mi impute nbreg — Impute using negative binomial regression

Syntax

mi impute nbreg ivar [indepvars] [if] [weight] [, impute_options options]

impute_options Description

Main
*add(#) specify number of imputations to add; required when no imputations exist
*replace replace imputed values in existing imputations
rseed(#) specify random-number seed
double store imputed values in double precision; the default is to store them as float
by(varlist[, byopts]) impute separately on each group formed by varlist

Reporting
dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends

Advanced
force proceed with imputation, even when missing imputed values are encountered
noupdate do not perform mi update; see [MI] noupdate option

*add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.

options Description

Main
noconstant suppress constant term
dispersion(mean) parameterization of dispersion; the default
dispersion(constant) constant dispersion for all observations
exposure(varname_o) include ln(varname_o) in model with coefficient constrained to 1
offset(varname_o) include varname_o in model with coefficient constrained to 1
conditional(if) perform conditional imputation
bootstrap estimate model parameters using sampling with replacement

Maximization
maximize_options control the maximization process; seldom used
You must mi set your data before using mi impute nbreg; see [MI] mi set.

You must mi register ivar as imputed before using mi impute nbreg; see [MI] mi set.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

Menu

Statistics > Multiple imputation

Description

mi impute nbreg fills in missing values of an overdispersed count variable using a negative
binomial regression imputation method. You can perform separate imputations on different subsets of
the data by specifying the by() option. You can also account for frequency, importance, and sampling
weights.

Options

Main

noconstant; see [R] estimation options.
add(), replace, rseed(), double, by(); see [MI] mi impute.
dispersion(mean | constant); see [R] nbreg.
exposure(varname_e), offset(varname_o); see [R] estimation options.
conditional(varname_c) specifies that the imputation variable be imputed conditionally on observations
satisfying exp; see [U] 11.1.3 if exp. That is, missing values in a conditional sample, the sample
identified by the exp expression, are imputed based only on data in that conditional sample. Missing
values outside the conditional sample are replaced with a conditional constant, the value
of the imputation variable in observations outside the conditional sample. As such, the imputation
variable is required to be constant outside the conditional sample. Also, if any conditioning variables
(variables involved in the conditional specification if exp) contain soft missing values (.), their
missing values must be nested within missing values of the imputation variables. See Conditional
imputation under Remarks and examples in [MI] mi impute.
bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect.

Reporting

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from the negative
binomial regression fit to the observed data be displayed. nolegend suppresses all legends that
appear before the imputation table. Such legends include a legend about conditional imputation
that appears when the conditional() option is specified and group legends that may appear
when the by() option is specified.
mi impute nbreg — Impute using negative binomial regression

Maximization

maximize_options; see [R] nbreg. These options are seldom used.

force; see [MI] mi impute.

The following option is available with mi impute but is not shown in the dialog box:
noupdate; see [MI] noupdate option.

Remarks and examples

Remarks are presented under the following headings:

Univariate imputation using negative binomial regression
Using mi impute nbreg

See [MI] mi impute for a general description and details about options common to all imputation methods, impute_options. Also see [MI] workflow for general advice on working with mi.

Univariate imputation using negative binomial regression

The negative binomial regression imputation method can be used to fill in missing values of an overdispersed count variable (Royston 2009). It is a parametric method that assumes an underlying negative binomial model (see [R] nbreg) for the imputed variable (given other predictors). This method is based on the asymptotic approximation of the posterior predictive distribution of the missing data.

Using mi impute nbreg

In [MI] mi impute poisson, we considered a version of the heart attack data containing a count variable, npreg, which records the number of pregnancies and is the only variable containing missing values. We imputed its missing values using mi impute poisson.

A Poisson model assumes that the mean and the variance are the same. In the presence of overdispersion, when the variance exceeds the mean, a negative binomial model is more appropriate. We can fit a negative binomial model for npreg to the observed data to see if there is any indication of overdispersion in the data.
. use http://www.stata-press.com/data/r13/mheartpois
 (Fictional heart attack data; npreg missing)
. nbreg npreg attack smokes age bmi hsgrad if female==1, nolog

Negative binomial regression Number of obs = 35
LR chi2(5) = 1.69
Dispersion = mean Prob > chi2 = 0.8903
Log likelihood = -54.638875 Pseudo R2 = 0.0152

| Coef. Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------------|-------|------|----------------------|
| npreg | .0551929 | .4214484 | 0.13 | 0.896 | -.7708309 .8812166 |
| attack | .0521987 | .4182004 | 0.12 | 0.901 | -.7674591 .8718565 |
| smokes | -.0105877 | .0174661 | -.61 | 0.544 | -.0448206 .0236452 |
| age | .0194787 | .0489883 | 0.40 | 0.691 | -.0765367 .115494 |
| bmi | .5338139 | .4972872 | 1.07 | 0.283 | -.4408511 1.508479 |
| hsgrad | -.0736959 | 1.551417 | -0.05 | 0.962 | -3.114417 2.967025 |
|_cons | .4512832 | .3604539 | 1.26 | 0.209 | .0943122 2.159386 |

/lnalpha = 1.4596602

Likelihood-ratio test of alpha=0: chibar2(01) = 3.00 Prob>=chibar2 = 0.042

The estimate of the overdispersion parameter alpha is 0.45 with a 95% confidence interval of [0.094, 2.16]. The confidence interval does not include a value of 0 (no overdispersion), so there is slight overdispersion in the conditional distribution of nbreg in the observed data.

We now impute npreg using mi impute nbreg:

. mi set mlong
. mi register imputed npreg
 (10 m=0 obs. now marked as incomplete)
. mi impute nbreg npreg attack smokes age bmi hsgrad, add(20) > conditional(if female==1)

Univariate imputation Imputations = 20
Negative binomial regression added = 20
Imputed: m=1 through m=20 updated = 0

Dispersion: mean
Conditional imputation:
 npreg: incomplete out-of-sample obs. replaced with value 0

<table>
<thead>
<tr>
<th>Variable</th>
<th>Complete</th>
<th>Incomplete</th>
<th>Imputed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>npreg</td>
<td>144</td>
<td>10</td>
<td>10</td>
<td>154</td>
</tr>
</tbody>
</table>

(complete + incomplete = total; imputed is the minimum across m of the number of filled-in observations.)

We specify the conditional() option to restrict imputation of npreg only to females; see Conditional imputation in [MI] mi impute for details.

We can analyze these multiply imputed data using logistic regression with mi estimate:

. mi estimate: logit attack smokes age bmi female hsgrad npreg
(output omitted)
mi impute nbreg stores the following in \(r() \):

Scalars

- \(r(M) \): total number of imputations
- \(r(M_{\text{add}}) \): number of added imputations
- \(r(M_{\text{update}}) \): number of updated imputations
- \(r(k_{\text{ivars}}) \): number of imputed variables (always 1)
- \(r(N_{\text{g}}) \): number of imputed groups (1 if by() is not specified)

Macros

- \(r(method) \): name of imputation method (nbreg)
- \(r(ivars) \): names of imputation variables
- \(r(rseed) \): random-number seed
- \(r(by) \): names of variables specified within by()

Matrices

- \(r(N) \): number of observations in imputation sample in each group
- \(r(N_{\text{complete}}) \): number of complete observations in imputation sample in each group
- \(r(N_{\text{incomplete}}) \): number of incomplete observations in imputation sample in each group
- \(r(N_{\text{imputed}}) \): number of imputed observations in imputation sample in each group

Methods and formulas

Consider a univariate variable \(x = (x_1, x_2, \ldots, x_n)' \) that follows a negative binomial model

\[
\Pr(x_i = x | z_i) = \frac{\Gamma(m_i + x)}{\Gamma(x + 1) \Gamma(m_i)} p_i^{m_i} (1 - p_i)^x, \ x = 0, 1, 2, \ldots
\]

where \(m_i = m = 1/\alpha \), \(p_i = 1/(1 + \alpha \mu_i) \) under mean-dispersion model and \(m_i = \mu_i/\delta \), \(p_i = p = 1/(1 + \delta) \) under constant-dispersion model, \(\mu_i = \exp(z_i' \beta + \text{offset}_i) \), and \(\alpha > 0 \) and \(\delta > 0 \) are unknown dispersion parameters; see [R] nbreg for details. \(z_i = (z_{i1}, z_{i2}, \ldots, z_{iq})' \) records values of predictors of \(x \) for observation \(i \) and \(\beta \) is the \(q \times 1 \) vector of unknown regression coefficients. (When a constant is included in the model—the default—\(z_{i1} = 1, \ i = 1, \ldots, n \).)

\(x \) contains missing values that are to be filled in. Consider the partition of \(x = (x_{o}', x_{m}') \) into \(n_0 \times 1 \) and \(n_1 \times 1 \) vectors containing the complete and the incomplete observations. Consider a similar partition of \(Z = (Z_o, Z_m) \) into \(n_0 \times q \) and \(n_1 \times q \) submatrices.

mi impute nbreg follows the steps below to fill in \(x_m \):

1. Fit a negative binomial regression model (1) to the observed data \((x_o, Z_o)\) to obtain the maximum likelihood estimates, \(\hat{\theta} = (\hat{\beta}', \ln \hat{\alpha})' \) under a mean-dispersion model or \(\hat{\theta} = (\hat{\beta}', \ln \hat{\delta})' \) under a constant-dispersion model, and their asymptotic sampling variance, \(\hat{U} \).

2. Simulate new parameters, \(\theta_* \), from the large-sample normal approximation, \(N(\hat{\theta}, \hat{U}) \), to its posterior distribution, assuming the noninformative prior \(\Pr(\theta) \propto \text{const} \).

3. Obtain one set of imputed values, \(x_{m1}' \), by simulating from a negative binomial distribution (1) with parameters set to their simulated values from step 2.

4. Repeat steps 2 and 3 to obtain \(M \) sets of imputed values, \(x_{m1}', x_{m2}', \ldots, x_{mM}' \).

Steps 2 and 3 above correspond to only approximate draws from the posterior predictive distribution of the missing data, \(\Pr(x_m | x_o, Z_o) \), because \(\theta_* \) is drawn from the asymptotic approximation to its posterior distribution.
If weights are specified, a weighted negative binomial regression model is fit to the observed data in step 1 (see [R] nbreg for details).

Reference

Also see
[MI] mi impute — Impute missing values
[MI] mi impute poisson — Impute using Poisson regression
[MI] mi estimate — Estimation using multiple imputations
[MI] intro — Introduction to mi
[MI] intro substantive — Introduction to multiple-imputation analysis