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Syntax

rotatemat matrix L
[
, options

]
options Description

Main

orthogonal restrict to orthogonal rotations; the default, except with promax()

oblique allow oblique rotations
rotation methods rotation criterion
normalize rotate Kaiser normalized matrix

Reporting

format(% fmt) display format for matrices; default is format(%9.5f)

blanks(#) display loadings as blanks when |loading| < #; default is blanks(0)

nodisplay suppress all output except log and trace
noloading suppress display of rotated loadings
norotation suppress display of rotation matrix
matname(string) descriptive label of the matrix to be rotated
colnames(string) descriptive name for columns of the matrix to be rotated

Optimization

optimize options control the optimization process; seldom used
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2 rotatemat — Orthogonal and oblique rotations of a Stata matrix

rotation methods Description

∗varimax varimax (orthogonal only); the default
vgpf varimax via the GPF algorithm (orthogonal only)
quartimax quartimax (orthogonal only)
equamax equamax (orthogonal only)
parsimax parsimax (orthogonal only)
entropy minimum entropy (orthogonal only)
tandem1 Comrey’s tandem 1 principle (orthogonal only)
tandem2 Comrey’s tandem 2 principle (orthogonal only)
∗promax

[
(#)
]

promax power # (implies oblique); default is promax(3)

oblimin
[
(#)
]

oblimin with γ = #; default is oblimin(0)

cf(#) Crawford–Ferguson family with κ = #, 0 ≤ # ≤ 1
bentler Bentler’s invariant pattern simplicity
oblimax oblimax
quartimin quartimin
target(Tg) rotate toward matrix Tg
partial(Tg W) rotate toward matrix Tg, weighted by matrix W

∗ varimax and promax ignore all optimize options.

Menu
Statistics > Multivariate analysis > Orthogonal and oblique rotations of a matrix

Description
rotatemat applies a linear transformation T to the matrix matrix L, which we will call A,

so that the result c(A(T′)−1) minimizes some criterion function c( ) over all matrices T in a
class of feasible transformations. Two classes are supported: orthogonal (orthonormal) and oblique.
Orthonormal rotations comprise all orthonormal matrices T, such that T′T = TT′ = I; here
A(T′)−1 simplifies to AT. Oblique rotations are characterized by diag(T′T) = 1. A wide variety
of criteria c( ) is available, representing different ways to measure the “simplicity” of a matrix. Most
of these criteria can be applied with both orthogonal and oblique rotations.

If you are interested in rotation after factor, factormat, pca, or pcamat, see [MV] factor
postestimation, [MV] pca postestimation, and the general description of rotate as a postestimation
facility in [MV] rotate.

This entry describes the computation engine for orthogonal and oblique transformations of Stata
matrices. This command may be used directly on any Stata matrix.

Options

� � �
Main �

orthogonal specifies that an orthogonal rotation be applied. This is the default.

See Rotation criteria below for details on the rotation methods available with orthogonal.

http://www.stata.com/manuals13/mvfactorpostestimation.pdf#mvfactorpostestimation
http://www.stata.com/manuals13/mvfactorpostestimation.pdf#mvfactorpostestimation
http://www.stata.com/manuals13/mvpcapostestimation.pdf#mvpcapostestimation
http://www.stata.com/manuals13/mvrotate.pdf#mvrotateDescription
http://www.stata.com/manuals13/mvrotate.pdf#mvrotate
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oblique specifies that an oblique rotation be applied. This often yields more interpretable factors
with a simpler structure than that obtained with an orthogonal rotation. In many applications (for
example, after factor and pca), the factors before rotation are orthogonal (uncorrelated), whereas
the oblique rotated factors are correlated.

See Rotation criteria below for details on the rotation methods available with oblique.

normalize requests that the rotation be applied to the Kaiser normalization (Horst 1965) of the
matrix A so that the rowwise sums of squares equal 1.

� � �
Reporting �

format(% fmt) specifies the display format for matrices. The default is format(%9.5f).

blanks(#) specifies that small values of the rotated matrix—that is, those elements of A(T′)−1

that are less than # in absolute value—are displayed as spaces.

nodisplay suppresses all output except the log and trace.

noloading suppresses the display of the rotated loadings.

norotation suppresses the display of the optimal rotation matrix.

matname(string) is a rarely used output option; it specifies a descriptive label of the matrix to be
rotated.

colnames(string) is a rarely used output option; it specifies a descriptive name to refer to the columns
of the matrix to be rotated. For instance, colnames(components) specifies that the output label
the columns as “components”. The default is “factors”.

� � �
Optimization �

optimize options control the iterative optimization process. These options are seldom used.

iterate(#) is a rarely used option; it specifies the maximum number of iterations. The default
is iterate(1000).

log specifies that an iteration log be displayed.

trace is a rarely used option; it specifies that the rotation be displayed at each iteration.

tolerance(#) is one of three criteria for declaring convergence and is rarely used. The toler-
ance() convergence criterion is satisfied when the relative change in the rotation matrix T from
one iteration to the next is less than or equal to #. The default is tolerance(1e-6).

gtolerance(#) is one of three criteria for declaring convergence and is rarely used. The gtoler-
ance() convergence criterion is satisfied when the Frobenius norm of the gradient of the criterion
function c( ) projected on the manifold of orthogonal matrices or of normal matrices is less than
or equal to #. The default is gtolerance(1e-6).

ltolerance(#) is one of three criteria for declaring convergence and is rarely used. The ltol-
erance() convergence criterion is satisfied when the relative change in the minimization criterion
c( ) from one iteration to the next is less than or equal to #. The default is ltolerance(1e-6).

protect(#) requests that # optimizations with random starting values be performed and that the
best of the solutions be reported. The output also indicates whether all starting values converged
to the same solution. When specified with a large number, such as protect(50), this provides
reasonable assurance that the solution found is the global maximum and not just a local maximum.
If trace is also specified, the rotation matrix and rotation criterion value of each optimization
will be reported.

http://www.stata.com/manuals13/d.pdf#dformat
http://www.stata.com/manuals13/u12.pdf#u12.4Strings
http://www.stata.com/manuals13/u12.pdf#u12.4Strings
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maxstep(#) is a rarely used option; it specifies the maximum number of step-size halvings. The
default is maxstep(20).

init(matname) is a rarely used option; it specifies the initial rotation matrix. matname should be
square and regular (nonsingular) and have the same number of columns as the matrix matrix L to
be rotated. It should be orthogonal (T′T = TT′ = I) or normal (diag(T′T) = 1), depending on
whether orthogonal or oblique rotations are performed. init() cannot be combined with random.
If neither init() nor random is specified, the identity matrix is used as the initial rotation.

random is a rarely used option; it specifies that a random orthogonal or random normal matrix be
used as the initial rotation matrix. random cannot be combined with init(). If neither init()
nor random is specified, the identity matrix is used as the initial rotation.

Rotation criteria

In the descriptions below, the matrix to be rotated is denoted as A, p denotes the number of rows
of A, and f denotes the number of columns of A (factors or components). If A is a loading matrix
from factor or pca, p is the number of variables and f is the number of factors or components.

Criteria suitable only for orthogonal rotations

varimax and vgpf apply the orthogonal varimax rotation (Kaiser 1958). varimax maximizes the
variance of the squared loadings within factors (columns of A). It is equivalent to cf(1/p) and to
oblimin(1). varimax, the most popular rotation, is implemented with a dedicated fast algorithm
and ignores all optimize options. Specify vgpf to switch to the general GPF algorithm used for
the other criteria.

quartimax uses the quartimax criterion (Harman 1976). quartimax maximizes the variance of
the squared loadings within the variables (rows of A). For orthogonal rotations, quartimax is
equivalent to cf(0) and to oblimax.

equamax specifies the orthogonal equamax rotation. equamax maximizes a weighted sum of the
varimax and quartimax criteria, reflecting a concern for simple structure within variables (rows
of A) as well as within factors (columns of A). equamax is equivalent to oblimin(p/2) and
cf(#), where # = f /(2p).

parsimax specifies the orthogonal parsimax rotation. parsimax is equivalent to cf(#), where
# = (f − 1)/(p + f − 2).

entropy applies the minimum entropy rotation criterion (Jennrich 2004).

tandem1 specifies that the first principle of Comrey’s tandem be applied. According to Comrey (1967),
this principle should be used to judge which “small” factors be dropped.

tandem2 specifies that the second principle of Comrey’s tandem be applied. According to Com-
rey (1967), tandem2 should be used for “polishing”.

Criteria suitable only for oblique rotations

promax
[
(#)
]

specifies the oblique promax rotation. The optional argument specifies the promax
power. Not specifying the argument is equivalent to specifying promax(3). Values less than 4
are recommended, but the choice is yours. Larger promax powers simplify the loadings (generate
numbers closer to zero and one) but at the cost of additional correlation between factors. Choosing
a value is a matter of trial and error, but most sources find values in excess of 4 undesirable in
practice. The power must be greater than 1 but is not restricted to integers.



rotatemat — Orthogonal and oblique rotations of a Stata matrix 5

Promax rotation is an oblique rotation method that was developed before the “analytical methods”
(based on criterion optimization) became computationally feasible. Promax rotation comprises an
oblique Procrustean rotation of the original loadings A toward the elementwise #-power of the
orthogonal varimax rotation of A.

Criteria suitable for orthogonal and oblique rotations

oblimin
[
(#)
]

specifies that the oblimin criterion with γ = # be used. When restricted to orthogonal
transformations, the oblimin() family is equivalent to the orthomax criterion function. Special
cases of oblimin() include

γ Special case

0 quartimax / quartimin
1/2 biquartimax / biquartimin
1 varimax / covarimin
p/2 equamax

p = number of rows of A.

γ defaults to zero. Jennrich (1979) recommends γ ≤ 0 for oblique rotations. For γ > 0, it is
possible that optimal oblique rotations do not exist; the iterative procedure used to compute the
solution will wander off to a degenerate solution.

cf(#) specifies that a criterion from the Crawford–Ferguson (1970) family be used with κ = #.
cf(κ) can be seen as (1−κ)cf1(A)+ (κ)cf2(A), where cf1(A) is a measure of row parsimony
and cf2(A) is a measure of column parsimony. cf1(A) attains its greatest lower bound when no
row of A has more than one nonzero element, whereas cf2(A) reaches zero if no column of A
has more than one nonzero element.

For orthogonal rotations, the Crawford–Ferguson family is equivalent to the oblimin() family.
For orthogonal rotations, special cases include the following:

κ Special case

0 quartimax / quartimin
1/p varimax / covarimin
f/(2p) equamax
(f − 1)/(p + f − 2) parsimax
1 factor parsimony

p = number of rows of A.
f = number of columns of A.

bentler specifies that the “invariant pattern simplicity” criterion (Bentler 1977) be used.

oblimax specifies the oblimax criterion, which maximizes the number of high and low loadings.
oblimax is equivalent to quartimax for orthogonal rotations.

quartimin specifies that the quartimin criterion be used. For orthogonal rotations, quartimin is
equivalent to quartimax.

target(Tg) specifies that A be rotated as near as possible to the conformable matrix Tg. Nearness
is expressed by the Frobenius matrix norm.

partial(Tg W) specifies that A be rotated as near as possible to the conformable matrix Tg.
Nearness is expressed by a weighted (by W) Frobenius matrix norm. W should be nonnegative
and usually is zero–one valued, with ones identifying the target values to be reproduced as closely
as possible by the factor loadings, whereas zeros identify loadings to remain unrestricted.
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Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
Orthogonal rotations
Oblique rotations
Promax rotation

Introduction

For an introduction to rotation, see Harman (1976) and Gorsuch (1983).

All supported rotation criteria are invariant with respect to permutations of the columns and change
of signs of the columns. rotatemat returns the solution with positive column sums and with columns
sorted by the L2 norm; columns are ordered with respect to the L1 norm if the columns have the
same L2 norm.

A factor analysis of 24 psychological tests on 145 seventh- and eighth-grade school children with
four retained factors is used for illustration. Factors were extracted with maximum likelihood. The
loadings are reported by Harman (1976). We enter the factor loadings as a Stata matrix with 24 rows
and four columns. For more information, we add full descriptive labels as comments and short labels
as row names.

. matrix input L = (
601 019 388 221 \ Visual perception
372 -025 252 132 \ Cubes
413 -117 388 144 \ Paper form board
487 -100 254 192 \ Flags
691 -304 -279 035 \ General information
690 -409 -200 -076 \ Paragraph comprehension
677 -409 -292 084 \ Sentence completion
674 -189 -099 122 \ Word classification
697 -454 -212 -080 \ Word meaning
476 534 -486 092 \ Addition
558 332 -142 -090 \ Code
472 508 -139 256 \ Counting dots
602 244 028 295 \ Straight-curved capitals
423 058 015 -415 \ Word recognition
394 089 097 -362 \ Number recognition
510 095 347 -249 \ Figure recognition
466 197 -004 -381 \ Object-number
515 312 152 -147 \ Number-figure
443 089 109 -150 \ Figure-word
614 -118 126 -038 \ Deduction
589 227 057 123 \ Numerical puzzles
608 -107 127 -038 \ Problem reasoning
687 -044 138 098 \ Series completion
651 177 -212 -017 ) Arithmetic problems

. matrix colnames L = F1 F2 F3 F4

. matrix rownames L = visual cubes board
flags general paragraph
sentence wordclas wordmean
add code dots
capitals wordrec numbrec
figrec obj-num num-fig
fig-word deduct numpuzz
reason series arith

. matrix L = L/1000

http://stata.com
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Thus using rotatemat, we can study various rotations of L without access to the full data or the
correlation matrix.

Orthogonal rotations

We can rotate the matrix L according to an extensive list of criteria, including orthogonal rotations.

Example 1: Orthogonal varimax rotation

The default rotation, orthogonal varimax, is probably the most popular method:

. rotatemat L, format(%6.3f)

Rotation of L[24,4]

Criterion varimax
Rotation class orthogonal
Kaiser normalization off

Rotated factors

F1 F2 F3 F4

visual 0.247 0.151 0.679 0.128
cubes 0.171 0.060 0.425 0.078
board 0.206 -0.049 0.549 0.097
flags 0.295 0.068 0.504 0.050

general 0.765 0.214 0.117 0.067
paragraph 0.802 0.074 0.122 0.160
sentence 0.826 0.148 0.117 -0.008
wordclas 0.612 0.230 0.290 0.061
wordmean 0.840 0.049 0.112 0.152

add 0.166 0.846 -0.076 0.082
code 0.222 0.533 0.134 0.313
dots 0.048 0.705 0.257 0.025

capitals 0.240 0.500 0.450 0.020
wordrec 0.249 0.124 0.032 0.526
numbrec 0.178 0.109 0.106 0.499
figrec 0.158 0.076 0.401 0.510

obj-num 0.197 0.262 0.060 0.539
num-fig 0.096 0.352 0.311 0.422

fig-word 0.204 0.175 0.232 0.336
deduct 0.443 0.115 0.365 0.255

numpuzz 0.233 0.428 0.389 0.169
reason 0.432 0.120 0.363 0.256
series 0.440 0.228 0.472 0.184
arith 0.409 0.509 0.150 0.228

Orthogonal rotation

F1 F2 F3 F4

F1 0.677 0.438 0.475 0.352
F2 -0.632 0.737 0.049 0.232
F3 -0.376 -0.458 0.760 0.268
F4 -0.011 0.234 0.441 -0.866
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The varimax rotation T of A maximizes the (raw) varimax criterion over all orthogonal T, which
for p× f matrices is defined as (Harman 1976)

cvarimax(A) =
1

p

f∑
j=1

{( p∑
i=1

A4
ij

)
− 1

p

( p∑
i=1

A2
ij

)2}

The criterion cvarimax(A) can be interpreted as the sum over the columns of the variances of
the squares of the loadings Aij . A column with large variance will typically consist of many small
values and a few large values. Achieving such “simple” columnwise distributions is often helpful for
interpretation.

Technical note

The raw varimax criterion as defined here has been criticized because it weights variables by the
size of their loadings, that is, by their communalities. This is often not desirable. A common rotation
strategy is to weight all rows equally by rescaling to the same rowwise sum of squared loadings. This
is known as the Kaiser normalization. You may request this normalized solution with the normalize
option. The default in rotatemat and in rotate (see [MV] rotate) is not to normalize.

Many other criteria for the rotation of matrices have been proposed and studied in the literature.
Most of these criteria can be stated in terms of a “simplicity function”. For instance, quartimax
rotation (Carroll 1953) seeks to achieve interpretation within rows—in a factor analytic setup, this
means that variables should have a high loading on a few factors and a low loading on the other
factors. The quartimax criterion is defined as (Harman 1976)

cquartimax(A) =

(
1

pf

p∑
i=1

f∑
j=1

A4
ij

)
−
(

1

pf

p∑
i=1

f∑
j=1

A2
ij

)2

Example 2: Orthogonal quartimax rotation

We display the quartimax solution, use blanks to represent loadings with absolute values smaller
than 0.3, and suppress the display of the rotation matrix.

http://www.stata.com/manuals13/mvrotate.pdf#mvrotate
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. rotatemat L, quartimax format(%6.3f) norotation blanks(0.3)

Rotation of L[24,4]

Criterion quartimax
Rotation class orthogonal
Kaiser normalization off
Criterion value -1.032898
Number of iterations 35

Rotated factors (blanks represent abs()<.3)

F1 F2 F3 F4

visual 0.374 0.630
cubes 0.393
board 0.513
flags 0.379 0.450

general 0.791
paragraph 0.827
sentence 0.838
wordclas 0.669
wordmean 0.860

add 0.829
code 0.316 0.521
dots 0.701

capitals 0.348 0.482 0.393
wordrec 0.316 0.492
numbrec 0.469
figrec 0.382 0.470

obj-num 0.503
num-fig 0.357 0.383

fig-word
deduct 0.528

numpuzz 0.342 0.414 0.340
reason 0.517
series 0.543 0.395
arith 0.490 0.478

Some of the criteria supported by rotatemat are defined as one-parameter families. The oblimin(γ)
criterion and the Crawford and Ferguson cf(κ) criterion families contain the varimax and quartimax
criteria as special cases; that is, they can be obtained by certain values of γ and κ, respectively.
Intermediate parameter values provide compromises between varimax’s aim of column simplification
and quartimax’s aim of row simplification. Varimax and quartimax are equivalent to oblimin(1) and
oblimin(0), respectively. A compromise, oblimin(0.5), is also known as biquartimax.

Example 3: Orthogonal biquartimax rotation

Because the varimax and quartimax solutions are so close for our matrix L, the biquartimax
compromise will also be rather close.

. rotatemat L, oblimin(0.5) format(%6.3f) norotation
(output omitted )



10 rotatemat — Orthogonal and oblique rotations of a Stata matrix

Technical note
You may have noticed a difference between the output of rotatemat in the default case or

equivalently when we type

. rotatemat L, varimax

and in other cases. In the default case, no mention is made of the criterion value and the number of
iterations. rotatemat uses a fast special algorithm for this most common case, whereas for other
rotations it uses a general gradient projection algorithm (GPF) proposed by Jennrich (2001, 2002);
see also Bernaards and Jennrich (2005). The general algorithm is used to obtain the varimax rotation
if you specify the option vgpf rather than varimax.

The rotations we have illustrated are orthogonal—the lengths of the rows and the angles between
the rows are not affected by the rotations. We may verify—we do not show this in the manual to
conserve paper—that after an orthogonal rotation of L

. matlist L*L’

and

. matlist r(AT)*r(AT)’

return the same 24 by 24 matrix, whereas

. matlist r(T)*r(T)’

and

. matlist r(T)’*r(T)

both return a 2× 2 identity matrix. rotatemat returns in r(AT) the rotated matrix and in r(T) the
rotation matrix.

Oblique rotations

rotatemat provides a second class of rotations: oblique rotations. These rotations maintain the
norms of the rows of the matrix but not their inner products. In geometric terms, interpreting the
rows of the matrix to be rotated as vectors, both the orthogonal and the oblique rotations maintain
the lengths of the vectors. Under orthogonal transformations, the angles between the vectors are also
left unchanged—these transformations comprise true reorientations in space and reflections. Oblique
rotations do not conserve angles between vectors. If the vectors are orthogonal before rotations—as
will be the case if we are rotating factor or component loading matrices—this will no longer be the
case after the rotation. The “freedom” to select angles between the rows allows oblique rotations
to generate simpler loading structures than the orthogonal rotations—sometimes much simpler. In a
factor analytic setting, the disadvantage is, however, that the rotated factors are correlated.

rotatemat can obtain oblique rotations for most of the criteria that are available for orthogonal
rotations; some of the criteria (such as the entropy criterion) are available only for the orthogonal
case.
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Example 4: Oblique oblimin rotation

We illustrate with the psychological tests matrix L and apply the oblique oblimin criterion.

. rotatemat L, oblimin oblique format(%6.3f) blanks(0.3)

Rotation of L[24,4]

Criterion oblimin(0)
Rotation class oblique
Kaiser normalization off
Criterion value .1957363
Number of iterations 78

Rotated factors (blanks represent abs()<.3)

F1 F2 F3 F4

visual 0.686
cubes 0.430
board 0.564
flags 0.507

general 0.771
paragraph 0.808
sentence 0.865
wordclas 0.560
wordmean 0.857

add 0.864
code 0.460 0.305
dots 0.701

capitals 0.437 0.442
wordrec 0.571
numbrec 0.543
figrec 0.314 0.540

obj-num 0.584
num-fig 0.438

fig-word 0.341
deduct 0.325

numpuzz 0.344 0.347
reason 0.311
series 0.417
arith 0.428

Oblique rotation

F1 F2 F3 F4

F1 0.823 0.715 0.584 0.699
F2 -0.483 0.019 0.651 0.213
F3 -0.299 0.587 -0.435 0.207
F4 -0.006 0.379 0.213 -0.651

The option oblique requested an oblique rotation rather than the default orthogonal. You may
verify that r(AT) equals L * inv(r(T)’) within reasonable roundoff with

. matlist r(AT) - L * inv(r(T)’)
(output omitted )

The correlation between the rotated dimensions is easily obtained.
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. matlist r(T)’ * r(T)

F1 F2 F3 F4

F1 1
F2 .4026978 1
F3 .294928 .2555824 1
F4 .4146879 .3784689 .3183115 1

Promax rotation
rotatemat also offers promax rotation.

Example 5: Oblique promax rotation

We use the matrix L to illustrate promax rotation.

. rotatemat L, promax blanks(0.3) format(%6.3f)

Rotation of L[24,4]

Criterion promax(3)
Rotation class oblique
Kaiser normalization off

Rotated factors (blanks represent abs()<.3)

F1 F2 F3 F4

visual 0.775
cubes 0.487
board 0.647
flags 0.572

general 0.786
paragraph 0.825
sentence 0.888
wordclas 0.543
wordmean 0.878

add 0.921
code 0.466
dots 0.728

capitals 0.468 0.441
wordrec 0.606
numbrec 0.570
figrec 0.364 0.539

obj-num 0.610
num-fig 0.425

fig-word 0.337
deduct 0.323

numpuzz 0.369 0.336
reason 0.322
series 0.462
arith 0.436



rotatemat — Orthogonal and oblique rotations of a Stata matrix 13

Oblique rotation

F1 F2 F3 F4

F1 0.841 0.829 0.663 0.743
F2 -0.462 0.020 0.614 0.215
F3 -0.282 0.478 -0.386 0.159
F4 -0.012 0.290 0.184 -0.614

The correlation between the rotated dimensions can be obtained as

. matlist r(T)’ * r(T)

F1 F2 F3 F4

F1 1
F2 .5491588 1
F3 .3807942 .4302401 1
F4 .4877064 .5178414 .4505817 1

Stored results
rotatemat stores the following in r():

Scalars
r(f) criterion value
r(iter) number of GPF iterations
r(rc) return code
r(nnconv) number of nonconvergent trials; protect() only

Macros
r(cmd) rotatemat
r(ctitle) descriptive label of rotation method
r(ctitle12) version of r(ctitle) at most 12 characters long
r(criterion) criterion name (e.g., oblimin)
r(class) orthogonal or oblique
r(normalization) kaiser or none
r(carg) criterion argument

Matrices
r(T) optimal transformation T
r(AT) optimal AT = A(T′)−1

r(fmin) minimums found; protect() only

Methods and formulas
rotatemat minimizes a scalar-valued criterion function c(AT) with respect to the set of orthogonal

matricesT′T = I, or c(A(T′)−1)with respect to the normal matrix, diag(T′T) = 1. For orthonormal
T, T = (T′)−1.

The rotation criteria can be conveniently written in terms of scalar-valued functions; see Bernaards
and Jennrich (2005). Define the inner product 〈A,B〉 = trace(A′B). |A| =

√
〈A,A〉 is called the

Frobenius norm of the matrix A. Let Λ be a p× k matrix. Denote by X2 the direct product X ·X.
See Harman (1976) for information on many of the rotation criteria and references to the authors
originally proposing the criteria. Sometimes we list an alternative reference. Our notation is similar
to that of Bernaards and Jennrich (2005).
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rotatemat uses the iterative “gradient projection algorithm” (Jennrich 2001, 2002) for the
optimization of the criterion over the permissible transformations. Different versions are provided for
optimal orthogonal and oblique rotations; see Bernaards and Jennrich (2005).

Varimax (orthogonal only)

Varimax is equivalent to oblimin with γ = 1 or to the Crawford–Ferguson family with κ = 1/p;
see below.

Quartimax (orthogonal only)

c(Λ) =
∑
i

∑
r

λ4ir = −
1

4

〈
Λ2,Λ2

〉

Equamax (orthogonal only)

Equamax is equivalent to oblimin with γ = p/2 or to the Crawford–Ferguson family with
κ = f/(2p); see below.

Parsimax (orthogonal only)

Parsimax is equivalent to the Crawford–Ferguson family with κ = (f −1)/(p+f −2); see below.

Entropy (orthogonal only); see Jennrich (2004)

c(Λ) = −1

2

〈
Λ2, logΛ2

〉
Tandem principal 1 (orthogonal only); see Comrey (1967)

c(Λ) = −
〈
Λ2, (ΛΛ′)2Λ2

〉
Tandem principal 2 (orthogonal only); see Comrey (1967)

c(Λ) =
〈
Λ2, {11′ − (ΛΛ′)2}Λ2

〉
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Promax (oblique only)

Promax does not fit in the maximizing-of-a-simplicity-criterion framework that is at the core of
rotatemat. The promax method (Hendrickson and White 1964) was proposed before computing
power became widely available. The promax rotation comprises three steps:

1. Perform an orthogonal rotation on A; rotatemat uses varimax.

2. Raise the elements of the rotated matrix to some power, preserving the signs of the elements.
Typically, the power is taken from the range [2,4]. This operation is meant to distinguish more
clearly between small and large values.

3. The matrix from step 2 is used as the target for an oblique Procrustean rotation from the original
matrix A. The method to compute this rotation in promax is different from the method in
the procrustes command (see [MV] procrustes). The latter produces the real least-squares
oblique rotation; promax uses an approximation.

Oblimin; see Jennrich (1979)

c(Λ) =
1

4

〈
Λ2, {I− (γ/p)11′}Λ2(11′ − I)

〉
Orthomax and oblimin are equivalent when restricted to orthogonal rotations. Special cases of
oblimin() include the following:

γ Special case

0 quartimin
1/2 biquartimin
p/2 equamax
1 varimax

Crawford and Ferguson (1970) family

c(Λ) =
1− κ
4

〈
Λ2,Λ2(11′ − I)

〉
+
κ

4

〈
Λ2, (11′ − I)Λ2

〉
When restricted to orthogonal transformations, cf() and oblimin() are in fact equivalent. Special
cases of cf() include the following:

κ Special case

0 quartimax
1/p varimax
f/(2p) equamax
(f − 1)/(p + f − 2) parsimax
1 factor parsimony

Bentler’s invariant pattern simplicity; see Bentler (1977)

c(Λ) = log[det{(Λ2)′Λ2}]− log(det[diag{(Λ2)′Λ2}])

http://www.stata.com/manuals13/mvprocrustes.pdf#mvprocrustes
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Oblimax

c(Λ) = − log(
〈
Λ2,Λ2

〉
) + 2 log(〈Λ,Λ〉)

For orthogonal transformations, oblimax is equivalent to quartimax; see above.

Quartimin

c(Λ) =
∑
r 6=s

∑
i

λ2irλ
2
is = −

1

4

〈
Λ2,Λ2(11′ − I)

〉

Target

c(Λ) =
1

2
|Λ−H|2

for given target matrix H.

Partially specified target

c(Λ) = |W · (Λ−H)|2

for given target matrix H, nonnegative weighting matrix W (usually zero–one valued) and with ·
denoting the direct product.
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Also see
[MV] rotate — Orthogonal and oblique rotations after factor and pca

[MV] procrustes — Procrustes transformation

http://www.stata.com/manuals13/mvrotate.pdf#mvrotate
http://www.stata.com/manuals13/mvprocrustes.pdf#mvprocrustes

