
Title stata.com

mi update — Ensure that mi data are consistent

Syntax Menu Description Remarks and examples Also see

Syntax
mi update

Menu
Statistics > Multiple imputation

Description
mi update verifies that mi data are consistent. If the data are not consistent, mi update reports

the inconsistencies and makes the necessary changes to make the data consistent.

mi update can change the sort order of the data.

Remarks and examples stata.com

Remarks are presented under the following headings:
Purpose of mi update
What mi update does
mi update is run automatically

Purpose of mi update

mi update allows you to

• change the values of existing variables, whether imputed, passive, regular, or unregistered;

• add or remove missing values from imputed variables (or from any variables);

• drop variables;

• create new variables;

• drop observations; and

• duplicate observations (but not add observations in other ways).

You can make any or all of the above changes and then type

. mi update

and mi update will handle making whatever additional changes are required to keep the data consistent.
For instance,

. drop if sex==1
(75 observations deleted)

. mi update
(375 m>0 obs. dropped due to dropped obs. in m=0)

In this example, we happen to have five imputations and are working with flongsep data. We
dropped 75 observations in m = 0, and that still left 5 × 75 = 375 observations to be dropped in
m > 0.

1

http://stata.com
http://stata.com


2 mi update — Ensure that mi data are consistent

The messages mi update produces vary according to the style of the data because the changes
required to make the data consistent are determined by the style. Had we been working with flong
data, we might have seen

. drop if sex==1
(450 observations deleted)

. mi update
(system variable _mi_id updated due to change in number of obs.)

With flong data in memory, when we dropped if sex==1, we dropped all 75 + 5 × 75 = 450
observations, so no more observations needed to be dropped; but here mi update needed to update
one of its system variables because of the change we made.

Had we been working with mlong data, we might have seen

. drop if sex==1
(90 observations deleted)

. mi update
(system variable _mi_id updated due to change in number of obs.)

The story here is very much like the story in the flong case. In mlong data, dropping if sex==1
drops the 75 observations in m = 0 and also drops the incomplete observations among the 75 in
m = 1, m = 2, . . . , m = 5. In this example, there are three such observations, so a total of
75 + 5 × 3 = 90 were dropped, and because of the change, mi update needed to update its system
variable.

Had we been using wide data, we might have seen

. drop if sex==1
(75 observations deleted)

. mi update

mi update’s silence indicates that mi update did nothing, because after dropping observations
in wide data, nothing more needs to be done. We could have skipped typing mi update here, but
do not think that way because changing values, dropping variables, creating new variables, dropping
observations, or creating new observations can have unanticipated consequences.

For instance, in our data is variable farmincome, and it seems obvious that farmincome should
be 0 if the person does not have a farm, so we type

. replace farmincome = 0 if !farm
(15 real changes made)

After changing values, you should type mi update even if you do not suspect that it is necessary.
Here is what happens when we do that with these data:

. mi update
(12 m=0 obs. now marked as complete)

Typing mi update was indeed necessary! We forgot that the farmincome variable was imputed,
and it turns out that the variable contained missing in 12 nonfarm observations; mi needed to deal
with that.

Running mi update is so important that mi itself is constantly running it just in case you forget.
For instance, let’s “forget” to type mi update and then convert our data to wide:

. replace farmincome = 0 if !farm
(15 real changes made)

. mi convert wide, clear
(12 m=0 obs. now marked as complete)



mi update — Ensure that mi data are consistent 3

The parenthetical message was produced because mi convert ran mi update for us. For more
information on this, see [MI] noupdate option.

What mi update does

• mi update checks whether you have changed N , the number of observations in m = 0,
and resets N if necessary.

• mi update checks whether you have changed M , the number of imputations, and adjusts
the data if necessary.

• mi update checks whether you have added, dropped, registered, or unregistered any variables
and takes the appropriate action.

• mi update checks whether you have added or deleted any observations. If you have, it then
checks whether you carried out the operation consistently for m = 0, m = 1, . . . , m = M .
If you have not carried it out consistently, mi update carries it out consistently for you.

• In the mlong, flong, and flongsep styles, mi update checks system variable mi id, which
links observations across m, and reconstructs the variable if necessary.

• mi update checks that the system variable mi miss, which marks the incomplete ob-
servations, is correct and, if not, updates it and makes any other changes required by the
change.

• mi update verifies that the values recorded in imputed variables in m > 0 are equal to the
values in m = 0 when they are nonmissing and updates any that differ.

• mi update verifies that the values recorded in passive variables in m > 0 are equal to the
values recorded in m = 0’s complete observations and updates any that differ.

• mi update verifies that the values recorded in regular variables in m > 0 equal the values
in m = 0 and updates any that differ.

• mi update adds any new variables in m = 0 to m > 0.

• mi update drops any variables from m > 0 that do not appear in m = 0.

mi update is run automatically

As we mentioned before, running mi update is so important that many mi commands simply run
it as a matter of course. This is discussed in [MI] noupdate option. In a nutshell, the mi commands
that run mi update automatically have a noupdate option, so you can identify them, and you can
specify the option to skip running the update and so speed execution, but only with the adrenaline
rush caused by a small amount of danger.

Whether you specify noupdate or not, we advise you to run mi update periodically and to
always run mi update after dropping or adding variables or observations, or changing values.

Also see
[MI] intro — Introduction to mi

[MI] noupdate option — The noupdate option

http://www.stata.com/manuals13/minoupdateoption.pdf#minoupdateoption
http://www.stata.com/manuals13/minoupdateoption.pdf#minoupdateoption
http://www.stata.com/manuals13/miintro.pdf#miintro
http://www.stata.com/manuals13/minoupdateoption.pdf#minoupdateoption

