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Syntax

mixed depvar fe equation
[
|| re equation

] [
|| re equation . . .

] [
, options

]
where the syntax of fe equation is[

indepvars
] [

if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable

levelvar: R.varname
[
, re options

]
levelvar is a variable identifying the group structure for the random effects at that level or is all
representing one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
collinear keep collinear variables
fweight(exp) frequency weights at higher levels
pweight(exp) sampling weights at higher levels
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2 mixed — Multilevel mixed-effects linear regression

options Description

Model

mle fit model via maximum likelihood; the default
reml fit model via restricted maximum likelihood
pwscale(scale method) control scaling of sampling weights in two-level models
residuals(rspec) structure of residual errors

SE/Robust

vce(vcetype) vcetype may be oim, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

variance show random-effects and residual-error parameter estimates as variances
and covariances; the default

stddeviations show random-effects and residual-error parameter estimates as standard
deviations

noretable suppress random-effects table
nofetable suppress fixed-effects table
estmetric show parameter estimates in the estimation metric
noheader suppress output header
nogroup suppress table summarizing groups
nostderr do not estimate standard errors of random-effects parameters
nolrtest do not perform likelihood-ratio test comparing with linear regression
display options control column formats, row spacing, line width, display of omitted

variables and base and empty cells, and factor-variable labeling

EM options

emiterate(#) number of EM iterations; default is emiterate(20)

emtolerance(#) EM convergence tolerance; default is emtolerance(1e-10)

emonly fit model exclusively using EM
emlog show EM iteration log
emdots show EM iterations as dots

Maximization

maximize options control the maximization process; seldom used
matsqrt parameterize variance components using matrix square roots; the default
matlog parameterize variance components using matrix logarithms

coeflegend display legend instead of statistics

http://www.stata.com/manuals13/r.pdf#rvce_option
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vartype Description

independent one unique variance parameter per random effect, all covariances 0;
the default unless the R. notation is used

exchangeable equal variances for random effects, and one common pairwise
covariance

identity equal variances for random effects, all covariances 0;
the default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, mi estimate, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
pweights and fweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Multilevel mixed-effects models > Linear regression

Description
mixed fits linear mixed-effects models. The overall error distribution of the linear mixed-effects

model is assumed to be Gaussian, and heteroskedasticity and correlations within lowest-level groups
also may be modeled.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any or all of the random-effects equations.

covariance(vartype), where vartype is

independent | exchangeable | identity | unstructured

specifies the structure of the covariance matrix for the random effects and may be specified for
each random-effects equation. An independent covariance structure allows for a distinct variance
for each random effect within a random-effects equation and assumes that all covariances are 0.
exchangeable structure specifies one common variance for all random effects and one common
pairwise covariance. identity is short for “multiple of the identity”; that is, all variances are
equal and all covariances are 0. unstructured allows for all variances and covariances to be
distinct. If an equation consists of p random-effects terms, the unstructured covariance matrix will
have p(p+ 1)/2 unique parameters.

covariance(independent) is the default, except when the R. notation is used, in which
case covariance(identity) is the default and only covariance(identity) and covari-
ance(exchangeable) are allowed.

http://www.stata.com/manuals13/u11.pdf#u11.4.3Factorvariables
http://www.stata.com/manuals13/u11.pdf#u11.4.4Time-seriesvarlists
http://www.stata.com/manuals13/u11.pdf#u11.1.10Prefixcommands
http://www.stata.com/manuals13/rbootstrap.pdf#rbootstrap
http://www.stata.com/manuals13/u11.pdf#u11.1.6weight
http://www.stata.com/manuals13/u20.pdf#u20Estimationandpostestimationcommands
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collinear specifies that mixed not omit collinear variables from the random-effects equation.
Usually, there is no reason to leave collinear variables in place; in fact, doing so usually causes
the estimation to fail because of the matrix singularity caused by the collinearity. However, with
certain models (for example, a random-effects model with a full set of contrasts), the variables
may be collinear, yet the model is fully identified because of restrictions on the random-effects
covariance structure. In such cases, using the collinear option allows the estimation to take
place with the random-effects equation intact.

fweight(exp) specifies frequency weights at higher levels in a multilevel model, whereas frequency
weights at the first level (the observation level) are specified in the usual manner, for example,
[fw=fwtvar1]. exp can be any valid Stata expression, and you can specify fweight() at levels
two and higher of a multilevel model. For example, in the two-level model

. mixed fixed_portion [fw = wt1] || school: . . . , fweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2
would hold the second-level (the school-level) frequency weights.

pweight(exp) specifies sampling weights at higher levels in a multilevel model, whereas sampling
weights at the first level (the observation level) are specified in the usual manner, for example,
[pw=pwtvar1]. exp can be any valid Stata expression, and you can specify pweight() at levels
two and higher of a multilevel model. For example, in the two-level model

. mixed fixed_portion [pw = wt1] || school: . . . , pweight(wt2) . . .

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.

See Survey data in Remarks and examples below for more information regarding the use of
sampling weights in multilevel models.

Weighted estimation, whether frequency or sampling, is not supported under restricted maximum-
likelihood estimation (REML).

mle and reml specify the statistical method for fitting the model.

mle, the default, specifies that the model be fit using maximum likelihood (ML).

reml specifies that the model be fit using restricted maximum likelihood (REML), also known as
residual maximum likelihood.

pwscale(scale method), where scale method is

size | effective | gk

controls how sampling weights (if specified) are scaled in two-level models.

scale method size specifies that first-level (observation-level) weights be scaled so that they
sum to the sample size of their corresponding second-level cluster. Second-level sampling
weights are left unchanged.

scale method effective specifies that first-level weights be scaled so that they sum to the
effective sample size of their corresponding second-level cluster. Second-level sampling weights
are left unchanged.

scale method gk specifies the Graubard and Korn (1996) method. Under this method, second-
level weights are set to the cluster averages of the products of the weights at both levels, and
first-level weights are then set equal to 1.

pwscale() is supported only with two-level models. See Survey data in Remarks and examples
below for more details on using pwscale().

http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
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residuals(rspec), where rspec is

restype
[
, residual options

]
specifies the structure of the residual errors within the lowest-level groups (the second level of a
multilevel model with the observations comprising the first level) of the linear mixed model. For
example, if you are modeling random effects for classes nested within schools, then residuals()
refers to the residual variance–covariance structure of the observations within classes, the lowest-
level groups.

restype is

independent | exchangeable | ar # | ma # | unstructured |
banded # | toeplitz # | exponential

By default, restype is independent, which means that all residuals are independent and
identically distributed (i.i.d.) Gaussian with one common variance. When combined with
by(varname), independence is still assumed, but you estimate a distinct variance for each
level of varname. Unlike with the structures described below, varname does not need to be
constant within groups.

restype exchangeable estimates two parameters, one common within-group variance and one
common pairwise covariance. When combined with by(varname), these two parameters
are distinctly estimated for each level of varname. Because you are modeling a within-
group covariance, varname must be constant within lowest-level groups.

restype ar # assumes that within-group errors have an autoregressive (AR) structure of
order #; ar 1 is the default. The t(varname) option is required, where varname is an
integer-valued time variable used to order the observations within groups and to determine
the lags between successive observations. Any nonconsecutive time values will be treated
as gaps. For this structure, # + 1 parameters are estimated (# AR coefficients and one
overall error variance). restype ar may be combined with by(varname), but varname
must be constant within groups.

restype ma # assumes that within-group errors have a moving average (MA) structure of
order #; ma 1 is the default. The t(varname) option is required, where varname is an
integer-valued time variable used to order the observations within groups and to determine
the lags between successive observations. Any nonconsecutive time values will be treated
as gaps. For this structure, # + 1 parameters are estimated (# MA coefficients and one
overall error variance). restype ma may be combined with by(varname), but varname
must be constant within groups.

restype unstructured is the most general structure; it estimates distinct variances for
each within-group error and distinct covariances for each within-group error pair. The
t(varname) option is required, where varname is a nonnegative-integer–valued variable
that identifies the observations within each group. The groups may be unbalanced in that
not all levels of t() need to be observed within every group, but you may not have
repeated t() values within any particular group. When you have p levels of t(), then
p(p + 1)/2 parameters are estimated. restype unstructured may be combined with
by(varname), but varname must be constant within groups.

restype banded # is a special case of unstructured that restricts estimation to the
covariances within the first # off-diagonals and sets the covariances outside this band to
0. The t(varname) option is required, where varname is a nonnegative-integer–valued
variable that identifies the observations within each group. # is an integer between 0 and
p−1, where p is the number of levels of t(). By default, # is p−1; that is, all elements

http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
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of the covariance matrix are estimated. When # is 0, only the diagonal elements of the
covariance matrix are estimated. restype banded may be combined with by(varname),
but varname must be constant within groups.

restype toeplitz # assumes that within-group errors have Toeplitz structure of order #,
for which correlations are constant with respect to time lags less than or equal to #
and are 0 for lags greater than #. The t(varname) option is required, where varname
is an integer-valued time variable used to order the observations within groups and to
determine the lags between successive observations. # is an integer between 1 and the
maximum observed lag (the default). Any nonconsecutive time values will be treated as
gaps. For this structure, # + 1 parameters are estimated (# correlations and one overall
error variance). restype toeplitz may be combined with by(varname), but varname
must be constant within groups.

restype exponential is a generalization of the AR covariance model that allows for unequally
spaced and noninteger time values. The t(varname) option is required, where varname
is real-valued. For the exponential covariance model, the correlation between two errors
is the parameter ρ, raised to a power equal to the absolute value of the difference between
the t() values for those errors. For this structure, two parameters are estimated (the
correlation parameter ρ and one overall error variance). restype exponential may be
combined with by(varname), but varname must be constant within groups.

residual options are by(varname) and t(varname).

by(varname) is for use within the residuals() option and specifies that a set of distinct
residual-error parameters be estimated for each level of varname. In other words, you
use by() to model heteroskedasticity.

t(varname) is for use within the residuals() option to specify a time variable for the
ar, ma, toeplitz, and exponential structures, or to identify the observations when
restype is unstructured or banded.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

vce(robust) and vce(cluster clustvar) are not supported with REML estimation.

� � �
Reporting �

level(#); see [R] estimation options.

variance, the default, displays the random-effects and residual-error parameter estimates as variances
and covariances.

stddeviations displays the random-effects and residual-error parameter estimates as standard
deviations and correlations.

noretable suppresses the random-effects table from the output.

nofetable suppresses the fixed-effects table from the output.

estmetric displays all parameter estimates in the estimation metric. Fixed-effects estimates are
unchanged from those normally displayed, but random-effects parameter estimates are displayed
as log-standard deviations and hyperbolic arctangents of correlations, with equation names that

http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/rvce_option.pdf#rvce_option
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
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organize them by model level. Residual-variance parameter estimates are also displayed in their
original estimation metric.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

nostderr prevents mixed from calculating standard errors for the estimated random-effects parameters,
although standard errors are still provided for the fixed-effects parameters. Specifying this option
will speed up computation times. nostderr is available only when residuals are modeled as
independent with constant variance.

nolrtest prevents mixed from fitting a reference linear regression model and using this model to
calculate a likelihood-ratio test comparing the mixed model to ordinary regression. This option
may also be specified on replay to suppress this test from the output.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvla-
bel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt), sformat(% fmt), and
nolstretch; see [R] estimation options.

� � �
EM options �

These options control the expectation-maximization (EM) iterations that take place before estimation
switches to a gradient-based method. When residuals are modeled as independent with constant
variance, EM will either converge to the solution or bring parameter estimates close to the solution.
For other residual structures or for weighted estimation, EM is used to obtain starting values.

emiterate(#) specifies the number of EM iterations to perform. The default is emiterate(20).

emtolerance(#) specifies the convergence tolerance for the EM algorithm. The default is
emtolerance(1e-10). EM iterations will be halted once the log (restricted) likelihood changes
by a relative amount less than #. At that point, optimization switches to a gradient-based method,
unless emonly is specified, in which case maximization stops.

emonly specifies that the likelihood be maximized exclusively using EM. The advantage of specifying
emonly is that EM iterations are typically much faster than those for gradient-based methods.
The disadvantages are that EM iterations can be slow to converge (if at all) and that EM provides
no facility for estimating standard errors for the random-effects parameters. emonly is available
only with unweighted estimation and when residuals are modeled as independent with constant
variance.

emlog specifies that the EM iteration log be shown. The EM iteration log is, by default, not
displayed unless the emonly option is specified.

emdots specifies that the EM iterations be shown as dots. This option can be convenient because
the EM algorithm may require many iterations to converge.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), and nonrtolerance; see [R] maximize. Those that require special mention
for mixed are listed below.

For the technique() option, the default is technique(nr). The bhhh algorithm may not be
specified.

matsqrt (the default), during optimization, parameterizes variance components by using the matrix
square roots of the variance–covariance matrices formed by these components at each model level.

http://www.stata.com/manuals13/d.pdf#dformat
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals13/rmaximize.pdf#rmaximizeSyntaxalgorithm_spec
http://www.stata.com/manuals13/rmaximize.pdf#rmaximize
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matlog, during optimization, parameterizes variance components by using the matrix logarithms of
the variance–covariance matrices formed by these components at each model level.

The matsqrt parameterization ensures that variance–covariance matrices are positive semidefinite,
while matlog ensures matrices that are positive definite. For most problems, the matrix square root
is more stable near the boundary of the parameter space. However, if convergence is problematic,
one option may be to try the alternate matlog parameterization. When convergence is not an issue,
both parameterizations yield equivalent results.

The following option is available with mixed but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
Two-level models
Covariance structures
Likelihood versus restricted likelihood
Three-level models
Blocked-diagonal covariance structures
Heteroskedastic random effects
Heteroskedastic residual errors
Other residual-error structures
Crossed-effects models
Diagnosing convergence problems
Survey data

Introduction

Linear mixed models are models containing both fixed effects and random effects. They are a
generalization of linear regression allowing for the inclusion of random deviations (effects) other than
those associated with the overall error term. In matrix notation,

y = Xβ+ Zu+ ε (1)

where y is the n× 1 vector of responses, X is an n× p design/covariate matrix for the fixed effects
β, and Z is the n× q design/covariate matrix for the random effects u. The n× 1 vector of errors
ε is assumed to be multivariate normal with mean 0 and variance matrix σ2

εR.

The fixed portion of (1), Xβ, is analogous to the linear predictor from a standard OLS regression
model with β being the regression coefficients to be estimated. For the random portion of (1), Zu+ε,
we assume that u has variance–covariance matrix G and that u is orthogonal to ε so that

Var
[
u
ε

]
=

[
G 0
0 σ2

εR

]
The random effects u are not directly estimated (although they may be predicted), but instead are
characterized by the elements of G, known as variance components, that are estimated along with
the overall residual variance σ2

ε and the residual-variance parameters that are contained within R.

http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://stata.com
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The general forms of the design matrices X and Z allow estimation for a broad class of linear
models: blocked designs, split-plot designs, growth curves, multilevel or hierarchical designs, etc.
They also allow a flexible method of modeling within-cluster correlation. Subjects within the same
cluster can be correlated as a result of a shared random intercept, or through a shared random
slope on (say) age, or both. The general specification of G also provides additional flexibility—the
random intercept and random slope could themselves be modeled as independent, or correlated, or
independent with equal variances, and so forth. The general structure of R also allows for residual
errors to be heteroskedastic and correlated, and allows flexibility in exactly how these characteristics
can be modeled.

Comprehensive treatments of mixed models are provided by, among others, Searle, Casella, and
McCulloch (1992); McCulloch, Searle, and Neuhaus (2008); Verbeke and Molenberghs (2000);
Raudenbush and Bryk (2002); Demidenko (2004); and Pinheiro and Bates (2000). In particular,
chapter 2 of Searle, Casella, and McCulloch (1992) provides an excellent history.

The key to fitting mixed models lies in estimating the variance components, and for that there exist
many methods. Most of the early literature in mixed models dealt with estimating variance components
in ANOVA models. For simple models with balanced data, estimating variance components amounts
to solving a system of equations obtained by setting expected mean-squares expressions equal to their
observed counterparts. Much of the work in extending the ANOVA method to unbalanced data for
general ANOVA designs is due to Henderson (1953).

The ANOVA method, however, has its shortcomings. Among these is a lack of uniqueness in that
alternative, unbiased estimates of variance components could be derived using other quadratic forms
of the data in place of observed mean squares (Searle, Casella, and McCulloch 1992, 38–39). As a
result, ANOVA methods gave way to more modern methods, such as minimum norm quadratic unbiased
estimation (MINQUE) and minimum variance quadratic unbiased estimation (MIVQUE); see Rao (1973)
for MINQUE and LaMotte (1973) for MIVQUE. Both methods involve finding optimal quadratic forms
of the data that are unbiased for the variance components.

The most popular methods, however, are ML and REML, and these are the two methods that are
supported by mixed. The ML estimates are based on the usual application of likelihood theory, given
the distributional assumptions of the model. The basic idea behind REML (Thompson 1962) is that
you can form a set of linear contrasts of the response that do not depend on the fixed effects β, but
instead depend only on the variance components to be estimated. You then apply ML methods by
using the distribution of the linear contrasts to form the likelihood.

Returning to (1): in clustered-data situations, it is convenient not to consider all n observations at
once but instead to organize the mixed model as a series of M independent groups (or clusters)

yj = Xjβ+ Zjuj + εj (2)

for j = 1, . . . ,M , with cluster j consisting of nj observations. The response yj comprises the rows
of y corresponding with the jth cluster, with Xj and εj defined analogously. The random effects uj
can now be thought of as M realizations of a q × 1 vector that is normally distributed with mean 0
and q × q variance matrix Σ. The matrix Zi is the nj × q design matrix for the jth cluster random
effects. Relating this to (1), note that

Z =


Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 0 ZM

 ; u =

 u1
...

uM

 ; G = IM ⊗ Σ; R = IM ⊗ Λ (3)

The mixed-model formulation (2) is from Laird and Ware (1982) and offers two key advantages.
First, it makes specifications of random-effects terms easier. If the clusters are schools, you can
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simply specify a random effect at the school level, as opposed to thinking of what a school-level
random effect would mean when all the data are considered as a whole (if it helps, think Kronecker
products). Second, representing a mixed-model with (2) generalizes easily to more than one set of
random effects. For example, if classes are nested within schools, then (2) can be generalized to allow
random effects at both the school and the class-within-school levels. This we demonstrate later.

In the sections that follow, we assume that residuals are independent with constant variance; that
is, in (3) we treat Λ equal to the identity matrix and limit ourselves to estimating one overall residual
variance, σ2

ε . Beginning in Heteroskedastic residual errors, we relax this assumption.

Two-level models
We begin with a simple application of (2) as a two-level model, because a one-level linear model,

by our terminology, is just standard OLS regression.

Example 1

Consider a longitudinal dataset, used by both Ruppert, Wand, and Carroll (2003) and Diggle
et al. (2002), consisting of weight measurements of 48 pigs on 9 successive weeks. Pigs are
identified by the variable id. Below is a plot of the growth curves for the first 10 pigs.

. use http://www.stata-press.com/data/r13/pig
(Longitudinal analysis of pig weights)

. twoway connected weight week if id<=10, connect(L)
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It seems clear that each pig experiences a linear trend in growth and that overall weight measurements
vary from pig to pig. Because we are not really interested in these particular 48 pigs per se, we
instead treat them as a random sample from a larger population and model the between-pig variability
as a random effect, or in the terminology of (2), as a random-intercept term at the pig level. We thus
wish to fit the model

weightij = β0 + β1weekij + uj + εij (4)

for i = 1, . . . , 9 weeks and j = 1, . . . , 48 pigs. The fixed portion of the model, β0 + β1weekij ,
simply states that we want one overall regression line representing the population average. The random
effect uj serves to shift this regression line up or down according to each pig. Because the random
effects occur at the pig level (id), we fit the model by typing
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. mixed weight week || id:

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -1014.9268
Iteration 1: log likelihood = -1014.9268

Computing standard errors:

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group: min = 9
avg = 9.0
max = 9

Wald chi2(1) = 25337.49
Log likelihood = -1014.9268 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.209896 .0390124 159.18 0.000 6.133433 6.286359
_cons 19.35561 .5974059 32.40 0.000 18.18472 20.52651

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Identity
var(_cons) 14.81751 3.124226 9.801716 22.40002

var(Residual) 4.383264 .3163348 3.805112 5.04926

LR test vs. linear regression: chibar2(01) = 472.65 Prob >= chibar2 = 0.0000

Notes:

1. By typing weight week, we specified the response, weight, and the fixed portion of the model
in the same way that we would if we were using regress or any other estimation command. Our
fixed effects are a coefficient on week and a constant term.

2. When we added || id:, we specified random effects at the level identified by the group variable
id, that is, the pig level (level two). Because we wanted only a random intercept, that is all we
had to type.

3. The estimation log consists of three parts:

a. A set of EM iterations used to refine starting values. By default, the iterations themselves are
not displayed, but you can display them with the emlog option.

b. A set of gradient-based iterations. By default, these are Newton–Raphson iterations, but other
methods are available by specifying the appropriate maximize options; see [R] maximize.

c. The message “Computing standard errors”. This is just to inform you that mixed has finished
its iterative maximization and is now reparameterizing from a matrix-based parameterization
(see Methods and formulas) to the natural metric of variance components and their estimated
standard errors.

4. The output title, “Mixed-effects ML regression”, informs us that our model was fit using ML, the
default. For REML estimates, use the reml option.

Because this model is a simple random-intercept model fit by ML, it would be equivalent to using
xtreg with its mle option.

5. The first estimation table reports the fixed effects. We estimate β0 = 19.36 and β1 = 6.21.

http://www.stata.com/manuals13/rmaximize.pdf#rmaximize
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6. The second estimation table shows the estimated variance components. The first section of the
table is labeled id: Identity, meaning that these are random effects at the id (pig) level and that
their variance–covariance matrix is a multiple of the identity matrix; that is, Σ = σ2

uI. Because
we have only one random effect at this level, mixed knew that Identity is the only possible
covariance structure. In any case, the variance of the level-two errors, σ2

u, is estimated as 14.82
with standard error 3.12.

7. The row labeled var(Residual) displays the estimated variance of the overall error term; that
is, σ̂2

ε = 4.38. This is the variance of the level-one errors, that is, the residuals.

8. Finally, a likelihood-ratio test comparing the model with one-level ordinary linear regression, model
(4) without uj , is provided and is highly significant for these data.

We now store our estimates for later use:

. estimates store randint

Example 2

Extending (4) to allow for a random slope on week yields the model

weightij = β0 + β1weekij + u0j + u1jweekij + εij (5)

and we fit this with mixed:

. mixed weight week || id: week

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -869.03825
Iteration 1: log likelihood = -869.03825

Computing standard errors:

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group: min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4689.51
Log likelihood = -869.03825 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.209896 .0906819 68.48 0.000 6.032163 6.387629
_cons 19.35561 .3979159 48.64 0.000 18.57571 20.13551

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Independent
var(week) .3680668 .0801181 .2402389 .5639103

var(_cons) 6.756364 1.543503 4.317721 10.57235

var(Residual) 1.598811 .1233988 1.374358 1.85992

LR test vs. linear regression: chi2(2) = 764.42 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store randslope
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Because we did not specify a covariance structure for the random effects (u0j , u1j)
′, mixed used

the default Independent structure; that is,

Σ = Var
[
u0j
u1j

]
=

[
σ2
u0 0
0 σ2

u1

]
(6)

with σ̂2
u0 = 6.76 and σ̂2

u1 = 0.37. Our point estimates of the fixed effects are essentially identical to
those from model (4), but note that this does not hold generally. Given the 95% confidence interval
for σ̂2

u1, it would seem that the random slope is significant, and we can use lrtest and our two
stored estimation results to verify this fact:

. lrtest randslope randint

Likelihood-ratio test LR chi2(1) = 291.78
(Assumption: randint nested in randslope) Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

The near-zero significance level favors the model that allows for a random pig-specific regression
line over the model that allows only for a pig-specific shift.

Covariance structures
In example 2, we fit a model with the default Independent covariance given in (6). Within any

random-effects level specification, we can override this default by specifying an alternative covariance
structure via the covariance() option.

Example 3

We generalize (6) to allow u0j and u1j to be correlated; that is,

Σ = Var
[
u0j
u1j

]
=

[
σ2
u0 σ01
σ01 σ2

u1

]
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. mixed weight week || id: week, covariance(unstructured)

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -868.96185
Iteration 1: log likelihood = -868.96185

Computing standard errors:

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group: min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4649.17
Log likelihood = -868.96185 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.209896 .0910745 68.18 0.000 6.031393 6.388399
_cons 19.35561 .3996387 48.43 0.000 18.57234 20.13889

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Unstructured
var(week) .3715251 .0812958 .2419532 .570486

var(_cons) 6.823363 1.566194 4.351297 10.69986
cov(week,_cons) -.0984378 .2545767 -.5973991 .4005234

var(Residual) 1.596829 .123198 1.372735 1.857505

LR test vs. linear regression: chi2(3) = 764.58 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

But we do not find the correlation to be at all significant.

. lrtest . randslope

Likelihood-ratio test LR chi2(1) = 0.15
(Assumption: randslope nested in .) Prob > chi2 = 0.6959

Instead, we could have also specified covariance(identity), restricting u0j and u1j to not
only be independent but also to have common variance, or we could have specified covari-
ance(exchangeable), which imposes a common variance but allows for a nonzero correlation.

Likelihood versus restricted likelihood
Thus far, all our examples have used ML to estimate variance components. We could have just as

easily asked for REML estimates. Refitting the model in example 2 by REML, we get
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. mixed weight week || id: week, reml

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log restricted-likelihood = -870.51473
Iteration 1: log restricted-likelihood = -870.51473

Computing standard errors:

Mixed-effects REML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group: min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4592.10
Log restricted-likelihood = -870.51473 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.209896 .0916387 67.77 0.000 6.030287 6.389504
_cons 19.35561 .4021144 48.13 0.000 18.56748 20.14374

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Independent
var(week) .3764405 .0827027 .2447317 .5790317

var(_cons) 6.917604 1.593247 4.404624 10.86432

var(Residual) 1.598784 .1234011 1.374328 1.859898

LR test vs. linear regression: chi2(2) = 765.92 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Although ML estimators are based on the usual likelihood theory, the idea behind REML is to
transform the response into a set of linear contrasts whose distribution is free of the fixed effects β.
The restricted likelihood is then formed by considering the distribution of the linear contrasts. Not
only does this make the maximization problem free of β, it also incorporates the degrees of freedom
used to estimate β into the estimation of the variance components. This follows because, by necessity,
the rank of the linear contrasts must be less than the number of observations.

As a simple example, consider a constant-only regression where yi ∼ N(µ, σ2) for i = 1, . . . , n.
The ML estimate of σ2 can be derived theoretically as the n-divided sample variance. The REML
estimate can be derived by considering the first n− 1 error contrasts, yi− y, whose joint distribution
is free of µ. Applying maximum likelihood to this distribution results in an estimate of σ2, that is,
the (n− 1)-divided sample variance, which is unbiased for σ2.

The unbiasedness property of REML extends to all mixed models when the data are balanced, and
thus REML would seem the clear choice in balanced-data problems, although in large samples the
difference between ML and REML is negligible. One disadvantage of REML is that likelihood-ratio (LR)
tests based on REML are inappropriate for comparing models with different fixed-effects specifications.
ML is appropriate for such LR tests and has the advantage of being easy to explain and being the
method of choice for other estimators.

Another factor to consider is that ML estimation under mixed is more feature-rich, allowing for
weighted estimation and robust variance–covariance matrices, features not supported under REML. In
the end, which method to use should be based both on your needs and on personal taste.
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Examining the REML output, we find that the estimates of the variance components are slightly
larger than the ML estimates. This is typical, because ML estimates, which do not incorporate the
degrees of freedom used to estimate the fixed effects, tend to be biased downward.

Three-level models
The clustered-data representation of the mixed model given in (2) can be extended to two nested

levels of clustering, creating a three-level model once the observations are considered. Formally,

yjk = Xjkβ+ Z
(3)
jk u

(3)
k + Z

(2)
jk u

(2)
jk + εjk (7)

for i = 1, . . . , njk first-level observations nested within j = 1, . . . ,Mk second-level groups, which
are nested within k = 1, . . . ,M third-level groups. Group j, k consists of njk observations, so yjk,
Xjk, and εjk each have row dimension njk. Z(3)

jk is the njk × q3 design matrix for the third-level

random effects u(3)
k , and Z

(2)
jk is the njk× q2 design matrix for the second-level random effects u(2)

jk .
Furthermore, assume that

u
(3)
k ∼ N(0,Σ3); u

(2)
jk ∼ N(0,Σ2); εjk ∼ N(0, σ2

ε I)

and that u(3)
k , u(2)

jk , and εjk are independent.

Fitting a three-level model requires you to specify two random-effects equations: one for level
three and then one for level two. The variable list for the first equation represents Z

(3)
jk and for the

second equation represents Z
(2)
jk ; that is, you specify the levels top to bottom in mixed.

Example 4
Baltagi, Song, and Jung (2001) estimate a Cobb–Douglas production function examining the

productivity of public capital in each state’s private output. Originally provided by Munnell (1990),
the data were recorded over 1970–1986 for 48 states grouped into nine regions.
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. use http://www.stata-press.com/data/r13/productivity
(Public Capital Productivity)

. describe

Contains data from http://www.stata-press.com/data/r13/productivity.dta
obs: 816 Public Capital Productivity

vars: 11 29 Mar 2013 10:57
size: 29,376 (_dta has notes)

storage display value
variable name type format label variable label

state byte %9.0g states 1-48
region byte %9.0g regions 1-9
year int %9.0g years 1970-1986
public float %9.0g public capital stock
hwy float %9.0g log(highway component of public)
water float %9.0g log(water component of public)
other float %9.0g log(bldg/other component of

public)
private float %9.0g log(private capital stock)
gsp float %9.0g log(gross state product)
emp float %9.0g log(non-agriculture payrolls)
unemp float %9.0g state unemployment rate

Sorted by:

Because the states are nested within regions, we fit a three-level mixed model with random intercepts
at both the region and the state-within-region levels. That is, we use (7) with both Z

(3)
jk and Z

(2)
jk set

to the njk × 1 column of ones, and Σ3 = σ2
3 and Σ2 = σ2

2 are both scalars.

. mixed gsp private emp hwy water other unemp || region: || state:

(output omitted )
Mixed-effects ML regression Number of obs = 816

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

region 9 51 90.7 136
state 48 17 17.0 17

Wald chi2(6) = 18829.06
Log likelihood = 1430.5017 Prob > chi2 = 0.0000

gsp Coef. Std. Err. z P>|z| [95% Conf. Interval]

private .2671484 .0212591 12.57 0.000 .2254814 .3088154
emp .754072 .0261868 28.80 0.000 .7027468 .8053973
hwy .0709767 .023041 3.08 0.002 .0258172 .1161363

water .0761187 .0139248 5.47 0.000 .0488266 .1034109
other -.0999955 .0169366 -5.90 0.000 -.1331906 -.0668004
unemp -.0058983 .0009031 -6.53 0.000 -.0076684 -.0041282
_cons 2.128823 .1543854 13.79 0.000 1.826233 2.431413
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Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

region: Identity
var(_cons) .0014506 .0012995 .0002506 .0083957

state: Identity
var(_cons) .0062757 .0014871 .0039442 .0099855

var(Residual) .0013461 .0000689 .0012176 .0014882

LR test vs. linear regression: chi2(2) = 1154.73 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Notes:

1. Our model now has two random-effects equations, separated by ||. The first is a random intercept
(constant only) at the region level (level three), and the second is a random intercept at the state
level (level two). The order in which these are specified (from left to right) is significant—mixed
assumes that state is nested within region.

2. The information on groups is now displayed as a table, with one row for each grouping. You can
suppress this table with the nogroup or the noheader option, which will suppress the rest of the
header, as well.

3. The variance-component estimates are now organized and labeled according to level.

After adjusting for the nested-level error structure, we find that the highway and water components
of public capital had significant positive effects on private output, whereas the other public buildings
component had a negative effect.

Technical note
In the previous example, the states are coded 1–48 and are nested within nine regions. mixed

treated the states as nested within regions, regardless of whether the codes for each state were unique
between regions. That is, even if codes for states were duplicated between regions, mixed would
have enforced the nesting and produced the same results.

The group information at the top of the mixed output and that produced by the postestimation
command estat group (see [ME] mixed postestimation) take the nesting into account. The statistics
are thus not necessarily what you would get if you instead tabulated each group variable individually.

Model (7) extends in a straightforward manner to more than three levels, as does the specification
of such models in mixed.

Blocked-diagonal covariance structures

Covariance matrices of random effects within an equation can be modeled either as a multiple of
the identity matrix, as diagonal (that is, Independent), as exchangeable, or as general symmetric
(Unstructured). These may also be combined to produce more complex block-diagonal covariance
structures, effectively placing constraints on the variance components.

http://www.stata.com/manuals13/memixedpostestimation.pdf#memixedpostestimation
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Example 5

Returning to our productivity data, we now add random coefficients on hwy and unemp at the
region level. This only slightly changes the estimates of the fixed effects, so we focus our attention
on the variance components:

. mixed gsp private emp hwy water other unemp || region: hwy unemp || state:,
> nolog nogroup nofetable

Mixed-effects ML regression Number of obs = 816
Wald chi2(6) = 17137.94

Log likelihood = 1447.6787 Prob > chi2 = 0.0000

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

region: Independent
var(hwy) .0000209 .0001103 6.71e-10 .650695

var(unemp) .0000238 .0000135 7.84e-06 .0000722
var(_cons) .0030349 .0086684 .0000112 .8191296

state: Identity
var(_cons) .0063658 .0015611 .0039365 .0102943

var(Residual) .0012469 .0000643 .001127 .0013795

LR test vs. linear regression: chi2(4) = 1189.08 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store prodrc

This model is the same as that fit in example 4 except that Z(3)
jk is now the njk × 3 matrix with

columns determined by the values of hwy, unemp, and an intercept term (one), in that order, and
(because we used the default Independent structure) Σ3 is

Σ3 =

( hwy unemp cons

σ2
a 0 0
0 σ2

b 0
0 0 σ2

c

)

The random-effects specification at the state level remains unchanged; that is, Σ2 is still treated as
the scalar variance of the random intercepts at the state level.

An LR test comparing this model with that from example 4 favors the inclusion of the two random
coefficients, a fact we leave to the interested reader to verify.

The estimated variance components, upon examination, reveal that the variances of the random
coefficients on hwy and unemp could be treated as equal. That is,

Σ3 =

( hwy unemp cons

σ2
a 0 0
0 σ2

a 0
0 0 σ2

c

)

looks plausible. We can impose this equality constraint by treating Σ3 as block diagonal: the first
block is a 2× 2 multiple of the identity matrix, that is, σ2

aI2; the second is a scalar, equivalently, a
1× 1 multiple of the identity.
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We construct block-diagonal covariances by repeating level specifications:
. mixed gsp private emp hwy water other unemp || region: hwy unemp,
> cov(identity) || region: || state:, nolog nogroup nofetable

Mixed-effects ML regression Number of obs = 816
Wald chi2(6) = 17136.65

Log likelihood = 1447.6784 Prob > chi2 = 0.0000

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

region: Identity
var(hwy unemp) .0000238 .0000134 7.89e-06 .0000719

region: Identity
var(_cons) .0028191 .0030429 .0003399 .023383

state: Identity
var(_cons) .006358 .0015309 .0039661 .0101925

var(Residual) .0012469 .0000643 .001127 .0013795

LR test vs. linear regression: chi2(3) = 1189.08 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We specified two equations for the region level: the first for the random coefficients on hwy and
unemp with covariance set to Identity and the second for the random intercept cons, whose
covariance defaults to Identity because it is of dimension 1. mixed labeled the estimate of σ2

a as
var(hwy unemp) to designate that it is common to the random coefficients on both hwy and unemp.

An LR test shows that the constrained model fits equally well.
. lrtest . prodrc

Likelihood-ratio test LR chi2(1) = 0.00
(Assumption: . nested in prodrc) Prob > chi2 = 0.9784

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

Because the null hypothesis for this test is one of equality (H0 : σ
2
a = σ2

b ), it is not on the
boundary of the parameter space. As such, we can take the reported significance as precise rather
than a conservative estimate.

You can repeat level specifications as often as you like, defining successive blocks of a block-
diagonal covariance matrix. However, repeated-level equations must be listed consecutively; otherwise,
mixed will give an error.

Technical note
In the previous estimation output, there was no constant term included in the first region equation,

even though we did not use the noconstant option. When you specify repeated-level equations,
mixed knows not to put constant terms in each equation because such a model would be unidentified.
By default, it places the constant in the last repeated-level equation, but you can use noconstant
creatively to override this.

Linear mixed-effects models can also be fit using meglm with the default gaussian family. meglm
provides two more covariance structures through which you can impose constraints on variance
components; see [ME] meglm for details.

http://www.stata.com/manuals13/memeglm.pdf#memeglm
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Heteroskedastic random effects

Blocked-diagonal covariance structures and repeated-level specifications of random effects can also
be used to model heteroskedasticity among random effects at a given level.

Example 6

Following Rabe-Hesketh and Skrondal (2012, sec. 7.2), we analyze data from Asian children in
a British community who were weighed up to four times, roughly between the ages of 6 weeks and
27 months. The dataset is a random sample of data previously analyzed by Goldstein (1986) and
Prosser, Rasbash, and Goldstein (1991).

. use http://www.stata-press.com/data/r13/childweight
(Weight data on Asian children)

. describe

Contains data from http://www.stata-press.com/data/r13/childweight.dta
obs: 198 Weight data on Asian children

vars: 5 23 May 2013 15:12
size: 3,168 (_dta has notes)

storage display value
variable name type format label variable label

id int %8.0g child identifier
age float %8.0g age in years
weight float %8.0g weight in Kg
brthwt int %8.0g Birth weight in g
girl float %9.0g bg gender

Sorted by: id age

. graph twoway (line weight age, connect(ascending)), by(girl)
> xtitle(Age in years) ytitle(Weight in kg)
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Ignoring gender effects for the moment, we begin with the following model for the ith measurement
on the jth child:

weightij = β0 + β1ageij + β2age
2
ij + uj0 + uj1ageij + εij
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This models overall mean growth as quadratic in age and allows for two child-specific random
effects: a random intercept uj0, which represents each child’s vertical shift from the overall mean
(β0), and a random age slope uj1, which represents each child’s deviation in linear growth rate from
the overall mean linear growth rate (β1). For simplicity, we do not consider child-specific changes in
the quadratic component of growth.

. mixed weight age c.age#c.age || id: age, nolog

Mixed-effects ML regression Number of obs = 198
Group variable: id Number of groups = 68

Obs per group: min = 1
avg = 2.9
max = 5

Wald chi2(2) = 1863.46
Log likelihood = -258.51915 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

age 7.693701 .2381076 32.31 0.000 7.227019 8.160384

c.age#c.age -1.654542 .0874987 -18.91 0.000 -1.826037 -1.483048

_cons 3.497628 .1416914 24.68 0.000 3.219918 3.775338

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Independent
var(age) .2987207 .0827569 .1735603 .5141388

var(_cons) .5023857 .141263 .2895294 .8717297

var(Residual) .3092897 .0474887 .2289133 .417888

LR test vs. linear regression: chi2(2) = 114.70 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Because there is no reason to believe that the random effects are uncorrelated, it is always a good
idea to first fit a model with the covariance(unstructured) option. We do not include the output
for such a model because for these data the correlation between random effects is not significant;
however, we did check this before reverting to mixed’s default Independent structure.

Next we introduce gender effects into the fixed portion of the model by including a main gender
effect and a gender–age interaction for overall mean growth:
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. mixed weight i.girl i.girl#c.age c.age#c.age || id: age, nolog

Mixed-effects ML regression Number of obs = 198
Group variable: id Number of groups = 68

Obs per group: min = 1
avg = 2.9
max = 5

Wald chi2(4) = 1942.30
Log likelihood = -253.182 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

girl
girl -.5104676 .2145529 -2.38 0.017 -.9309835 -.0899516

girl#c.age
boy 7.806765 .2524583 30.92 0.000 7.311956 8.301574

girl 7.577296 .2531318 29.93 0.000 7.081166 8.073425

c.age#c.age -1.654323 .0871752 -18.98 0.000 -1.825183 -1.483463

_cons 3.754275 .1726404 21.75 0.000 3.415906 4.092644

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Independent
var(age) .2772846 .0769233 .1609861 .4775987

var(_cons) .4076892 .12386 .2247635 .7394906

var(Residual) .3131704 .047684 .2323672 .422072

LR test vs. linear regression: chi2(2) = 104.39 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store homoskedastic

The main gender effect is significant at the 5% level, but the gender–age interaction is not:

. test 0.girl#c.age = 1.girl#c.age

( 1) [weight]0b.girl#c.age - [weight]1.girl#c.age = 0

chi2( 1) = 1.66
Prob > chi2 = 0.1978

On average, boys are heavier than girls, but their average linear growth rates are not significantly
different.

In the above model, we introduced a gender effect on average growth, but we still assumed that the
variability in child-specific deviations from this average was the same for boys and girls. To check
this assumption, we introduce gender into the random component of the model. Because support
for factor-variable notation is limited in specifications of random effects (see Crossed-effects models
below), we need to generate the interactions ourselves.
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. gen boy = !girl

. gen boyXage = boy*age

. gen girlXage = girl*age

. mixed weight i.girl i.girl#c.age c.age#c.age || id: boy boyXage, noconstant
> || id: girl girlXage, noconstant nolog nofetable

Mixed-effects ML regression Number of obs = 198
Group variable: id Number of groups = 68

Obs per group: min = 1
avg = 2.9
max = 5

Wald chi2(4) = 2358.11
Log likelihood = -248.94752 Prob > chi2 = 0.0000

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Independent
var(boy) .3161091 .1557911 .1203181 .8305061

var(boyXage) .4734482 .1574626 .2467028 .9085962

id: Independent
var(girl) .5798676 .1959725 .2989896 1.124609

var(girlXage) .0664634 .0553274 .0130017 .3397538

var(Residual) .3078826 .046484 .2290188 .4139037

LR test vs. linear regression: chi2(4) = 112.86 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store heteroskedastic

In the above, we suppress displaying the fixed portion of the model (the nofetable option)
because it does not differ much from that of the previous model.

Our previous model had the random-effects specification

|| id: age

which we have replaced with the dual repeated-level specification

|| id: boy boyXage, noconstant || id: girl girlXage, noconstant

The former models a random intercept and random slope on age, and does so treating all children as
a random sample from one population. The latter also specifies a random intercept and random slope
on age, but allows for the variability of the random intercepts and slopes to differ between boys and
girls. In other words, it allows for heteroskedasticity in random effects due to gender. We use the
noconstant option so that we can separate the overall random intercept (automatically provided by
the former syntax) into one specific to boys and one specific to girls.

There seems to be a large gender effect in the variability of linear growth rates. We can compare
both models with an LR test, recalling that we stored the previous estimation results under the name
homoskedastic:

. lrtest homoskedastic heteroskedastic

Likelihood-ratio test LR chi2(2) = 8.47
(Assumption: homoskedastic nested in heteroskedas~c) Prob > chi2 = 0.0145

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.
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Because the null hypothesis here is one of equality of variances and not that variances are 0, the
above does not test on the boundary; thus we can treat the significance level as precise and not
conservative. Either way, the results favor the new model with heteroskedastic random effects.

Heteroskedastic residual errors
Up to this point, we have assumed that the level-one residual errors—the ε’s in the stated

models—have been i.i.d. Gaussian with variance σ2
ε . This is demonstrated in mixed output in the

random-effects table, where up until now we have estimated a single residual-error variance, labeled
as var(Residual).

To relax the assumptions of homoskedasticity or independence of residual errors, use the resid-
uals() option.

Example 7

West, Welch, and Galecki (2007, chap. 7) analyze data studying the effect of ceramic dental veneer
placement on gingival (gum) health. Data on 55 teeth located in the maxillary arches of 12 patients
were considered.

. use http://www.stata-press.com/data/r13/veneer, clear
(Dental veneer data)

. describe

Contains data from http://www.stata-press.com/data/r13/veneer.dta
obs: 110 Dental veneer data

vars: 7 24 May 2013 12:11
size: 1,100 (_dta has notes)

storage display value
variable name type format label variable label

patient byte %8.0g Patient ID
tooth byte %8.0g Tooth number with patient
gcf byte %8.0g Gingival crevicular fluid (GCF)
age byte %8.0g Patient age
base_gcf byte %8.0g Baseline GCF
cda float %9.0g Average contour difference after

veneer placement
followup byte %9.0g t Follow-up time: 3 or 6 months

Sorted by:

Veneers were placed to match the original contour of the tooth as closely as possible, and researchers
were interested in how contour differences (variable cda) impacted gingival health. Gingival health
was measured as the amount of gingival crevical fluid (GCF) at each tooth, measured at baseline
(variable base gcf) and at two posttreatment follow-ups at 3 and 6 months. The variable gcf records
GCF at follow-up, and the variable followup records the follow-up time.

Because two measurements were taken for each tooth and there exist multiple teeth per patient, we
fit a three-level model with the following random effects: a random intercept and random slope on
follow-up time at the patient level, and a random intercept at the tooth level. For the ith measurement
of the jth tooth from the kth patient, we have

gcfijk = β0 + β1followupijk + β2base gcfijk + β3cdaijk + β4ageijk+

u0k + u1kfollowupijk + v0jk + εijk
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which we can fit using mixed:

. mixed gcf followup base_gcf cda age || patient: followup, cov(un) || tooth:,
> reml nolog

Mixed-effects REML regression Number of obs = 110

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

patient 12 2 9.2 12
tooth 55 2 2.0 2

Wald chi2(4) = 7.48
Log restricted-likelihood = -420.92761 Prob > chi2 = 0.1128

gcf Coef. Std. Err. z P>|z| [95% Conf. Interval]

followup .3009815 1.936863 0.16 0.877 -3.4952 4.097163
base_gcf -.0183127 .1433094 -0.13 0.898 -.299194 .2625685

cda -.329303 .5292525 -0.62 0.534 -1.366619 .7080128
age -.5773932 .2139656 -2.70 0.007 -.9967582 -.1580283

_cons 45.73862 12.55497 3.64 0.000 21.13133 70.34591

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

patient: Unstructured
var(followup) 41.88772 18.79997 17.38009 100.9535

var(_cons) 524.9851 253.0205 204.1287 1350.175
cov(followup,_cons) -140.4229 66.57623 -270.9099 -9.935908

tooth: Identity
var(_cons) 47.45738 16.63034 23.8792 94.3165

var(Residual) 48.86704 10.50523 32.06479 74.47382

LR test vs. linear regression: chi2(4) = 91.12 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We used REML estimation for no other reason than variety.

Among the other features of the model fit, we note that the residual variance σ2
ε was estimated

as 48.87 and that our model assumed that the residuals were independent with constant variance
(homoskedastic). Because it may be the case that the precision of gcf measurements could change
over time, we modify the above to estimate two distinct error variances: one for the 3-month follow-up
and one for the 6-month follow-up.

To fit this model, we add the residuals(independent, by(followup)) option, which maintains
independence of residual errors but allows for heteroskedasticity with respect to follow-up time.
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. mixed gcf followup base_gcf cda age || patient: followup, cov(un) || tooth:,
> residuals(independent, by(followup)) reml nolog

Mixed-effects REML regression Number of obs = 110

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

patient 12 2 9.2 12
tooth 55 2 2.0 2

Wald chi2(4) = 7.51
Log restricted-likelihood = -420.4576 Prob > chi2 = 0.1113

gcf Coef. Std. Err. z P>|z| [95% Conf. Interval]

followup .2703944 1.933096 0.14 0.889 -3.518405 4.059193
base_gcf .0062144 .1419121 0.04 0.965 -.2719283 .284357

cda -.2947235 .5245126 -0.56 0.574 -1.322749 .7333023
age -.5743755 .2142249 -2.68 0.007 -.9942487 -.1545024

_cons 45.15089 12.51452 3.61 0.000 20.62288 69.6789

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

patient: Unstructured
var(followup) 41.75169 18.72989 17.33099 100.583

var(_cons) 515.2018 251.9661 197.5542 1343.596
cov(followup,_cons) -139.0496 66.27806 -268.9522 -9.14694

tooth: Identity
var(_cons) 47.35914 16.48931 23.93514 93.70693

Residual: Independent,
by followup

3 months: var(e) 61.36785 18.38913 34.10946 110.4096
6 months: var(e) 36.42861 14.97501 16.27542 81.53666

LR test vs. linear regression: chi2(5) = 92.06 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Comparison of both models via an LR test reveals the difference in residual variances to be not
significant, something we leave to you to verify as an exercise.

The default residual-variance structure is independent, and when specified without by() is
equivalent to the default behavior of mixed: estimating one overall residual standard variance for the
entire model.

Other residual-error structures

Besides the default independent residual-error structure, mixed supports four other structures that
allow for correlation between residual errors within the lowest-level (smallest or level two) groups.
For purposes of notation, in what follows we assume a two-level model, with the obvious extension
to higher-level models.

The exchangeable structure assumes one overall variance and one common pairwise covariance;
that is,
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Var(εj) = Var


εj1
εj2

...
εjnj

 =


σ2
ε σ1 · · · σ1
σ1 σ2

ε · · · σ1
...

...
. . .

...
σ1 σ1 σ1 σ2

ε


By default, mixed will report estimates of the two parameters as estimates of the common variance
σ2
ε and of the covariance σ1. If the stddeviations option is specified, you obtain estimates of σε

and the pairwise correlation. When the by(varname) option is also specified, these two parameters
are estimated for each level varname.

The ar p structure assumes that the errors have an AR structure of order p. That is,

εij = φ1εi−1,j + · · ·+ φpεi−p,j + uij

where uij are i.i.d. Gaussian with mean 0 and variance σ2
u. mixed reports estimates of φ1, . . . , φp

and the overall error variance σ2
ε , which can be derived from the above expression. The t(varname)

option is required, where varname is a time variable used to order the observations within lowest-level
groups and to determine any gaps between observations. When the by(varname) option is also
specified, the set of p + 1 parameters is estimated for each level of varname. If p = 1, then the
estimate of φ1 is reported as rho, because in this case it represents the correlation between successive
error terms.

The ma q structure assumes that the errors are an MA process of order q. That is,

εij = uij + θ1ui−1,j + · · ·+ θqui−q,j

where uij are i.i.d. Gaussian with mean 0 and variance σ2
u. mixed reports estimates of θ1, . . . , θq

and the overall error variance σ2
ε , which can be derived from the above expression. The t(varname)

option is required, where varname is a time variable used to order the observations within lowest-level
groups and to determine any gaps between observations. When the by(varname) option is also
specified, the set of q + 1 parameters is estimated for each level of varname.

The unstructured structure is the most general and estimates unique variances and unique pairwise
covariances for all residuals within the lowest-level grouping. Because the data may be unbalanced
and the ordering of the observations is arbitrary, the t(varname) option is required, where varname
is an identification variable that matches error terms in different groups. If varname has n distinct
levels, then n(n+ 1)/2 parameters are estimated. Not all n levels need to be observed within each
group, but duplicated levels of varname within a given group are not allowed because they would
cause a singularity in the estimated error-variance matrix for that group. When the by(varname)
option is also specified, the set of n(n+ 1)/2 parameters is estimated for each level of varname.

The banded q structure is a special case of unstructured that confines estimation to within
the first q off-diagonal elements of the residual variance–covariance matrix and sets the covariances
outside this band to 0. As is the case with unstructured, the t(varname) option is required, where
varname is an identification variable that matches error terms in different groups. However, with
banded variance structures, the ordering of the values in varname is significant because it determines
which covariances are to be estimated and which are to be set to 0. For example, if varname has
n = 5 distinct values t = 1, 2, 3, 4, 5, then a banded variance–covariance structure of order q = 2
would estimate the following:
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Var(εj) = Var


ε1j
ε2j
ε3j
ε4j
ε5j

 =


σ2
1 σ12 σ13 0 0

σ12 σ2
2 σ23 σ24 0

σ13 σ23 σ2
3 σ34 σ35

0 σ24 σ34 σ2
4 σ45

0 0 σ35 σ45 σ2
5


In other words, you would have an unstructured variance matrix that constrains σ14 = σ15 = σ25 = 0.
If varname has n distinct levels, then (q + 1)(2n− q)/2 parameters are estimated. Not all n levels
need to be observed within each group, but duplicated levels of varname within a given group are
not allowed because they would cause a singularity in the estimated error-variance matrix for that
group. When the by(varname) option is also specified, the set of parameters is estimated for each
level of varname. If q is left unspecified, then banded is equivalent to unstructured; that is, all
variances and covariances are estimated. When q = 0, Var(εj) is treated as diagonal and can thus be
used to model uncorrelated yet heteroskedastic residual errors.

The toeplitz q structure assumes that the residual errors are homoskedastic and that the correlation
between two errors is determined by the time lag between the two. That is, Var(εij) = σ2

ε and

Corr(εij , εi+k,j) = ρk

If the lag k is less than or equal to q, then the pairwise correlation ρk is estimated; if the lag is greater
than q, then ρk is assumed to be 0. If q is left unspecified, then ρk is estimated for each observed lag
k. The t(varname) option is required, where varname is a time variable t used to determine the lags
between pairs of residual errors. As such, t() must be integer-valued. q+1 parameters are estimated:
one overall variance σ2

ε and q correlations. When the by(varname) option is also specified, the set
of q + 1 parameters is estimated for each level of varname.

The exponential structure is a generalization of the AR structure that allows for noninteger and
irregularly spaced time lags. That is, Var(εij) = σ2

ε and

Corr(εij , εkj) = ρ|i−k|

for 0 ≤ ρ ≤ 1, with i and k not required to be integers. The t(varname) option is required, where
varname is a time variable used to determine i and k for each residual-error pair. t() is real-valued.
mixed reports estimates of σ2

ε and ρ. When the by(varname) option is also specified, these two
parameters are estimated for each level of varname.

Example 8

Pinheiro and Bates (2000, chap. 5) analyze data from a study of the estrus cycles of mares.
Originally analyzed in Pierson and Ginther (1987), the data record the number of ovarian follicles
larger than 10mm, daily over a period ranging from three days before ovulation to three days after
the subsequent ovulation.
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. use http://www.stata-press.com/data/r13/ovary
(Ovarian follicles in mares)

. describe

Contains data from http://www.stata-press.com/data/r13/ovary.dta
obs: 308 Ovarian follicles in mares

vars: 6 20 May 2013 13:49
size: 5,544 (_dta has notes)

storage display value
variable name type format label variable label

mare byte %9.0g mare ID
stime float %9.0g Scaled time
follicles byte %9.0g Number of ovarian follicles > 10

mm in diameter
sin1 float %9.0g sine(2*pi*stime)
cos1 float %9.0g cosine(2*pi*stime)
time float %9.0g time order within mare

Sorted by: mare stime

The stime variable is time that has been scaled so that ovulation occurs at scaled times 0 and 1,
and the time variable records the time ordering within mares. Because graphical evidence suggests
a periodic behavior, the analysis includes the sin1 and cos1 variables, which are sine and cosine
transformations of scaled time, respectively.

We consider the following model for the ith measurement on the jth mare:

folliclesij = β0 + β1sin1ij + β2cos1ij + uj + εij

The above model incorporates the cyclical nature of the data as affecting the overall average
number of follicles and includes mare-specific random effects uj . Because we believe successive
measurements within each mare are probably correlated (even after controlling for the periodicity in
the average), we also model the within-mare errors as being AR of order 2.

. mixed follicles sin1 cos1 || mare:, residuals(ar 2, t(time)) reml nolog

Mixed-effects REML regression Number of obs = 308
Group variable: mare Number of groups = 11

Obs per group: min = 25
avg = 28.0
max = 31

Wald chi2(2) = 34.72
Log restricted-likelihood = -772.59855 Prob > chi2 = 0.0000

follicles Coef. Std. Err. z P>|z| [95% Conf. Interval]

sin1 -2.899228 .5110786 -5.67 0.000 -3.900923 -1.897532
cos1 -.8652936 .5432926 -1.59 0.111 -1.930127 .1995402

_cons 12.14455 .9473631 12.82 0.000 10.28775 14.00135
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Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

mare: Identity
var(_cons) 7.092439 4.401937 2.101337 23.93843

Residual: AR(2)
phi1 .5386104 .0624899 .4161325 .6610883
phi2 .144671 .0632041 .0207933 .2685488

var(e) 14.25104 2.435238 10.19512 19.92054

LR test vs. linear regression: chi2(3) = 251.67 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We picked an order of 2 as a guess, but we could have used LR tests of competing AR models to
determine the optimal order, because models of smaller order are nested within those of larger order.

Example 9

Fitzmaurice, Laird, and Ware (2011, chap. 7) analyzed data on 37 subjects who participated in an
exercise therapy trial.

. use http://www.stata-press.com/data/r13/exercise
(Exercise Therapy Trial)

. describe

Contains data from http://www.stata-press.com/data/r13/exercise.dta
obs: 259 Exercise Therapy Trial

vars: 4 24 Jun 2012 18:35
size: 1,036 (_dta has notes)

storage display value
variable name type format label variable label

id byte %9.0g Person ID
day byte %9.0g Day of measurement
program byte %9.0g 1 = reps increase; 2 = weights

increase
strength byte %9.0g Strength measurement

Sorted by: id day

Subjects (variable id) were placed on either an increased-repetition regimen (program==1) or a program
that kept the repetitions constant but increased weight (program==2). Muscle-strength measurements
(variable strength) were taken at baseline (day==0) and then every two days over the next twelve
days.

Following Fitzmaurice, Laird, and Ware (2011, chap. 7), and to demonstrate fitting residual-error
structures to data collected at uneven time points, we confine our analysis to those data collected at
baseline and at days 4, 6, 8, and 12. We fit a full two-way factorial model of strength on program
and day, with an unstructured residual-error covariance matrix over those repeated measurements
taken on the same subject:
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. keep if inlist(day, 0, 4, 6, 8, 12)
(74 observations deleted)

. mixed strength i.program##i.day || id:,
> noconstant residuals(unstructured, t(day)) nolog

Mixed-effects ML regression Number of obs = 173
Group variable: id Number of groups = 37

Obs per group: min = 3
avg = 4.7
max = 5

Wald chi2(9) = 45.85
Log likelihood = -296.58215 Prob > chi2 = 0.0000

strength Coef. Std. Err. z P>|z| [95% Conf. Interval]

2.program 1.360119 1.003549 1.36 0.175 -.6068016 3.32704

day
4 1.125 .3322583 3.39 0.001 .4737858 1.776214
6 1.360127 .3766894 3.61 0.000 .6218298 2.098425
8 1.583563 .4905876 3.23 0.001 .6220287 2.545097

12 1.623576 .5372947 3.02 0.003 .5704977 2.676654

program#day
2 4 -.169034 .4423472 -0.38 0.702 -1.036019 .6979505
2 6 .2113012 .4982385 0.42 0.671 -.7652283 1.187831
2 8 -.1299763 .6524813 -0.20 0.842 -1.408816 1.148864
2 12 .3212829 .7306782 0.44 0.660 -1.11082 1.753386

_cons 79.6875 .7560448 105.40 0.000 78.20568 81.16932

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: (empty)

Residual: Unstructured
var(e0) 9.14566 2.126248 5.79858 14.42475
var(e4) 11.87114 2.761219 7.524948 18.72757
var(e6) 10.06571 2.348863 6.371091 15.90284
var(e8) 13.22464 3.113921 8.335981 20.98026

var(e12) 13.16909 3.167347 8.219208 21.09995
cov(e0,e4) 9.625236 2.33197 5.054659 14.19581
cov(e0,e6) 8.489043 2.106377 4.36062 12.61747
cov(e0,e8) 9.280414 2.369554 4.636173 13.92465

cov(e0,e12) 8.898006 2.348243 4.295535 13.50048
cov(e4,e6) 10.49185 2.492529 5.606578 15.37711
cov(e4,e8) 11.89787 2.848751 6.314421 17.48132

cov(e4,e12) 11.28344 2.805027 5.785689 16.78119
cov(e6,e8) 11.0507 2.646988 5.862697 16.2387

cov(e6,e12) 10.5006 2.590278 5.423748 15.57745
cov(e8,e12) 12.4091 3.010796 6.508051 18.31016

LR test vs. linear regression: chi2(14) = 314.67 Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

Because we are using the variable id only to group the repeated measurements and not to introduce
random effects at the subject level, we use the noconstant option to omit any subject-level effects.
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The unstructured covariance matrix is the most general and contains many parameters. In this example,
we estimate a distinct residual variance for each day and a distinct covariance for each pair of days.

That there is positive covariance between all pairs of measurements is evident, but what is not as
evident is whether the covariances may be more parsimoniously represented. One option would be to
explore whether the correlation diminishes as the time gap between strength measurements increases
and whether it diminishes systematically. Given the irregularity of the time intervals, an exponential
structure would be more appropriate than, say, an AR or MA structure.

. estimates store unstructured

. mixed strength i.program##i.day || id:, noconstant
> residuals(exponential, t(day)) nolog nofetable

Mixed-effects ML regression Number of obs = 173
Group variable: id Number of groups = 37

Obs per group: min = 3
avg = 4.7
max = 5

Wald chi2(9) = 36.77
Log likelihood = -307.83324 Prob > chi2 = 0.0000

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: (empty)

Residual: Exponential
rho .9786462 .0051238 .9659207 .9866854

var(e) 11.22349 2.338371 7.460765 16.88389

LR test vs. linear regression: chi2(1) = 292.17 Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

In the above example, we suppressed displaying the main regression parameters because they
did not differ much from those of the previous model. While the unstructured model estimated 15
variance–covariance parameters, the exponential model claims to get the job done with just 2, a fact
that is not disputed by an LR test comparing the two nested models (at least not at the 0.01 level).

. lrtest unstructured .

Likelihood-ratio test LR chi2(13) = 22.50
(Assumption: . nested in unstructured) Prob > chi2 = 0.0481

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.
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Crossed-effects models
Not all mixed models contain nested levels of random effects.

Example 10

Returning to our longitudinal analysis of pig weights, suppose that instead of (5) we wish to fit

weightij = β0 + β1weekij + ui + vj + εij (8)

for the i = 1, . . . , 9 weeks and j = 1, . . . , 48 pigs and

ui ∼ N(0, σ2
u); vj ∼ N(0, σ2

v); εij ∼ N(0, σ2
ε )

all independently. Both (5) and (8) assume an overall population-average growth curve β0 + β1week
and a random pig-specific shift.

The models differ in how week enters into the random part of the model. In (5), we assume
that the effect due to week is linear and pig specific (a random slope); in (8), we assume that the
effect due to week, ui, is systematic to that week and common to all pigs. The rationale behind (8)
could be that, assuming that the pigs were measured contemporaneously, we might be concerned that
week-specific random factors such as weather and feeding patterns had significant systematic effects
on all pigs.

Model (8) is an example of a two-way crossed-effects model, with the pig effects vj being crossed
with the week effects ui. One way to fit such models is to consider all the data as one big cluster,
and treat the ui and vj as a series of 9 + 48 = 57 random coefficients on indicator variables for
week and pig. In the notation of (2),

u =



u1
...
u9
v1
...
v48


∼ N(0,G); G =

[
σ2
uI9 0
0 σ2

vI48

]

Because G is block diagonal, it can be represented in mixed as repeated-level equations. All we need
is an identification variable to identify all the observations as one big group and a way to tell mixed
to treat week and pig as factor variables (or equivalently, as two sets of overparameterized indicator
variables identifying weeks and pigs, respectively). mixed supports the special group designation
all for the former and the R.varname notation for the latter.
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. use http://www.stata-press.com/data/r13/pig, clear
(Longitudinal analysis of pig weights)

. mixed weight week || _all: R.week || _all: R.id

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -1013.824
Iteration 1: log likelihood = -1013.824

Computing standard errors:

Mixed-effects ML regression Number of obs = 432
Group variable: _all Number of groups = 1

Obs per group: min = 432
avg = 432.0
max = 432

Wald chi2(1) = 13258.28
Log likelihood = -1013.824 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.209896 .0539313 115.14 0.000 6.104192 6.315599
_cons 19.35561 .6333982 30.56 0.000 18.11418 20.59705

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
var(R.week) .0849874 .0868856 .0114588 .6303302

_all: Identity
var(R.id) 14.83623 3.126142 9.816733 22.42231

var(Residual) 4.297328 .3134404 3.724888 4.957741

LR test vs. linear regression: chi2(2) = 474.85 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store crossed

Thus we estimate σ̂2
u = 0.08 and σ̂2

v = 14.84. Both (5) and (8) estimate a total of five parameters:
two fixed effects and three variance components. The models, however, are not nested within each
other, which precludes the use of an LR test to compare both models. Refitting model (5) and looking
at the Akaike information criteria values by using estimates stats,

. quietly mixed weight week || id:week

. estimates stats crossed .

Akaike’s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

crossed 432 . -1013.824 5 2037.648 2057.99
. 432 . -869.0383 5 1748.077 1768.419

Note: N=Obs used in calculating BIC; see [R] BIC note

definitely favors model (5). This finding is not surprising given that our rationale behind (8) was
somewhat fictitious. In our estimates stats output, the values of ll(null) are missing. mixed
does not fit a constant-only model as part of its usual estimation of the full model, but you can use
mixed to fit a constant-only model directly, if you wish.
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The R.varname notation is equivalent to giving a list of overparameterized (none dropped)
indicator variables for use in a random-effects specification. When you specify R.varname, mixed
handles the calculations internally rather than creating the indicators in the data. Because the set of
indicators is overparameterized, R.varname implies noconstant. You can include factor variables in
the fixed-effects specification by using standard methods; see [U] 11.4.3 Factor variables. However,
random-effects equations support only the R.varname factor specification. For more complex factor
specifications (such as interactions) in random-effects equations, use generate to form the variables
manually, as we demonstrated in example 6.

Technical note

Although we were able to fit the crossed-effects model (8), it came at the expense of increasing the
column dimension of our random-effects design from 2 in model (5) to 57 in model (8). Computation
time and memory requirements grow (roughly) quadratically with the dimension of the random effects.
As a result, fitting such crossed-effects models is feasible only when the total column dimension is
small to moderate.

Reexamining model (8), we note that if we drop ui, we end up with a model equivalent to (4),
meaning that we could have fit (4) by typing

. mixed weight week || _all: R.id

instead of

. mixed weight week || id:

as we did when we originally fit the model. The results of both estimations are identical, but the
latter specification, organized at the cluster (pig) level with random-effects dimension 1 (a random
intercept) is much more computationally efficient. Whereas with the first form we are limited in how
many pigs we can analyze, there is no such limitation with the second form.

Furthermore, we fit model (8) by using

. mixed weight week || _all: R.week || _all: R.id

as a direct way to demonstrate the R. notation. However, we can technically treat pigs as nested
within the all group, yielding the equivalent and more efficient (total column dimension 10) way
to fit (8):

. mixed weight week || _all: R.week || id:

We leave it to you to verify that both produce identical results. See Rabe-Hesketh and Skrondal (2012)
for additional techniques to make calculations more efficient in more complex models.

Example 11

As another example of how the same model may be fit in different ways by using mixed (and
as a way to demonstrate covariance(exchangeable)), consider the three-level model used in
example 4:

yjk = Xjkβ+ u
(3)
k + u

(2)
jk + εjk

http://www.stata.com/manuals13/u11.pdf#u11.4.3Factorvariables
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where yjk represents the logarithms of gross state products for the njk = 17 observations from state
j in region k, Xjk is a set of regressors, u(3)k is a random intercept at the region level, and u(2)jk is

a random intercept at the state (nested within region) level. We assume that u(3)k ∼ N(0, σ2
3) and

u
(2)
jk ∼ N(0, σ2

2) independently. Define

vk =


u
(3)
k + u

(2)
1k

u
(3)
k + u

(2)
2k

...
u
(3)
k + u

(2)
Mk,k


where Mk is the number of states in region k. Making this substitution, we can stack the observations
for all the states within region k to get

yk = Xkβ+ Zkvk + εk

where Zk is a set of indicators identifying the states within each region; that is,

Zk = IMk
⊗ J17

for a k-column vector of 1s Jk, and

Σ = Var(vk) =


σ2
3 + σ2

2 σ2
3 · · · σ2

3

σ2
3 σ2

3 + σ2
2 · · · σ2

3
...

...
. . .

...
σ2
3 σ2

3 σ2
3 σ2

3 + σ2
2


Mk×Mk

Because Σ is an exchangeable matrix, we can fit this alternative form of the model by specifying the
exchangeable covariance structure.
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. use http://www.stata-press.com/data/r13/productivity
(Public Capital Productivity)

. mixed gsp private emp hwy water other unemp || region: R.state,
> cov(exchangeable)

(output omitted )
Mixed-effects ML regression Number of obs = 816
Group variable: region Number of groups = 9

Obs per group: min = 51
avg = 90.7
max = 136

Wald chi2(6) = 18829.06
Log likelihood = 1430.5017 Prob > chi2 = 0.0000

gsp Coef. Std. Err. z P>|z| [95% Conf. Interval]

private .2671484 .0212591 12.57 0.000 .2254813 .3088154
emp .7540721 .0261868 28.80 0.000 .7027468 .8053973
hwy .0709767 .023041 3.08 0.002 .0258172 .1161363

water .0761187 .0139248 5.47 0.000 .0488266 .1034109
other -.0999955 .0169366 -5.90 0.000 -.1331907 -.0668004
unemp -.0058983 .0009031 -6.53 0.000 -.0076684 -.0041282
_cons 2.128823 .1543855 13.79 0.000 1.826233 2.431413

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

region: Exchangeable
var(R.state) .0077263 .0017926 .0049032 .0121749
cov(R.state) .0014506 .0012995 -.0010963 .0039975

var(Residual) .0013461 .0000689 .0012176 .0014882

LR test vs. linear regression: chi2(2) = 1154.73 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

The estimates of the fixed effects and their standard errors are equivalent to those from example 4,
and remapping the variance components from (σ2

3 + σ2
2 , σ

2
3 , σ

2
ε ), as displayed here, to (σ2

3 , σ
2
2 , σ

2
ε ),

as displayed in example 4, will show that they are equivalent as well.

Of course, given the discussion in the previous technical note, it is more efficient to fit this model
as we did originally, as a three-level model.

Diagnosing convergence problems

Given the flexibility of mixed-effects models, you will find that some models fail to converge
when used with your data; see Diagnosing convergence problems in [ME] me for advice applicable
to mixed-effects models in general.

In unweighted LME models with independent and homoskedastic residuals, one useful way to
diagnose problems of nonconvergence is to rely on the EM algorithm (Dempster, Laird, and Rubin 1977),
normally used by mixed only as a means of refining starting values. The advantages of EM are that it
does not require a Hessian calculation, each successive EM iteration will result in a larger likelihood,
iterations can be calculated quickly, and iterations will quickly bring parameter estimates into a
neighborhood of the solution. The disadvantages of EM are that, once in a neighborhood of the

http://www.stata.com/manuals13/meme.pdf#memeRemarksandexamplesDiagnosingconvergenceproblems
http://www.stata.com/manuals13/meme.pdf#meme
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solution, it can be slow to converge, if at all, and EM provides no facility for estimating standard
errors of the estimated variance components. One useful property of EM is that it is always willing
to provide a solution if you allow it to iterate enough times, if you are satisfied with being in a
neighborhood of the optimum rather than right on the optimum, and if standard errors of variance
components are not crucial to your analysis.

If you encounter a nonconvergent model, try using the emonly option to bypass gradient-based
optimization. Use emiterate(#) to specify the maximum number of EM iterations, which you will
usually want to set much higher than the default of 20. If your EM solution shows an estimated
variance component that is near 0, a ridge is formed by an interval of values near 0, which produces
the same likelihood and looks equally good to the optimizer. In this case, the solution is to drop the
offending variance component from the model.

Survey data

Multilevel modeling of survey data is a little different from standard modeling in that weighted
sampling can take place at multiple levels in the model, resulting in multiple sampling weights. Most
survey datasets, regardless of the design, contain one overall inclusion weight for each observation in
the data. This weight reflects the inverse of the probability of ultimate selection, and by “ultimate” we
mean that it factors in all levels of clustered sampling, corrections for noninclusion and oversampling,
poststratification, etc.

For simplicity, in what follows assume a simple two-stage sampling design where groups are
randomly sampled and then individuals within groups are sampled. Also assume that no additional
weight corrections are performed; that is, sampling weights are simply the inverse of the probability
of selection. The sampling weight for observation i in cluster j in our two-level sample is then
wij = 1/πij , where πij is the probability that observation i, j is selected. If you were performing a
standard analysis such as OLS regression with regress, you would simply use a variable holding wij
as your pweight variable, and the fact that it came from two levels of sampling would not concern
you. Perhaps you would type vce(cluster groupvar) where groupvar identifies the top-level groups
to get standard errors that control for correlation within these groups, but you would still use only a
single weight variable.

Now take these same data and fit a two-level model with mixed. As seen in (14) in Methods and
formulas later in this entry, it is not sufficient to use the single sampling weight wij , because weights
enter into the log likelihood at both the group level and the individual level. Instead, what is required
for a two-level model under this sampling design is wj , the inverse of the probability that group j
is selected in the first stage, and wi|j , the inverse of the probability that individual i from group j is
selected at the second stage conditional on group j already being selected. It simply will not do to
just use wij without making any assumptions about wj .

Given the rules of conditional probability, wij = wjwi|j . If your dataset has only wij , then you
will need to either assume equal probability sampling at the first stage (wj = 1 for all j) or find
some way to recover wj from other variables in your data; see Rabe-Hesketh and Skrondal (2006)
and the references therein for some suggestions on how to do this, but realize that there is little yet
known about how well these approximations perform in practice.

What you really need to fit your two-level model are data that contain wj in addition to either wij
or wi|j . If you have wij—that is, the unconditional inclusion weight for observation i, j—then you
need to either divide wij by wj to obtain wi|j or rescale wij so that its dependence on wj disappears.
If you already have wi|j , then rescaling becomes optional (but still an important decision to make).

Weight rescaling is not an exact science, because the scale of the level-one weights is at issue
regardless of whether they represent wij or wi|j : because wij is unique to group j, the group-to-group
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magnitudes of these weights need to be normalized so that they are “consistent” from group to group.
This is in stark contrast to a standard analysis, where the scale of sampling weights does not factor
into estimation, instead only affecting the estimate of the total population size.

mixed offers three methods for standardizing weights in a two-level model, and you can specify
which method you want via the pwscale() option. If you specify pwscale(size), then the wi|j (or
wij , it does not matter) are scaled to sum to the cluster size nj . Method pwscale(effective) adds
in a dependence on the sum of the squared weights so that level-one weights sum to the “effective”
sample size. Just like pwscale(size), pwscale(effective) also behaves the same whether you
have wi|j or wij , and so it can be used with either.

Although both pwscale(size) and pwscale(effective) leavewj untouched, the pwscale(gk)
method is a little different in that 1) it changes the weights at both levels and 2) it does assume
you have wi|j for level-one weights and not wij (if you have the latter, then first divide by wj).
Using the method of Graubard and Korn (1996), it sets the weights at the group level (level two) to
the cluster averages of the products of both level weights (this product being wij). It then sets the
individual weights to 1 everywhere; see Methods and formulas for the computational details of all
three methods.

Determining which method is “best” is a tough call and depends on cluster size (the smaller
the clusters, the greater the sensitivity to scale), whether the sampling is informative (that is, the
sampling weights are correlated with the residuals), whether you are interested primarily in regression
coefficients or in variance components, whether you have a simple random-intercept model or a
more complex random-coefficients model, and other factors; see Rabe-Hesketh and Skrondal (2006),
Carle (2009), and Pfeffermann et al. (1998) for some detailed advice. At the very least, you want
to compare estimates across all three scaling methods (four, if you add no scaling) and perform a
sensitivity analysis.

If you choose to rescale level-one weights, it does not matter whether you have wi|j or wij . For
the pwscale(size) and pwscale(effective) methods, you get identical results, and even though
pwscale(gk) assumes wi|j , you can obtain this as wi|j = wij/wj before proceeding.

If you do not specify pwscale(), then no scaling takes place, and thus at a minimum, you need
to make sure you have wi|j in your data and not wij .

Example 12

Rabe-Hesketh and Skrondal (2006) analyzed data from the 2000 Programme for International
Student Assessment (PISA) study on reading proficiency among 15-year-old American students, as
performed by the Organisation for Economic Co-operation and Development (OECD). The original
study was a three-stage cluster sample, where geographic areas were sampled at the first stage, schools
at the second, and students at the third. Our version of the data does not contain the geographic-areas
variable, so we treat this as a two-stage sample where schools are sampled at the first stage and
students at the second.
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. use http://www.stata-press.com/data/r13/pisa2000
(Programme for International Student Assessment (PISA) 2000 data)

. describe

Contains data from http://www.stata-press.com/data/r13/pisa2000.dta
obs: 2,069 Programme for International

Student Assessment (PISA) 2000
data

vars: 11 12 Jun 2012 10:08
size: 37,242 (_dta has notes)

storage display value
variable name type format label variable label

female byte %8.0g 1 if female
isei byte %8.0g International socio-economic

index
w_fstuwt float %9.0g Student-level weight
wnrschbw float %9.0g School-level weight
high_school byte %8.0g 1 if highest level by either

parent is high school
college byte %8.0g 1 if highest level by either

parent is college
one_for byte %8.0g 1 if one parent foreign born
both_for byte %8.0g 1 if both parents are foreign

born
test_lang byte %8.0g 1 if English (the test language)

is spoken at home
pass_read byte %8.0g 1 if passed reading proficiency

threshold
id_school int %8.0g School ID

Sorted by:

For student i in school j, where the variable id school identifies the schools, the variable
w fstuwt is a student-level overall inclusion weight (wij , not wi|j) adjusted for noninclusion and
nonparticipation of students, and the variable wnrschbw is the school-level weight wj adjusted for
oversampling of schools with more minority students. The weight adjustments do not interfere with
the methods prescribed above, and thus we can treat the weight variables simply as wij and wj ,
respectively.

Rabe-Hesketh and Skrondal (2006) fit a two-level logistic model for passing a reading proficiency
threshold. We fit a two-level linear random-intercept model for socioeconomic index. Because we
have wij and not wi|j , we rescale using pwscale(size) and thus obtain results as if we had wi|j .
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. mixed isei female high_school college one_for both_for test_lang
> [pw=w_fstuwt] || id_school:, pweight(wnrschbw) pwscale(size)

(output omitted )
Mixed-effects regression Number of obs = 2069
Group variable: id_school Number of groups = 148

Obs per group: min = 1
avg = 14.0
max = 28

Wald chi2(6) = 187.23
Log pseudolikelihood = -1443093.9 Prob > chi2 = 0.0000

(Std. Err. adjusted for 148 clusters in id_school)

Robust
isei Coef. Std. Err. z P>|z| [95% Conf. Interval]

female .59379 .8732886 0.68 0.497 -1.117824 2.305404
high_school 6.410618 1.500337 4.27 0.000 3.470011 9.351224

college 19.39494 2.121145 9.14 0.000 15.23757 23.55231
one_for -.9584613 1.789947 -0.54 0.592 -4.466692 2.54977

both_for -.2021101 2.32633 -0.09 0.931 -4.761633 4.357413
test_lang 2.519539 2.393165 1.05 0.292 -2.170978 7.210056

_cons 28.10788 2.435712 11.54 0.000 23.33397 32.88179

Robust
Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id_school: Identity
var(_cons) 34.69374 8.574865 21.37318 56.31617

var(Residual) 218.7382 11.22111 197.8147 241.8748

Notes:

1. We specified the level-one weights using standard Stata weight syntax, that is, [pw=w fstuwt].

2. We specified the level-two weights via the pweight(wnrschbw) option as part of the random-
effects specification for the id school level. As such, it is treated as a school-level weight.
Accordingly, wnrschbw needs to be constant within schools, and mixed did check for that before
estimating.

3. Because our level-one weights are unconditional, we specified pwscale(size) to rescale them.

4. As is the case with other estimation commands in Stata, standard errors in the presence of sampling
weights are robust.

5. Robust standard errors are clustered at the top level of the model, and this will always be true unless
you specify vce(cluster clustvar), where clustvar identifies an even higher level of grouping.

As a form of sensitivity analysis, we compare the above with scaling via pwscale(gk). Because
pwscale(gk) assumes wi|j , you want to first divide wij by wj . But you can handle that within the
weight specification itself.
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. mixed isei female high_school college one_for both_for test_lang
> [pw=w_fstuwt/wnrschbw] || id_school:, pweight(wnrschbw) pwscale(gk)

(output omitted )
Mixed-effects regression Number of obs = 2069
Group variable: id_school Number of groups = 148

Obs per group: min = 1
avg = 14.0
max = 28

Wald chi2(6) = 291.37
Log pseudolikelihood = -7270505.6 Prob > chi2 = 0.0000

(Std. Err. adjusted for 148 clusters in id_school)

Robust
isei Coef. Std. Err. z P>|z| [95% Conf. Interval]

female -.3519458 .7436334 -0.47 0.636 -1.80944 1.105549
high_school 7.074911 1.139777 6.21 0.000 4.84099 9.308833

college 19.27285 1.286029 14.99 0.000 16.75228 21.79342
one_for -.9142879 1.783091 -0.51 0.608 -4.409082 2.580506

both_for 1.214151 1.611885 0.75 0.451 -1.945085 4.373388
test_lang 2.661866 1.556491 1.71 0.087 -.3887996 5.712532

_cons 31.20145 1.907413 16.36 0.000 27.46299 34.93991

Robust
Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id_school: Identity
var(_cons) 31.67522 6.792239 20.80622 48.22209

var(Residual) 226.2429 8.150714 210.8188 242.7955

The results are somewhat similar to before, which is good news from a sensitivity standpoint. Note
that we specified [pw=w fstwtw/wnrschbw] and thus did the conversion from wij to wi|j within
our call to mixed.

We close this section with a bit of bad news. Although weight rescaling and the issues that arise
have been well studied for two-level models, as pointed out by Carle (2009), “. . . a best practice
for scaling weights across multiple levels has yet to be advanced.” As such, pwscale() is currently
supported only for two-level models. If you are fitting a higher-level model with survey data, you
need to make sure your sampling weights are conditional on selection at the previous stage and not
overall inclusion weights, because there is currently no rescaling option to fall back on if you do not.
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Stored results
mixed stores the following in e():
Scalars

e(N) number of observations
e(k) number of parameters
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(k rs) number of variances
e(k rc) number of covariances
e(k res) number of residual-error parameters
e(N clust) number of clusters
e(nrgroups) number of residual-error by() groups
e(ar p) AR order of residual errors, if specified
e(ma q) MA order of residual errors, if specified
e(res order) order of residual-error structure, if appropriate
e(df m) model degrees of freedom
e(ll) log (restricted) likelihood
e(chi2) χ2

e(p) significance
e(ll c) log likelihood, comparison model
e(chi2 c) χ2, comparison model
e(df c) degrees of freedom, comparison model
e(p c) significance, comparison model
e(rank) rank of e(V)
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) mixed
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type (first-level weights)
e(wexp) weight expression (first-level weights)
e(fweightk) fweight expression for kth highest level, if specified
e(pweightk) pweight expression for kth highest level, if specified
e(ivars) grouping variables
e(title) title in estimation output
e(redim) random-effects dimensions
e(vartypes) variance-structure types
e(revars) random-effects covariates
e(resopt) residuals() specification, as typed
e(rstructure) residual-error structure
e(rstructlab) residual-error structure output label
e(rbyvar) residual-error by() variable, if specified
e(rglabels) residual-error by() groups labels
e(pwscale) sampling-weight scaling method
e(timevar) residual-error t() variable, if specified
e(chi2type) Wald; type of model χ2 test
e(clustvar) name of cluster variable
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(method) ML or REML
e(opt) type of optimization
e(optmetric) matsqrt or matlog; random-effects matrix parameterization
e(emonly) emonly, if specified
e(ml method) type of ml method
e(technique) maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums
e(tmap) ID mapping for unstructured residual errors
e(V) variance–covariance matrix of the estimator
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
As given by (1), in the absence of weights we have the linear mixed model

y = Xβ+ Zu+ ε

where y is the n× 1 vector of responses, X is an n× p design/covariate matrix for the fixed effects
β, and Z is the n× q design/covariate matrix for the random effects u. The n× 1 vector of errors
ε is for now assumed to be multivariate normal with mean 0 and variance matrix σ2

ε In. We also
assume that u has variance–covariance matrix G and that u is orthogonal to ε so that

Var
[
u
ε

]
=

[
G 0
0 σ2

ε In

]
Considering the combined error term Zu+ ε, we see that y is multivariate normal with mean Xβ
and n× n variance–covariance matrix

V = ZGZ′ + σ2
ε In

Defining θ as the vector of unique elements of G results in the log likelihood

L(β, θ, σ2
ε ) = −

1

2

{
n log(2π) + log |V|+ (y −Xβ)′V−1(y −Xβ)

}
(9)

which is maximized as a function of β, θ, and σ2
ε . As explained in chapter 6 of Searle, Casella,

and McCulloch (1992), considering instead the likelihood of a set of linear contrasts Ky that do not
depend on β results in the restricted log likelihood

LR(β, θ, σ
2
ε ) = L(β, θ, σ2

ε )−
1

2
log
∣∣X′V−1X∣∣ (10)

Given the high dimension of V, however, the log-likelihood and restricted log-likelihood criteria are
not usually computed by brute-force application of the above expressions. Instead, you can simplify
the problem by subdividing the data into independent clusters (and subclusters if possible) and using
matrix decomposition methods on the smaller matrices that result from treating each cluster one at a
time.

Consider the two-level model described previously in (2),

yj = Xjβ+ Zjuj + εj

for j = 1, . . . ,M clusters with cluster j containing nj observations, with Var(uj) = Σ, a q × q
matrix.
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Efficient methods for computing (9) and (10) are given in chapter 2 of Pinheiro and Bates (2000).
Namely, for the two-level model, define ∆ to be the Cholesky factor of σ2

εΣ
−1, such that σ2

εΣ
−1 =

∆′∆. For j = 1, . . . ,M , decompose [
Zj
∆

]
= Qj

[
R11j

0

]
by using an orthogonal-triangular (QR) decomposition, with Qj a (nj + q)-square matrix and R11j

a q-square matrix. We then apply Qj as follows:[
R10j

R00j

]
= Q′j

[
Xj

0

]
;

[
c1j
c0j

]
= Q′j

[
yj
0

]
Stack the R00j and c0j matrices, and perform the additional QR decomposition R001 c01

...
...

R00M c0M

 = Q0

[
R00 c0
0 c1

]

Pinheiro and Bates (2000) show that ML estimates of β, σ2
ε , and ∆ (the unique elements of ∆,

that is) are obtained by maximizing the profile log likelihood (profiled in ∆)

L(∆) =
n

2
{log n− log(2π)− 1} − n log ||c1||+

M∑
j=1

log

∣∣∣∣ det(∆)

det(R11j)

∣∣∣∣ (11)

where || · || denotes the 2-norm. Following this maximization with

β̂ = R−100 c0; σ̂2
ε = n−1||c1||2 (12)

REML estimates are obtained by maximizing

LR(∆) =
n− p
2
{log(n− p)− log(2π)− 1} − (n− p) log ||c1||

− log |det(R00)|+
M∑
j=1

log

∣∣∣∣ det(∆)

det(R11j)

∣∣∣∣ (13)

followed by
β̂ = R−100 c0; σ̂2

ε = (n− p)−1||c1||2

For numerical stability, maximization of (11) and (13) is not performed with respect to the unique
elements of ∆ but instead with respect to the unique elements of the matrix square root (or matrix
logarithm if the matlog option is specified) of Σ/σ2

ε ; define γ to be the vector containing these
elements.

Once maximization with respect to γ is completed, (γ, σ2
ε ) is reparameterized to {α, log(σε)},

where α is a vector containing the unique elements of Σ, expressed as logarithms of standard
deviations for the diagonal elements and hyperbolic arctangents of the correlations for off-diagonal
elements. This last step is necessary 1) to obtain a joint variance–covariance estimate of the elements
of Σ and σ2

ε ; 2) to obtain a parameterization under which parameter estimates can be interpreted
individually, rather than as elements of a matrix square root (or logarithm); and 3) to parameterize
these elements such that their ranges each encompass the entire real line.
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Obtaining a joint variance–covariance matrix for the estimated {α, log(σε)} requires the evaluation
of the log likelihood (or log-restricted likelihood) with only β profiled out. For ML, we have

L∗{α, log(σε)} = L{∆(α, σ2
ε ), σ

2
ε }

= −n
2
log(2πσ2

ε )−
||c1||2

2σ2
ε

+

M∑
j=1

log

∣∣∣∣ det(∆)

det(R11j)

∣∣∣∣
with the analogous expression for REML.

The variance–covariance matrix of β̂ is estimated as

V̂ar(β̂) = σ̂2
εR
−1
00

(
R−100

)′
but this does not mean that V̂ar(β̂) is identical under both ML and REML because R00 depends on
∆. Because β̂ is asymptotically uncorrelated with {α̂, log(σ̂ε)}, the covariance of β̂ with the other
estimated parameters is treated as 0.

Parameter estimates are stored in e(b) as {β̂, α̂, log(σ̂ε)}, with the corresponding (block-diagonal)
variance–covariance matrix stored in e(V). Parameter estimates can be displayed in this metric by
specifying the estmetric option. However, in mixed output, variance components are most often
displayed either as variances and covariances or as standard deviations and correlations.

EM iterations are derived by considering the uj in (2) as missing data. Here we describe the
procedure for maximizing the log likelihood via EM; the procedure for maximizing the restricted log
likelihood is similar. The log likelihood for the full data (y,u) is

LF (β,Σ, σ
2
ε ) =

M∑
j=1

{
log f1(yj |uj ,β, σ2

ε ) + log f2(uj |Σ)
}

where f1(·) is the density function for multivariate normal with mean Xjβ + Zjuj and variance
σ2
ε Inj , and f2(·) is the density for multivariate normal with mean 0 and q × q covariance matrix

Σ. As before, we can profile β and σ2
ε out of the optimization, yielding the following EM iterative

procedure:

1. For the current iterated value of Σ(t), fix β̂ = β̂(Σ(t)) and σ̂2
ε = σ̂2

ε (Σ
(t)) according to (12).

2. Expectation step: Calculate

D(Σ) ≡ E
{
LF (β̂,Σ, σ̂

2
ε )|y

}
= C − M

2
log det (Σ)− 1

2

M∑
j=1

E
(
u′jΣ

−1uj |y
)

where C is a constant that does not depend on Σ, and the expected value of the quadratic form
u′jΣ

−1uj is taken with respect to the conditional density f(uj |y, β̂,Σ(t), σ̂2
ε ).

3. Maximization step: Maximize D(Σ) to produce Σ(t+1).
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For general, symmetric Σ, the maximizer of D(Σ) can be derived explicitly, making EM iterations
quite fast.

For general, residual-error structures,

Var(εj) = σ2
εΛj

where the subscript j merely represents that εj and Λj vary in dimension in unbalanced data, the
data are first transformed according to

y∗j = Λ̂
−1/2
j yj ; X∗j = Λ̂

−1/2
j Xj ; Z∗j = Λ̂

−1/2
j Zj ;

and the likelihood-evaluation techniques described above are applied to y∗j , X∗j , and Z∗j instead.
The unique elements of Λ, ρ, are estimated along with the fixed effects and variance components.
Because σ2

ε is always estimated and multiplies the entire Λj matrix, ρ̂ is parameterized to take this
into account.

In the presence of sampling weights, following Rabe-Hesketh and Skrondal (2006), the weighted
log pseudolikelihood for a two-level model is given as

L(β,Σ, σ2
ε ) =

M∑
j=1

wj log

[∫
exp

{
nj∑
i=1

wi|j log f1(yij |uj ,β, σ2
ε )

}
f2(uj |Σ)duj

]
(14)

where wj is the inverse of the probability of selection for the jth cluster, wi|j is the inverse of the
conditional probability of selection of individual i given the selection of cluster j, and f1(·) and
f2(·) are the multivariate normal densities previously defined.

Weighted estimation is achieved through incorporating wj and wi|j into the matrix decomposition
methods detailed above to reflect replicated clusters for wj and replicated observations within clusters
for wi|j . Because this estimation is based on replicated clusters and observations, frequency weights
are handled similarly.

Rescaling of sampling weights can take one of three available forms:

Under pwscale(size),

w∗i|j = njw
∗
i|j

{
nj∑
i=1

wi|j

}−1
Under pwscale(effective),

w∗i|j = w∗i|j

{
nj∑
i=1

wi|j

}{
nj∑
i=1

w2
i|j

}−1
Under both the above, wj remains unchanged. For method pwscale(gk), however, both weights are
modified:

w∗j = n−1j

nj∑
i=1

wi|jwj ; w∗i|j = 1

Under ML estimation, robust standard errors are obtained in the usual way (see [P] robust) with
the one distinction being that in multilevel models, robust variances are, at a minimum, clustered at
the highest level. This is because given the form of the log likelihood, scores aggregate at the top-level
clusters. For a two-level model, scores are obtained as the partial derivatives of Lj(β,Σ, σ2

ε ) with
respect to {β,α, log(σε)}, where Lj is the log likelihood for cluster j and L =

∑M
j=1 Lj . Robust

variances are not supported under REML estimation because the form of the log restricted likelihood
does not lend itself to separation by highest-level clusters.

http://www.stata.com/manuals13/p_robust.pdf#p_robust
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EM iterations always assume equal weighting and an independent, homoskedastic error structure.
As such, with weighted data or when error structures are more complex, EM is used only to obtain
starting values.

For extensions to models with three or more levels, see Bates and Pinheiro (1998) and Rabe-Hesketh
and Skrondal (2006).� �

Charles Roy Henderson (1911–1989) was born in Iowa and grew up on the family farm. His
education in animal husbandry, animal nutrition, and statistics at Iowa State was interspersed
with jobs in the Iowa Extension Service, Ohio University, and the U.S. Army. After completing
his PhD, Henderson joined the Animal Science faculty at Cornell. He developed and applied
statistical methods in the improvement of farm livestock productivity through genetic selection,
with particular focus on dairy cattle. His methods are general and have been used worldwide
in livestock breeding and beyond agriculture. Henderson’s work on variance components and
best linear unbiased predictions has proved to be one of the main roots of current mixed-model
methods.� �
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