Title

stata.com

hotelling — Hotelling's T-squared generalized means test

Syntax Remarks and examples Also see

Menu Stored results Description Methods and formulas Options References

Syntax

hotelling varlist [if] [in] [weight] [, by(varname) notable]

aweights and fweights are allowed; see [U] 11.1.6 weight.

Note: hotel is a synonym for hotelling.

Menu

Statistics > Multivariate analysis > MANOVA, multivariate regression, and related > Hotelling's generalized means test

Description

hotelling performs Hotelling's T-squared test of whether a set of means is zero or, alternatively, equal between two groups.

See [MV] **mytest means** for generalizations of Hotelling's one-sample test with more general hypotheses, two-sample tests that do not assume that the covariance matrices are the same in the two groups, and tests with more than two groups.

Options

Main

by (*varname*) specifies a variable identifying two groups; the test of equality of means between groups is performed. If by() is not specified, a test of means being jointly zero is performed.

notable suppresses printing a table of the means being compared.

Remarks and examples

stata.com

hotelling performs Hotelling's T-squared test of whether a set of means is zero or two sets of means are equal. It is a multivariate test that reduces to a standard t test if only one variable is specified.

Example 1

You wish to test whether a new fuel additive improves gas mileage in both stop-and-go and highway situations. Taking 12 cars, you fill them with gas and run them on a highway-style track, recording their gas mileage. You then refill them and run them on a stop-and-go style track. Finally, you repeat the two runs, but this time you use fuel with the additive. Your dataset is

. use http://www.stata-press.com/data/r13/gasexp								
. describe								
Contains data from http://www.stata-press.com/data/r13/gasexp.dta								
obs:	12							
vars:	5			15 Oct 2012 06:37				
size:	240							
	storage	display	value					
variable name	type	format	label	variable label				
id	float	%9.0g		car id				
bmpg1	float	%9.0g		track1 before additive				
ampg1	float	%9.0g		track1 after additive				
bmpg2	float	%9.0g		track 2 before additive				
ampg2	float	%9.0g		track 2 after additive				

Sorted by:

To perform the statistical test, you jointly test whether the differences in before-and-after results are zero:

. gen diff1 = ampg1 - bmpg1							
. gen diff2 = ampg2 - bmpg2							
iff1 diff2							
Obs	Mean	Std. Dev.	Min	Max			
12	1.75	2.70101	-3	5			
12	2.083333	2.906367	-3.5	5.5			
1-group Hotelling's T-squared = 9.6980676 F test statistic: ((12-2)/(12-1)(2)) x 9.6980676 = 4.4082126							
H0: Vector of means is equal to a vector of zeros F(2,10) = 4.4082 Prob > F(2,10) = 0.0424							
	ampg2 - bmpg2 .ff1 diff2 Ubs 12 12 .ing's T-squar .ic: ((12-2)// means is equa F(2,10) =	ampg2 - bmpg2 .ff1 diff2 0bs Mean 12 1.75 12 2.083333 .ing's T-squared = 9.6980 .ic: ((12-2)/(12-1)(2)) x means is equal to a vect F(2,10) = 4.4082	ampg2 - bmpg2 ff1 diff2 Obs Mean Std. Dev. 12 1.75 2.70101 12 2.083333 2.906367 .ing's T-squared = 9.6980676 cic: ((12-2)/(12-1)(2)) x 9.6980676 = 4 means is equal to a vector of zeros F(2,10) = 4.4082	ampg2 - bmpg2 ff1 diff2 Obs Mean Std. Dev. Min 12 1.75 2.70101 -3 12 2.083333 2.906367 -3.5 .ing's T-squared = 9.6980676 cic: ((12-2)/(12-1)(2)) x 9.6980676 = 4.4082126 means is equal to a vector of zeros F(2,10) = 4.4082			

The means are different at the 4.24% significance level.

4

Technical note

We used Hotelling's T-squared test because we were testing two differences jointly. Had there been only one difference, we could have used a standard t test, which would have yielded the same results as Hotelling's test:

·	ttest	ampg1	=	bmpg1

Paired t test

Variable	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]		
ampg1 bmpg1	12 12	22.75 21	.9384465 .7881701	3.250874 2.730301	20.68449 19.26525	24.81551 22.73475		
diff	12	1.75	.7797144	2.70101	.0338602	3.46614		
	mean(diff) = mean(ampg1 - bmpg1)t = 2.2444Ho: mean(diff) = 0degrees of freedom = 11							
	(diff) < 0) = 0.9768		: mean(diff) T > t) =			(diff) > 0 ;) = 0.0232		

·	ttest	di	ff1	L =	0
01	ne-samp	ole	t	tes	st

Variable	Obs	Mean	Std.	Err.	Std. Dev.	[95% Coi	nf. Interval]
diff1	12	1.75	.7797	144	2.70101	.0338602	2 3.46614
mean = Ho: mean =	= mean(diff1 = 0)			degrees	s of freed	t = 2.2444 om = 11
	ean < 0 = 0.9768	Pr(Ha: me T > t		0).0463		: mean > 0 > t) = 0.0232
. hotellin	ng diff1						
Variab	ole	Obs	Mean	Std.	Dev.	Min	Max
dif	f1	12	1.75	2.70	0101	-3	5
1-group Hotelling's T-squared = 5.0373832 F test statistic: ((12-1)/(12-1)(1)) x 5.0373832 = 5.0373832							
H0: Vector of means is equal to a vector of zeros F(1.11) = 5.0374							
Pro	ob > F(1,11)	= 0.046	3				

Example 2

Now consider a variation on the experiment: rather than using 12 cars and running each car with and without the fuel additive, you run 24 cars, 12 with the additive and 12 without. You have the following dataset:

```
. use http://www.stata-press.com/data/r13/gasexp2, clear
. describe
Contains data from http://www.stata-press.com/data/r13/gasexp2.dta
  obs:
                   24
                                                  17 Oct 2012 01:43
 vars:
                    4
                  384
 size:
               storage
                          display
                                      value
variable name
                          format
                                      label
                                                  variable label
                 type
                          %9.0g
id
                 float
                                                  car id
                          %9.0g
                 float
                                                  track 1
mpg1
mpg2
                 float
                          %9.0g
                                                  track 2
additive
                          %9.0g
                 float
                                                  additive?
                                      yesno
Sorted by:
. tabulate additive
  additive?
                    Freq.
                               Percent
                                               Cum.
                                 50.00
                        12
                                              50.00
         no
                                 50.00
                                             100.00
                        12
        yes
      Total
                       24
                                100.00
```

This is an unpaired experiment because there is no natural pairing of the cars; you want to test that the means of mpg1 are equal for the two groups specified by additive, as are the means of mpg2:

	Obs	Mean	Std. Dev.	Min	Max
mpg1	12	21	2.730301	17	25
mpg2	12	19.91667	2.644319	16	24
additive =	ves				
Variable	Obs	Mean	Std. Dev.	Min	Max
mpg1	12	22.75	3.250874	17	28
mpg2	12	22	3.316625	16.5	27.5

. hotelling mpg1 mpg2, by(additive)

Technical note

As in the paired experiment, had there been only one test track, the t test would have yielded the same results as Hotelling's test:

. hotellin	ng mp	og1, by(additive)						
-> additiv	ve =	no							
Varial	ble		Obs	Mean	Std.	Dev.	Min	Ma	x
m]	pg1		12	21	2.73	0301	17	2	5
-> additiv	ve =	yes							
Varial	ble		Obs	Mean	Std.	Dev.	Min	Ma	x
m	pg1		12	22.75	3.25	0874	17	2	- 8
. ttest mj	atist rs of ob > pg1,	tic: ((2 f means F(1,22) F(1,22) by(addi	4-1-1)/(24 are equal = 2.03 = 0.10 tive)	4-2)(1)) for the 391 573	x 2.03		2.0390921		
Two-sample	е с 1 Г	Lest Wit	n equal va	ariances					
Group		Obs	Mean	Std.	Err.	Std. De	v. [95%	Conf.	Interval]
no yes		12 12	21 22.75	.788 .938		2.73030 3.25087		8525 8449	22.73475 24.81551
combined		24	21.875	.626	4476	3.06895	4 20.5	7909	23.17091
diff			-1.75	1.22	5518		-4.29	1568	.7915684
diff =	= mea	an(no) -	mean(yes))				, t =	-1.4280

Ho: diff = 0degrees of freedom = 22 Ha: diff < 0 Ha: diff != 0Ha: diff > 0 Pr(|T| > |t|) = 0.1673Pr(T < t) = 0.0837Pr(T > t) = 0.9163

4

With more than one pair of means, however, there is no t test equivalent to Hotelling's test, although there are other logically (but not practically) equivalent solutions. One is the discriminant function: if the means of mpg1 and mpg2 are different, the discriminant function should separate the groups along that dimension.

. regress aug	rerse mbår mbå	, z			
Source	SS	df	MS		Number of obs = 24
Model Residual	1.46932917 4.53067083	2 21	.734664585 .21574623		F(2, 21) = 3.41 Prob > F = 0.0524 R-squared = 0.2449 Adj R-squared = 0.1730
Total	6	23	.260869565		Root MSE = .46448
additive	Coef.	Std. E	Err. t	P> t	[95% Conf. Interval]
mpg1 mpg2 _cons	4570407 .5014605 0120115	.24166 .23767 .74370	762 2.11	0.072 0.047 0.987	959612 .0455306 .0071859 .9957352 -1.55863 1.534607

This test would declare the means different at the 5.24% level. You could also have fit this model by using logistic regression:

. logit addit:	ive mpg1 mpg2						
Iteration 0:	log likeliho	pod = -16.63	5532				
Iteration 1:	log likeliho	pod = -13.39	5178				
Iteration 2:	log likeliho	pod = -13.37	1201				
Iteration 3:	log likeliho	pod = -13.37	1143				
Iteration 4:	log likeliho	pod = -13.37	1143				
Logistic regr	ession			Numbe	er of obs	s =	24
				LR ch	ni2(2)	=	6.53
				Prob	> chi2	=	0.0382
Log likelihoo	d = -13.371143	3		Pseud	lo R2	=	0.1962
additive	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
mpg1	-2.306844	1.36139	-1.69	0.090	-4.975	5119	.3614307
mpg2	2.524477	1.367373	1.85	0.065	1555	5257	5.20448
_cons	-2.446527	3.689821	-0.66	0.507	-9.678	3443	4.78539

This test would have declared the means different at the 3.82% level.

Are the means different? Hotelling's T-squared and the discriminant function reject equality at the 5.24% level. The logistic regression rejects equality at the 3.82% level.

Stored results

hotelling stores the following in r():

regress additive mog1 mog2

Scalars

r(N)	number of observations	r(T2)	Hotelling's T-squared
r(k)	number of variables	r(df)	degrees of freedom

Methods and formulas

See Wilks (1962, 556–561) for a general discussion. The original formulation was by Hotelling (1931) and Mahalanobis (1930, 1936).

For the test that the means of k variables are 0, let $\overline{\mathbf{x}}$ be a $1 \times k$ matrix of the means and \mathbf{S} be the estimated covariance matrix. Then $T^2 = \overline{\mathbf{x}} \mathbf{S}^{-1} \overline{\mathbf{x}}'$.

For two groups, the test of equality is $T^2 = (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2)\mathbf{S}^{-1}(\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2)'$.

Harold Hotelling (1895–1973) was an American economist and statistician who made many important contributions to mathematical economics, multivariate analysis, and statistical inference. After obtaining degrees in journalism and mathematics, he taught and researched at Stanford, Columbia, and the University of North Carolina. His work generalizing Student's t ratio and on principal components, canonical correlation, multivariate analysis of variance, and correlation continues to be widely used.

Prasanta Chandra Mahalanobis (1893–1972) studied physics and mathematics at Calcutta and Cambridge. He became interested in statistics and on his return to India worked on applications in anthropology, meteorology, hydrology, and agriculture. Mahalanobis became the leader in Indian statistics, specializing in multivariate problems (including what is now called the Mahalanobis distance), the design of large-scale sample surveys, and the contribution of statistics to national planning.

References

Hotelling, H. 1931. The generalization of Student's ratio. Annals of Mathematical Statistics 2: 360-378.

- Mahalanobis, P. C. 1930. On tests and measures of group divergence. Journal of the Asiatic Society of Bengal 26: 541–588.
- ----. 1936. On the generalized distance in statistics. National Institute of Science of India 12: 49-55.
- Olkin, I., and A. R. Sampson. 2001. Harold Hotelling. In *Statisticians of the Centuries*, ed. C. C. Heyde and E. Seneta, 454–458. New York: Springer.
- Rao, C. R. 1973. Prasantha Chandra Mahalanobis, 1893–1972. Biographical Memoirs of Fellows of The Royal Society 19: 455–492.

Wilks, S. S. 1962. Mathematical Statistics. New York: Wiley.

Also see

- [MV] manova Multivariate analysis of variance and covariance
- [MV] mytest means Multivariate tests of means
- [R] regress Linear regression
- [R] **ttest** t tests (mean-comparison tests)