constraint b[group3]=2. The constraint matrices R and
r are defined so that Rb′ = r imposes the constraint. The matrices might be

(
0 0 1 −1 0 0
0 0 0 0 1 0

)


b1
b2
b3
b4
b5
b6

 =

(
0
2

)

if it just so happened that the third and fourth coefficients corresponded to group1 and group2
and the fifth corresponded to group3. Then again, it might look different if the coefficients were
organized differently.
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makecns — Constrained estimation 5

Therefore, Stata must wait until estimation begins to define the R and r matrices. Stata learns about
the organization of a problem from the names bordering the coefficient vector and variance–covariance
matrix. Therefore, Stata requires you to ereturn post a dummy estimation result that has the correct
names. From that, it can now determine the organization of the constraint matrix and make it for you.
Once an (dummy) estimation result has been posted, makecns can make the constraint matrices, and,
once they are built, you can obtain copies of them from e(Cns). Stata stores the constraint matrices
R and r as a c× (p+ 1) matrix C = (R, r). Putting them together makes it easier to pass them to
subroutines.

The second step in the process is to convert the constrained problem to a reduced-form problem. We
outlined the mathematics above; the matcproc command will produce the T and a matrices. If you
are performing maximum likelihood, your likelihood, gradient, and Hessian calculation subroutines
can still work in the full metric by using the same T and a matrices to translate the reduced-format
parameter vector back to the original metric. If you do this, and if you are calculating gradients or
Hessians, you must remember to compress them to reduced form using the T and a matrices.

When you have a reduced-form solution, you translate this back to a constrained solution using T
and a. You then ereturn post the constrained solutions, along with the original Cns matrix, and
use ereturn display to display the results.

Thus the outline of a program to perform constrained estimation is
program myest, eclass properties(. . .)

version 13
if replay() { // replay the results

if ("‘e(cmd)’" != "myest") error 301
syntax [, Level(cilevel) ]
makecns , displaycns

}
else { // fit the model

syntax whatever [, ///
whatever ///
Constraints(string) ///
Level(cilevel) ///

]
// any other parsing of the user’s estimate request
tempname b V C T a bc Vc
local p=number of parameters
// define the model (set the row and column
// names) in ‘b’
if "‘constraints’" != "" {

matrix ‘V’ = ‘b’’*‘b’
ereturn post ‘b’ ‘V’ // a dummy solution
makecns ‘constraints’, display
matcproc ‘T’ ‘a’ ‘C’
// obtain solution in ‘bc’ and ‘Vc’
matrix ‘b’ = ‘bc’*‘T’ + ‘a’
matrix ‘V’ = ‘T’*‘Vc’*‘T’’ // note prime
ereturn post ‘b’ ‘V’ ‘C’, options

}
else {

// obtain standard solution in ‘b’ and ‘V’
ereturn post ‘b’ ‘V’, options

}
// store whatever else you want in e()
ereturn local cmd "myest"

}
// output any header above the coefficient table
ereturn display, level(‘level’)

end
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There is one point that might escape your attention: Immediately after obtaining the constraint,
we display the constraints even before we undertake the estimation. This way, a user who has made
a mistake may press Break rather than waiting until the estimation is complete to discover the error.
Our code displays the constraints every time the results are reported, even when typing myest without
arguments.

Stored results
makecns stores the following in r():

Scalars
r(k autoCns) number of base, empty, and omitted constraints

Macros
r(clist) constraints used (numlist or matrix name)

Also see
[P] ereturn — Post the estimation results

[P] macro — Macro definition and manipulation

[P] matrix get — Access system matrices

[R] cnsreg — Constrained linear regression

[R] constraint — Define and list constraints

[P] matrix — Introduction to matrix commands

[R] ml — Maximum likelihood estimation
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