mi estimate postestimation — Postestimation tools for mi estimate

Description Remarks and examples Also see

Description

The following postestimation commands are available after mi estimate and mi estimate using:

Command	Description
mi test	perform tests on coefficients
mi testtransform	perform tests on transformed coefficients
mi predict	obtain linear predictions
mi predictnl	obtain nonlinear predictions

See [MI] mi test and [MI] mi predict.

Remarks and examples

stata.com

After estimation by mi estimate: *estimation_command*, in general, you may not use the standard postestimation commands such as test, testnl, or predict; nor may you use *estimation_command*-specific postestimation commands such as estat. As we have mentioned often, mi estimate is its own estimation command, and the postestimation commands available after mi estimate (and mi estimate using) are listed in the table above.

Using the command-specific postestimation tools

After mi estimate: *estimation_command*, you may not use *estimation_command*'s postestimation features. More correctly, you may not use them unless you specify mi estimate's post option:

. mi estimate, post: estimation_command ...

Specifying post causes many statistical issues, so do not be casual about specifying it.

First, the MI estimate of the VCE is poor unless the number of imputations, M, is sufficiently large. How large is uncertain, but you should not be thinking M = 20 rather than M = 5; you should be thinking of M in the hundreds. What is statistically true is that, asymptotically in M (and in the number of observations, N), the MI estimated coefficients approach normality and the VCE becomes well estimated.

Second, there are substantive issues about what is meant by *estimation_command*'s prediction after MI estimation that you are going to have to resolve for yourself. There is no one estimation sample. There are M of them, and as we have just argued, M is large. Do not expect postestimation commands that depend on predicted values such as margins, lroc, and the like, to produce correct results, if they produce results at all.

Which brings us to the third point. Even when you specify mi estimate's post option, mi estimate still does not post everything the estimation command expects to see. It does not post likelihood values, for instance, because there is no counterpart after MI estimation. Thus, you should be prepared to see unexpected and inelegant error messages if you use a postestimation command that depends on an unestimated and unposted result.

2 mi estimate postestimation — Postestimation tools for mi estimate

All of which is to say that if you specify the post option, you have a responsibility beyond the usual to ensure the validity of any statistical results.

Also see

- [MI] mi predict Obtain multiple-imputation predictions
- [MI] mi test Test hypotheses after mi estimate
- [MI] mi estimate Estimation using multiple imputations
- [MI] mi estimate using Estimation using previously saved estimation results
- [MI] intro Introduction to mi
- [MI] intro substantive Introduction to multiple-imputation analysis
- [MI] Glossary