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Syntax

Cluster analysis of data

cluster stop
[

clname
] [

, options
]

Cluster analysis of a dissimilarity matrix

clustermat stop
[

clname
]
, variables(varlist)

[
options

]
options Description

rule(calinski) use Caliński–Harabasz pseudo-F index stopping rule; the default
rule(duda) use Duda–Hart Je(2)/Je(1) index stopping rule
rule(rule name) use rule name stopping rule; see Options for details
groups(numlist) compute stopping rule for specified groups
matrix(matname) save results in matrix matname

∗variables(varlist) compute the stopping rule using varlist

∗ variables(varlist) is required with a clustermat solution and optional with a cluster solution.
rule(rule name) is not shown in the dialog box. See [MV] cluster programming subroutines for information

on how to add stopping rules to the cluster stop command.

Menu
Statistics > Multivariate analysis > Cluster analysis > Postclustering > Cluster analysis stopping rules

Description
Cluster-analysis stopping rules are used to determine the number of clusters. A stopping-rule value

(also called an index) is computed for each cluster solution (for example, at each level of the hierarchy
in a hierarchical cluster analysis). Larger values (or smaller, depending on the particular stopping rule)
indicate more distinct clustering. See [MV] cluster for background information on cluster analysis
and on the cluster and clustermat commands.

The cluster stop and clustermat stop commands currently provide two stopping rules, the
Caliński and Harabasz (1974) pseudo-F index and the Duda–Hart (2001, sec. 10.10) Je(2)/Je(1)
index. For both rules, larger values indicate more distinct clustering. Presented with the Duda–
Hart Je(2)/Je(1) values are pseudo-T -squared values. Smaller pseudo-T -squared values indicate more
distinct clustering.

clname specifies the name of the cluster analysis. The default is the most recently performed
cluster analysis, which can be reset using the cluster use command; see [MV] cluster utility.
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More stop rules may be added; see [MV] cluster programming subroutines, which illustrates
this ability by showing a program that adds the step-size stopping rule.

Options
rule(calinski | duda | rule name) indicates the stopping rule. rule(calinski), the default, spec-

ifies the Caliński–Harabasz pseudo-F index. rule(duda) specifies the Duda–Hart Je(2)/Je(1)
index.

rule(calinski) is allowed for both hierarchical and nonhierarchical cluster analyses.
rule(duda) is allowed only for hierarchical cluster analyses.

You can add stopping rules to the cluster stop command (see [MV] cluster programming
subroutines) by using the rule(rule name) option. [MV] cluster programming subroutines
illustrates how to add stopping rules by showing a program that adds a rule(stepsize) option,
which implements the simple step-size stopping rule mentioned in Milligan and Cooper (1985).

groups(numlist) specifies the cluster groupings for which the stopping rule is to be computed.
groups(3/20) specifies that the measure be computed for the three-group solution, the four-group
solution, . . . , and the 20-group solution.

With rule(duda), the default is groups(1/15). With rule(calinski) for a hierarchical cluster
analysis, the default is groups(2/15). groups(1) is not allowed with rule(calinski) because
the measure is not defined for the degenerate one-group cluster solution. The groups() option is
unnecessary (and not allowed) for a nonhierarchical cluster analysis.

If there are ties in the hierarchical cluster-analysis structure, some (or possibly all) of the requested
stopping-rule solutions may not be computable. cluster stop passes over, without comment, the
groups() for which ties in the hierarchy cause the stopping rule to be undefined.

matrix(matname) saves the results in a matrix named matname.

With rule(calinski), the matrix has two columns, the first giving the number of clusters and
the second giving the corresponding Caliński–Harabasz pseudo-F stopping-rule index.

With rule(duda), the matrix has three columns: the first column gives the number of clusters,
the second column gives the corresponding Duda–Hart Je(2)/Je(1) stopping-rule index, and the
third column provides the corresponding pseudo-T -squared values.

variables(varlist) specifies the variables to be used in the computation of the stopping rule. By
default, the variables used for the cluster analysis are used. variables() is required for cluster
solutions produced by clustermat.

Remarks and examples stata.com

Everitt et al. (2011) and Gordon (1999) discuss the problem of determining the number of clusters
and describe several stopping rules, including the Caliński–Harabasz (1974) pseudo-F index and
the Duda–Hart (2001, sec. 10.10) Je(2)/Je(1) index. There are many cluster stopping rules. Milligan
and Cooper (1985) evaluate 30 stopping rules, singling out the Caliński–Harabasz index and the
Duda–Hart index as two of the best rules.

Large values of the Caliński–Harabasz pseudo-F index indicate distinct clustering. The Duda–Hart
Je(2)/Je(1) index has an associated pseudo-T -squared value. A large Je(2)/Je(1) index value and a
small pseudo-T -squared value indicate distinct clustering. See Methods and formulas at the end of
this entry for details.

http://www.stata.com/manuals13/mvclusterprogrammingsubroutines.pdf#mvclusterprogrammingsubroutines
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Example 2 of [MV] clustermat shows the use of the clustermat stop command.

Some stopping rules such as the Duda–Hart index work only with a hierarchical cluster analysis.
The Caliński–Harabasz index, however, may be applied to both nonhierarchical and hierarchical
cluster analyses.

Example 1

Previously, you ran kmeans cluster analyses on data where you measured the flexibility, speed, and
strength of the 80 students in your physical education class; see example 1 of [MV] cluster kmeans
and kmedians. Your original goal was to split the class into four groups, though you also examined
the three- and five-group kmeans cluster solutions as possible alternatives.

Now out of curiosity, you wonder what the Caliński–Harabasz stopping rule shows for the three-,
four-, and five-group solutions from a kmedian clustering of this dataset.

. use http://www.stata-press.com/data/r13/physed

. cluster kmed flex speed strength, k(3) name(kmed3) measure(abs) start(lastk)

. cluster kmed flex speed strength, k(4) name(kmed4) measure(abs) start(kr(11736))

. cluster kmed flex speed strength, k(5) name(kmed5) measure(abs) start(prand(8723))

. cluster stop kmed3

Calinski/
Number of Harabasz
clusters pseudo-F

3 132.75

. cluster stop kmed4

Calinski/
Number of Harabasz
clusters pseudo-F

4 337.10

. cluster stop kmed5

Calinski/
Number of Harabasz
clusters pseudo-F

5 300.45

The four-group solution with a Caliński–Harabasz pseudo-F value of 337.10 is largest, indicating
that the four-group solution is the most distinct compared with the three-group and five-group solutions.

The three-group solution has a much lower stopping-rule value of 132.75. The five-group solution,
with a value of 300.45, is reasonably close to the four-group solution.

Though you do not think it will change your decision on how to split your class into groups,
you are curious to see what a hierarchical cluster analysis might produce. You decide to try an
average-linkage cluster analysis using the default Euclidean distance; see [MV] cluster linkage. You
examine the resulting cluster analysis with the cluster tree command, which is an easier-to-type
alias for the cluster dendrogram command; see [MV] cluster dendrogram.

http://www.stata.com/manuals13/mvclustermat.pdf#mvclustermatRemarksandexamplesex2_clustermat
http://www.stata.com/manuals13/mvclustermat.pdf#mvclustermat
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http://www.stata.com/manuals13/mvclusterkmeansandkmedians.pdf#mvclusterkmeansandkmedians
http://www.stata.com/manuals13/mvclusterkmeansandkmedians.pdf#mvclusterkmeansandkmedians
http://www.stata.com/manuals13/mvclusterlinkage.pdf#mvclusterlinkage
http://www.stata.com/manuals13/mvclusterdendrogram.pdf#mvclusterdendrogram
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. cluster averagelink flex speed strength, name(avglnk)

. cluster tree avglnk, xlabel(, angle(90) labsize(*.75))
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Dendrogram for avglnk cluster analysis

You are curious to see how the four- and five-group solutions from this hierarchical cluster analysis
compare with the four- and five-group solutions from the kmedian clustering.

. cluster gen avgg = groups(4/5), name(avglnk)

. table kmed4 avgg4

avgg4
kmed4 1 2 3 4

1 35
2 15
3 20
4 10

. table kmed5 avgg5

avgg5
kmed5 1 2 3 4 5

1 15
2 19 1
3 20
4 10
5 15

The four-group solutions are identical, except for the numbers used to label the groups. The
five-group solutions are different. The kmedian clustering split the 35-member group into subgroups
having 20 and 15 members. The average-linkage clustering instead split one member off from the
20-member group.

Now you examine the Caliński–Harabasz pseudo-F stopping-rule values associated with the
kmedian hierarchical cluster analysis.
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. cluster stop avglnk, rule(calinski)

Calinski/
Number of Harabasz
clusters pseudo-F

2 131.86
3 126.62
4 337.10
5 269.07
6 258.40
7 259.37
8 290.78
9 262.86

10 258.53
11 249.93
12 247.85
13 247.53
14 236.98
15 226.51

Because rule(calinski) is the default, you could have obtained this same table by typing

. cluster stop avglnk

or, because avglnk was the most recent cluster analysis performed, by typing

. cluster stop

You did not specify the number of groups to examine from the hierarchical cluster analysis, so it
defaulted to examining up to 15 groups. The highest Caliński–Harabasz pseudo-F value is 337.10
for the four-group solution.

What does the Duda–Hart stopping rule produce for this hierarchical cluster analysis?

. cluster stop avglnk, rule(duda) groups(1/10)

Duda/Hart
Number of pseudo
clusters Je(2)/Je(1) T-squared

1 0.3717 131.86
2 0.1349 147.44
3 0.2283 179.19
4 0.8152 4.08
5 0.2232 27.85
6 0.5530 13.74
7 0.5287 29.42
8 0.6887 3.16
9 0.4888 8.37

10 0.7621 7.80

This time, we asked to see the results for one to 10 groups. The largest Duda–Hart Je(2)/Je(1)
stopping-rule value is 0.8152, corresponding to four groups. The smallest pseudo-T -squared value is
3.16 for the eight-group solution, but the pseudo-T -squared value for the four-group solution is also
low, with a value of 4.08.

Distinct clustering is characterized by large Caliński–Harabasz pseudo-F values, large Duda–Hart
Je(2)/Je(1) values, and small Duda–Hart pseudo-T -squared values.
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The conventional wisdom for deciding the number of groups based on the Duda–Hart stopping-rule
table is to find one of the largest Je(2)/Je(1) values that corresponds to a low pseudo-T -squared value
that has much larger T -squared values next to it. This strategy, combined with the results from
the Caliński–Harabasz results, indicates that the four-group solution is the most distinct from this
hierarchical cluster analysis.

Technical note
There is a good reason that the word “pseudo” appears in “pseudo-F ” and “pseudo-T -squared”.

Although these index values are based on well-known statistics, any p-values computed from these
statistics would not be valid. Remember that cluster analysis searches for structure.

If you were to generate random observations, perform a cluster analysis, compute these stopping-
rule statistics, and then follow that by computing what would normally be the p-values associated
with the statistics, you would almost always end up with significant p-values.

Remember that you would expect, on average, five of every 100 groupings of your random data to
show up as significant when you use .05 as your threshold for declaring significance. Cluster-analysis
methods search for the best groupings, so there is no surprise that p-values show high significance,
even when none exists.

Examining the stopping-rule index values relative to one another is useful, however, in finding
relatively reasonable groupings that may exist in the data.

Technical note
As mentioned in Methods and formulas, ties in the hierarchical cluster structure cause some of the

stopping-rule index values to be undefined. Discrete (as opposed to continuous) data tend to cause
ties in a hierarchical clustering. The more discrete the data, the more likely it is that ties will occur
(and the more of them you will encounter) within a hierarchy.

Even with so-called continuous data, ties in the hierarchical clustering can occur. We say “so-called”
because most continuous data are truncated or rounded. For instance, miles per gallon, length, weight,
etc., which may really be continuous, may be observed and recorded only to the tens, ones, tenths,
or hundredths of a unit.

You can have data with no ties in the observations and still have many ties in the hierarchy. Ties
in distances (or similarities) between observations and groups of observations cause the ties in the
hierarchy.

Thus, do not be surprised when some (many) of the stopping-rule values that you request are not
presented. Stata has decided not to break the ties arbitrarily, because the stopping-rule values may
differ widely, depending on which split is made.

Technical note
The stopping rules also become less informative as the number of elements in the groups becomes

small, that is, having many groups, each with few observations. We recommend that if you need to
examine the stopping-rule values deep within your hierarchical cluster analysis, you do so skeptically.
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Stored results
cluster stop and clustermat stop with rule(calinski) stores the following in r():

Scalars
r(calinski #) Caliński–Harabasz pseudo-F for # groups

Macros
r(rule) calinski
r(label) C-H pseudo-F
r(longlabel) Calinski & Harabasz pseudo-F

cluster stop and clustermat stop with rule(duda) stores the following in r():

Scalars
r(duda #) Duda–Hart Je(2)/Je(1) value for # groups
r(dudat2 #) Duda–Hart pseudo-T -squared value for # groups

Macros
r(rule) duda
r(label) D-H Je(2)/Je(1)
r(longlabel) Duda & Hart Je(2)/Je(1)
r(label2) D-H pseudo-T-squared
r(longlabel2) Duda & Hart pseudo-T-squared

Methods and formulas
The Caliński–Harabasz pseudo-F stopping-rule index for g groups and N observations is

trace(B)/(g − 1)

trace(W)/(N − g)

where B is the between-cluster sum of squares and cross-products matrix, and W is the within-cluster
sum of squares and cross-products matrix.

Large values of the Caliński–Harabasz pseudo-F stopping-rule index indicate distinct cluster
structure. Small values indicate less clearly defined cluster structure.

The Duda–Hart Je(2)/Je(1) stopping-rule index value is literally Je(2) divided by Je(1). Je(1) is
the sum of squared errors within the group that is to be divided. Je(2) is the sum of squared errors
in the two resulting subgroups.

Large values of the Duda–Hart pseudo-T -squared stopping-rule index indicate distinct cluster
structure. Small values indicate less clearly defined cluster structure.

The Duda–Hart Je(2)/Je(1) index requires hierarchical clustering information. It needs to know at
each level of the hierarchy which group is to be split and how. The Duda–Hart index is also local
because the only information used comes from the group’s being split. The information in the rest of
the groups does not enter the computation.

In comparison, the Caliński–Harabasz rule does not require hierarchical information and is global
because the information from each group is used in the computation.

A pseudo-T -squared value is also presented with the Duda and Hart Je(2)/Je(1) index. The
relationship is

1

Je(2)/Je(1)
= 1 +

T 2

N1 +N2 − 2

where N1 and N2 are the numbers of observations in the two subgroups.



8 cluster stop — Cluster-analysis stopping rules

Je(2)/Je(1) will be zero when Je(2) is zero, that is, when the two subgroups each have no variability.
An example of this is when the cluster being split has two distinct values that are being split into
singleton subgroups. Je(1) will never be zero because we do not split groups that have no variability.
When Je(2)/Je(1) is zero, the pseudo-T -squared value is undefined.

Ties in splitting a hierarchical cluster analysis create an ambiguity for the Je(2)/Je(1) measure. For
example, to compute the measure for the case of going from five clusters to six, you need to identify
the one cluster that will be split. With a tie in the hierarchy, you would instead go from five clusters
directly to seven (just as an example). Stata refuses to produce an answer in this situation.
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Also see
[MV] cluster — Introduction to cluster-analysis commands

[MV] clustermat — Introduction to clustermat commands
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