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Syntax

meqrpoisson depvar fe equation || re equation
[
|| re equation . . .

] [
, options

]
where the syntax of fe equation is[

indepvars
] [

if
] [

in
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable

levelvar: R.varname
[
, re options

]
levelvar is a variable identifying the group structure for the random effects at that level or is all
representing one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
collinear keep collinear variables
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options Description

Reporting

level(#) set confidence level; default is level(95)

irr report fixed-effects coefficients as incidence-rate ratios
variance show random-effects parameter estimates as variances and

covariances; the default
stddeviations show random-effects parameter estimates as standard deviations

and correlations
noretable suppress random-effects table
nofetable suppress fixed-effects table
estmetric show parameter estimates in the estimation metric
noheader suppress output header
nogroup suppress table summarizing groups
nolrtest do not perform likelihood-ratio test comparing with Poisson

regression
display options control column formats, row spacing, line width, display of omitted

variables and base and empty cells, and factor-variable labeling

Integration

intpoints(# [ # . . . ] ) set the number of integration (quadrature) points;
default is intpoints(7)

laplace use Laplacian approximation; equivalent to intpoints(1)

Maximization

maximize options control the maximization process; seldom used
retolerance(#) tolerance for random-effects estimates; default is

retolerance(1e-8); seldom used
reiterate(#) maximum number of iterations for random-effects estimation;

default is reiterate(50); seldom used
matsqrt parameterize variance components using matrix square roots;

the default
matlog parameterize variance components using matrix logarithms
refineopts(maximize options) control the maximization process during refinement of starting

values

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect, all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects, and one common pairwise
covariance

identity equal variances for random effects, all covariances
0; the default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated
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indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
indepvars and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, mi estimate, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Multilevel mixed-effects models > Estimation by QR decomposition > Poisson regression

Description

meqrpoisson, like mepoisson, fits mixed-effects models for count responses, for which the
conditional distribution of the response given the random effects is assumed to be Poisson.

meqrpoisson provides an alternative estimation method that uses the QR decomposition of the
variance-components matrix. This method may aid convergence when variance components are near
the boundary of the parameter space.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any or all of the random-effects equations.

exposure(varnamee) specifies a variable that reflects the amount of exposure over which the depvar
events were observed for each observation; ln(varnamee) is included in the fixed-effects portion
of the model with the coefficient constrained to be 1.

offset(varnameo) specifies that varnameo be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, and unstructured.

covariance(independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent), except when the R. notation is used, in which case the default is
covariance(identity) and only covariance(identity) and covariance(exchangeable)
are allowed.

covariance(exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p+1)/2 unique
parameters.

http://www.stata.com/manuals13/u11.pdf#u11.4.3Factorvariables
http://www.stata.com/manuals13/u11.pdf#u11.4.4Time-seriesvarlists
http://www.stata.com/manuals13/u11.pdf#u11.1.10Prefixcommands
http://www.stata.com/manuals13/u20.pdf#u20Estimationandpostestimationcommands
http://www.stata.com/manuals13/memepoisson.pdf#memepoisson
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
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collinear specifies that meqrpoisson not omit collinear variables from the random-effects equation.
Usually, there is no reason to leave collinear variables in place; in fact, doing so usually causes
the estimation to fail because of the matrix singularity caused by the collinearity. However, with
certain models (for example, a random-effects model with a full set of contrasts), the variables
may be collinear, yet the model is fully identified because of restrictions on the random-effects
covariance structure. In such cases, using the collinear option allows the estimation to take
place with the random-effects equation intact.

� � �
Reporting �

level(#); see [R] estimation options.

irr reports estimated fixed-effects coefficients transformed to incidence-rate ratios, that is, exp(β)
rather than β. Standard errors and confidence intervals are similarly transformed. This option
affects how results are displayed, not how they are estimated. irr may be specified at estimation
or upon replay.

variance, the default, displays the random-effects parameter estimates as variances and covariances.

stddeviations displays the random-effects parameter estimates as standard deviations and correla-
tions.

noretable suppresses the random-effects table.

nofetable suppresses the fixed-effects table.

estmetric displays all parameter estimates in the estimation metric. Fixed-effects estimates are
unchanged from those normally displayed, but random-effects parameter estimates are displayed
as log-standard deviations and hyperbolic arctangents of correlations, with equation names that
organize them by model level.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

nolrtest prevents meqrpoisson from performing a likelihood-ratio test that compares the mixed-
effects Poisson model with standard (marginal) Poisson regression. This option may also be specified
upon replay to suppress this test from the output.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvla-
bel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt), sformat(% fmt), and
nolstretch; see [R] estimation options.

� � �
Integration �

intpoints(# [ # . . . ] ) sets the number of integration points for adaptive Gaussian quadrature. The
more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases with the number of quadrature points, and in models with many levels
or many random coefficients, this increase can be substantial.

You may specify one number of integration points applying to all levels of random effects in
the model, or you may specify distinct numbers of points for each level. intpoints(7) is the
default; that is, by default seven quadrature points are used for each level.

laplace specifies that log likelihoods be calculated using the Laplacian approximation, equivalent
to adaptive Gaussian quadrature with one integration point for each level in the model; laplace
is equivalent to intpoints(1). Computation time increases as a function of the number of
quadrature points raised to a power equaling the dimension of the random-effects specification.

http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals13/d.pdf#dformat
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
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The computational time saved by using laplace can thus be substantial, especially when you
have many levels or random coefficients.

The Laplacian approximation has been known to produce biased parameter estimates, but the bias
tends to be more prominent in the estimates of the variance components rather than in the estimates
of the fixed effects. If your interest lies primarily with the fixed-effects estimates, the Laplace
approximation may be a viable faster alternative to adaptive quadrature with multiple integration
points.

When the R.varname notation is used, the dimension of the random effects increases by the
number of distinct values of varname. Even when this number is small to moderate, it increases
the total random-effects dimension to the point where estimation with more than one quadrature
point is prohibitively intensive.

For this reason, when you use the R. notation in your random-effects equations, the laplace
option is assumed. You can override this behavior by using the intpoints() option, but doing
so is not recommended.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. Those that require
special mention for meqrpoisson are listed below.

For the technique() option, the default is technique(nr). The bhhh algorithm may not be
specified.

from(init specs) is particularly useful when combined with refineopts(iterate(0)) (see the
description below), which bypasses the initial optimization stage.

retolerance(#) specifies the convergence tolerance for the estimated random effects used by adaptive
Gaussian quadrature. Although not estimated as model parameters, random-effects estimators are
used to adapt the quadrature points. Estimating these random effects is an iterative procedure,
with convergence declared when the maximum relative change in the random effects is less than
retolerance(). The default is retolerance(1e-8). You should seldom have to use this option.

reiterate(#) specifies the maximum number of iterations used when estimating the random effects
to be used in adapting the Gaussian quadrature points; see the retolerance() option. The default
is reiterate(50). You should seldom have to use this option.

matsqrt (the default), during optimization, parameterizes variance components by using the matrix
square roots of the variance–covariance matrices formed by these components at each model level.

matlog, during optimization, parameterizes variance components by using the matrix logarithms of
the variance–covariance matrices formed by these components at each model level.

The matsqrt parameterization ensures that variance–covariance matrices are positive semidefinite,
while matlog ensures matrices that are positive definite. For most problems, the matrix square root
is more stable near the boundary of the parameter space. However, if convergence is problematic,
one option may be to try the alternate matlog parameterization. When convergence is not an issue,
both parameterizations yield equivalent results.

refineopts(maximize options) controls the maximization process during the refinement of starting
values. Estimation in meqrpoisson takes place in two stages. In the first stage, starting values
are refined by holding the quadrature points fixed between iterations. During the second stage,
quadrature points are adapted with each evaluation of the log likelihood. Maximization options
specified within refineopts() control the first stage of optimization; that is, they control the
refining of starting values.

http://www.stata.com/manuals13/rmaximize.pdf#rmaximizeSyntaxalgorithm_spec
http://www.stata.com/manuals13/rmaximize.pdf#rmaximize
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maximize options specified outside refineopts() control the second stage.

The one exception to the above rule is the nolog option, which when specified outside refine-
opts() applies globally.

from(init specs) is not allowed within refineopts() and instead must be specified globally.

Refining starting values helps make the iterations of the second stage (those that lead toward the so-
lution) more numerically stable. In this regard, of particular interest is refineopts(iterate(#)),
with two iterations being the default. Should the maximization fail because of instability in the
Hessian calculations, one possible solution may be to increase the number of iterations here.

The following option is available with meqrpoisson but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
A two-level model
A three-level model

Introduction

Mixed-effects Poisson regression is Poisson regression containing both fixed effects and random
effects. In longitudinal data and panel data, random effects are useful for modeling intracluster
correlation; that is, observations in the same cluster are correlated because they share common
cluster-level random effects.

meqrpoisson allows for not just one, but many levels of nested clusters. For example, in a three-
level model you can specify random effects for schools and then random effects for classes nested
within schools. The observations (students, presumably) would comprise level one of the model, the
classes would comprise level two, and the schools would comprise level three.

However, for simplicity, for now we consider the two-level model, where for a series of M
independent clusters, and conditional on a set of random effects uj ,

Pr(yij = y|uj) = exp (−µij)µyij/y! (1)

for µij = exp(xijβ+ zijuj), j = 1, . . . ,M clusters, and with cluster j consisting of i = 1, . . . , nj
observations. The responses are counts yij . The 1× p row vector xij are the covariates for the fixed
effects, analogous to the covariates you would find in a standard Poisson regression model, with
regression coefficients (fixed effects) β.

The 1 × q vector zij are the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
zij is simply the scalar 1. The random effects uj are M realizations from a multivariate normal
distribution with mean 0 and q× q variance matrix Σ. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of Σ, known
as variance components. One special case of (1) places zij = xij so that all covariate effects are
essentially random and distributed as multivariate normal with mean β and variance Σ.

http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://stata.com
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Model (1) is an example of a generalized linear mixed model (GLMM), which generalizes the
linear mixed-effects (LME) model to non-Gaussian responses. You can fit LMEs in Stata by using
mixed and fit GLMMs by using meglm. Because of the relationship between LMEs and GLMMs, there
is insight to be gained through examination of the linear mixed model. This is especially true for
Stata users because the terminology, syntax, options, and output for fitting these types of models are
nearly identical. See [ME] mixed and the references therein, particularly in the Introduction, for more
information.

Log-likelihood calculations for fitting any generalized mixed-effects model require integrating out the
random effects. One widely used modern method is to directly estimate the integral required to calculate
the log likelihood by Gauss–Hermite quadrature or some variation thereof. The estimation method
used by meqrpoisson is a multicoefficient and multilevel extension of one of these quadrature types,
namely, adaptive Gaussian quadrature (AGQ) based on conditional modes, with the multicoefficient
extension from Pinheiro and Bates (1995) and the multilevel extension from Pinheiro and Chao (2006);
see Methods and formulas.

Below we present two short examples of mixed-effects Poisson regression; refer to [ME] me and
[ME] meglm for additional examples.

A two-level model
In this section, we begin with a two-level mixed-effects Poisson regression, because a one-level

model, in multilevel-model terminology, is just standard Poisson regression; see [R] poisson.

Example 1

Breslow and Clayton (1993) fit a mixed-effects Poisson model to data from a randomized trial of
the drug progabide for the treatment of epilepsy.

. use http://www.stata-press.com/data/r13/epilepsy
(Epilepsy data; progabide drug treatment)

. describe

Contains data from http://www.stata-press.com/data/r13/epilepsy.dta
obs: 236 Epilepsy data; progabide drug

treatment
vars: 8 31 May 2013 14:09
size: 4,956 (_dta has notes)

storage display value
variable name type format label variable label

subject byte %9.0g Subject ID: 1-59
seizures int %9.0g No. of seizures
treat byte %9.0g 1: progabide; 0: placebo
visit float %9.0g Dr. visit; coded as (-.3, -.1,

.1, .3)
lage float %9.0g log(age), mean-centered
lbas float %9.0g log(0.25*baseline seizures),

mean-centered
lbas_trt float %9.0g lbas/treat interaction
v4 byte %8.0g Fourth visit indicator

Sorted by: subject

Originally from Thall and Vail (1990), data were collected on 59 subjects (31 on progabide, 28 on
placebo). The number of epileptic seizures (seizures) was recorded during the two weeks prior to
each of four doctor visits (visit). The treatment group is identified by the indicator variable treat.

http://www.stata.com/manuals13/memixed.pdf#memixed
http://www.stata.com/manuals13/memixed.pdf#memixedRemarksandexamplesIntroduction
http://www.stata.com/manuals13/meme.pdf#meme
http://www.stata.com/manuals13/memeglm.pdf#memeglm
http://www.stata.com/manuals13/rpoisson.pdf#rpoisson
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Data were also collected on the logarithm of age (lage) and the logarithm of one-quarter the number
of seizures during the eight weeks prior to the study (lbas). The variable lbas trt represents the
interaction between lbas and treatment. lage, lbas, and lbas trt are mean centered. Because the
study originally noted a substantial decrease in seizures prior to the fourth doctor visit, an indicator,
v4, for the fourth visit was also recorded.

Breslow and Clayton (1993) fit a random-effects Poisson model for the number of observed seizures

log(µij) = β0 + β1treatij + β2lbasij + β3lbas trtij + β4lageij + β5v4ij + uj

for j = 1, . . . , 59 subjects and i = 1, . . . , 4 visits. The random effects uj are assumed to be normally
distributed with mean 0 and variance σ2

u.

. meqrpoisson seizures treat lbas lbas_trt lage v4 || subject:

Refining starting values:

Iteration 0: log likelihood = -680.40577 (not concave)
Iteration 1: log likelihood = -668.60112
Iteration 2: log likelihood = -666.3822

Performing gradient-based optimization:

Iteration 0: log likelihood = -666.3822
Iteration 1: log likelihood = -665.4603
Iteration 2: log likelihood = -665.29075
Iteration 3: log likelihood = -665.29068

Mixed-effects Poisson regression Number of obs = 236
Group variable: subject Number of groups = 59

Obs per group: min = 4
avg = 4.0
max = 4

Integration points = 7 Wald chi2(5) = 121.67
Log likelihood = -665.29068 Prob > chi2 = 0.0000

seizures Coef. Std. Err. z P>|z| [95% Conf. Interval]

treat -.9330388 .4008345 -2.33 0.020 -1.71866 -.1474177
lbas .8844331 .1312313 6.74 0.000 .6272246 1.141642

lbas_trt .3382609 .2033384 1.66 0.096 -.0602751 .7367969
lage .4842391 .3472774 1.39 0.163 -.1964121 1.16489

v4 -.1610871 .0545758 -2.95 0.003 -.2680537 -.0541206
_cons 2.154575 .2200425 9.79 0.000 1.723299 2.58585

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subject: Identity
var(_cons) .2528263 .0589559 .1600784 .3993115

LR test vs. Poisson regression: chibar2(01) = 304.74 Prob>=chibar2 = 0.0000

The number of seizures before the fourth visit does exhibit a significant drop, and the patients
on progabide demonstrate a decrease in frequency of seizures compared with the placebo group.
The subject-specific random effects also appear significant: σ̂2

u = 0.25 with standard error 0.06. The
above results are also in good agreement with those of Breslow and Clayton (1993, table 4), who fit
this model by the method of penalized quasi-likelihood (PQL).

Because this is a simple random-intercept model, you can obtain equivalent results by using
xtpoisson with the re and normal options.
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Example 2

In their study of PQL, Breslow and Clayton (1993) also fit a model where they dropped the fixed
effect on v4 and replaced it with a random subject-specific linear trend over the four doctor visits.
The model they fit is

log(µij) = β0 + β1treatij + β2lbasij+β3lbas trtij+

β4lageij + β5visitij + uj + vjvisitij

where (uj , vj) are bivariate normal with 0 mean and variance–covariance matrix

Σ = Var
[
uj
vj

]
=

[
σ2
u σuv

σuv σ2
v

]

. meqrpoisson seizures treat lbas lbas_trt lage visit || subject: visit,
> cov(unstructured) intpoints(9)

Refining starting values:

Iteration 0: log likelihood = -672.17188 (not concave)
Iteration 1: log likelihood = -660.46056
Iteration 2: log likelihood = -655.86727

Performing gradient-based optimization:

Iteration 0: log likelihood = -655.86727
Iteration 1: log likelihood = -655.6822
Iteration 2: log likelihood = -655.68103
Iteration 3: log likelihood = -655.68103

Mixed-effects Poisson regression Number of obs = 236
Group variable: subject Number of groups = 59

Obs per group: min = 4
avg = 4.0
max = 4

Integration points = 9 Wald chi2(5) = 115.56
Log likelihood = -655.68103 Prob > chi2 = 0.0000

seizures Coef. Std. Err. z P>|z| [95% Conf. Interval]

treat -.9286588 .4021643 -2.31 0.021 -1.716886 -.1404313
lbas .8849767 .131252 6.74 0.000 .6277275 1.142226

lbas_trt .3379757 .2044445 1.65 0.098 -.0627281 .7386795
lage .4767192 .353622 1.35 0.178 -.2163673 1.169806

visit -.2664098 .1647096 -1.62 0.106 -.5892347 .0564151
_cons 2.099555 .2203712 9.53 0.000 1.667635 2.531474

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subject: Unstructured
var(visit) .5314808 .2293851 .2280931 1.238406
var(_cons) .2514928 .0587892 .1590552 .3976522

cov(visit,_cons) .0028715 .0887018 -.1709808 .1767238

LR test vs. Poisson regression: chi2(3) = 324.54 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
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In the above, we specified the cov(unstructured) option to allow correlation between uj and vj ,
although on the basis of the above output it probably was not necessary—the default Independent
structure would have sufficed. In the interest of getting more accurate estimates, we also increased
the number of quadrature points to nine, although the estimates do not change much when compared
with estimates based on the default seven quadrature points.

The essence of the above-fitted model is that after adjusting for other covariates, the log trend in
seizures is modeled as a random subject-specific line, with intercept distributed as N(β0, σ

2
u) and

slope distributed as N(β5, σ
2
v). From the above output, β̂0 = 2.10, σ̂2

u = 0.25, β̂5 = −0.27, and
σ̂2
v = 0.53.

You can predict the random effects uj and vj by using predict after meqrpoisson; see
[ME] meqrpoisson postestimation. Better still, you can obtain a predicted number of seizures that
takes these random effects into account.

A three-level model
meqrpoisson can also fit higher-level models with multiple levels of nested random effects.

Example 3

Rabe-Hesketh and Skrondal (2012, exercise 13.7) describe data from the Atlas of Cancer Mortality
in the European Economic Community (EEC) (Smans, Mair, and Boyle 1993). The data were analyzed
in Langford, Bentham, and McDonald (1998) and record the number of deaths among males due to
malignant melanoma during 1971–1980.

. use http://www.stata-press.com/data/r13/melanoma
(Skin cancer (melanoma) data)

. describe

Contains data from http://www.stata-press.com/data/r13/melanoma.dta
obs: 354 Skin cancer (melanoma) data

vars: 6 30 May 2013 17:10
size: 4,956 (_dta has notes)

storage display value
variable name type format label variable label

nation byte %11.0g n Nation ID
region byte %9.0g Region ID: EEC level-I areas
county int %9.0g County ID: EEC level-II/level-III

areas
deaths int %9.0g No. deaths during 1971-1980
expected float %9.0g No. expected deaths
uv float %9.0g UV dose, mean-centered

Sorted by:

Nine European nations (variable nation) are represented, and data were collected over geographical
regions defined by EEC statistical services as level I areas (variable region), with deaths being
recorded for each of 354 counties, which are level II or level III EEC-defined areas (variable county,
which identifies the observations). Counties are nested within regions, and regions are nested within
nations.

The variable deaths records the number of deaths for each county, and expected records the
expected number of deaths (the exposure) on the basis of crude rates for the combined countries.
Finally, the variable uv is a measure of exposure to ultraviolet (UV) radiation.

http://www.stata.com/manuals13/memeqrpoissonpostestimation.pdf#memeqrpoissonpostestimation
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In modeling the number of deaths, one possibility is to include dummy variables for the nine nations
as fixed effects. Another is to treat these as random effects and fit the three-level random-intercept
Poisson model,

log(µijk) = log(expectedijk) + β0 + β1uvijk + uk + vjk

for nation k, region j, and county i. The model includes an exposure term for expected deaths.

. meqrpoisson deaths uv, exposure(expected) || nation: || region:

Refining starting values:

Iteration 0: log likelihood = -1169.0851 (not concave)
Iteration 1: log likelihood = -1156.523 (not concave)
Iteration 2: log likelihood = -1101.8313

Performing gradient-based optimization:

Iteration 0: log likelihood = -1101.8313
Iteration 1: log likelihood = -1100.7407
Iteration 2: log likelihood = -1098.0445
Iteration 3: log likelihood = -1097.7212
Iteration 4: log likelihood = -1097.714
Iteration 5: log likelihood = -1097.714

Mixed-effects Poisson regression Number of obs = 354

No. of Observations per Group Integration
Group Variable Groups Minimum Average Maximum Points

nation 9 3 39.3 95 7
region 78 1 4.5 13 7

Wald chi2(1) = 6.12
Log likelihood = -1097.714 Prob > chi2 = 0.0134

deaths Coef. Std. Err. z P>|z| [95% Conf. Interval]

uv -.0281991 .0114027 -2.47 0.013 -.050548 -.0058503
_cons -.0639473 .1335245 -0.48 0.632 -.3256505 .1977559

ln(expected) 1 (exposure)

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

nation: Identity
var(_cons) .1370339 .0722797 .0487365 .3853022

region: Identity
var(_cons) .0483853 .010927 .0310802 .0753257

LR test vs. Poisson regression: chi2(2) = 1252.12 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

By including an exposure variable that is an expected rate, we are in effect specifying a linear model
for the log of the standardized mortality ratio, the ratio of observed deaths to expected deaths that is
based on a reference population. Here the reference population is all nine nations.

We now add a random intercept for counties nested within regions, making this a four-level
model. Because counties also identify the observations, the corresponding variance component can be
interpreted as a measure of overdispersion, variability above and beyond that allowed by a Poisson
process; see [R] nbreg and [ME] menbreg.

http://www.stata.com/manuals13/rnbreg.pdf#rnbreg
http://www.stata.com/manuals13/memenbreg.pdf#memenbreg
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. meqrpoisson deaths uv, exposure(expected) || nation: || region: || county:,
> laplace

Refining starting values:

Iteration 0: log likelihood = -1381.1202 (not concave)
Iteration 1: log likelihood = -1144.7025 (not concave)
Iteration 2: log likelihood = -1138.6807

Performing gradient-based optimization:

Iteration 0: log likelihood = -1138.6807
Iteration 1: log likelihood = -1123.31
Iteration 2: log likelihood = -1095.0497
Iteration 3: log likelihood = -1086.9521
Iteration 4: log likelihood = -1086.7321
Iteration 5: log likelihood = -1086.7309
Iteration 6: log likelihood = -1086.7309

Mixed-effects Poisson regression Number of obs = 354

No. of Observations per Group Integration
Group Variable Groups Minimum Average Maximum Points

nation 9 3 39.3 95 1
region 78 1 4.5 13 1
county 354 1 1.0 1 1

Wald chi2(1) = 8.63
Log likelihood = -1086.7309 Prob > chi2 = 0.0033

deaths Coef. Std. Err. z P>|z| [95% Conf. Interval]

uv -.0334681 .0113919 -2.94 0.003 -.0557959 -.0111404
_cons -.0864109 .1298713 -0.67 0.506 -.3409539 .1681321

ln(expected) 1 (exposure)

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

nation: Identity
var(_cons) .1287416 .0680887 .04566 .3629957

region: Identity
var(_cons) .0405965 .0105002 .0244527 .0673986

county: Identity
var(_cons) .0146027 .0050766 .0073878 .0288637

LR test vs. Poisson regression: chi2(3) = 1274.08 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
Note: log-likelihood calculations are based on the Laplacian approximation.

In the above, we used a Laplacian approximation, which is not only faster but also produces estimates
that closely agree with those obtained with the default seven quadrature points.

See Computation time and the Laplacian approximation in [ME] me for a discussion comparing
Laplacian approximation with adaptive quadrature.

http://www.stata.com/manuals13/meme.pdf#memeRemarksandexamplesComputationtimeandtheLaplacianapproximation
http://www.stata.com/manuals13/meme.pdf#meme
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Stored results
meqrpoisson stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(k rs) number of variances
e(k rc) number of covariances
e(df m) model degrees of freedom
e(ll) log likelihood
e(chi2) χ2

e(p) significance
e(ll c) log likelihood, comparison model
e(chi2 c) χ2, comparison model
e(df c) degrees of freedom, comparison model
e(p c) significance, comparison model
e(rank) rank of e(V)
e(reparm rc) return code, final reparameterization
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) meqrpoisson
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivars) grouping variables
e(exposurevar) exposure variable
e(model) Poisson
e(title) title in estimation output
e(offset) offset
e(redim) random-effects dimensions
e(vartypes) variance-structure types
e(revars) random-effects covariates
e(n quad) number of integration points
e(laplace) laplace, if Laplace approximation
e(chi2type) Wald; type of model χ2

e(vce) bootstrap or jackknife if defined
e(vcetype) title used to label Std. Err.
e(method) ML
e(opt) type of optimization
e(ml method) type of ml method
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums
e(V) variance–covariance matrix of the estimator

Functions
e(sample) marks estimation sample
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Methods and formulas
In a two-level Poisson model, for cluster j, j = 1, . . . ,M , the conditional distribution of

yj = (yj1, . . . , yjnj
)′, given a set of cluster-level random effects uj , is

f(yj |uj) =
nj∏
i=1

[{exp (xijβ+ zijuj)}yij exp {− exp (xijβ+ zijuj)} /yij !]

= exp

[
nj∑
i=1

{yij (xijβ+ zijuj)− exp (xijβ+ zijuj)− log(yij !)}

]

Defining c (yj) =
∑nj

i=1 log(yij !), where c(yj) does not depend on the model parameters, we
can express the above compactly in matrix notation,

f(yj |uj) = exp
{
y′j (Xjβ+ Zjuj)− 1′ exp (Xjβ+ Zjuj)− c (yj)

}
where Xj is formed by stacking the row vectors xij and Zj is formed by stacking the row vectors
zij . We extend the definition of exp(·) to be a vector function where necessary.

Because the prior distribution of uj is multivariate normal with mean 0 and q× q variance matrix
Σ, the likelihood contribution for the jth cluster is obtained by integrating uj out of the joint density
f(yj ,uj),

Lj(β,Σ) = (2π)−q/2 |Σ|−1/2
∫
f(yj |uj) exp

(
−u′jΣ−1uj/2

)
duj

= exp {−c (yj)} (2π)−q/2 |Σ|−1/2
∫

exp {h (β,Σ,uj)} duj
(2)

where
h (β,Σ,uj) = y′j (Xjβ+ Zjuj)− 1′ exp (Xjβ+ Zjuj)− u′jΣ

−1uj/2

and for convenience, in the arguments of h(·) we suppress the dependence on the observable data
(yj ,Xj ,Zj).

The integration in (2) has no closed form and thus must be approximated. The Laplacian approx-
imation (Tierney and Kadane 1986; Pinheiro and Bates 1995) is based on a second-order Taylor
expansion of h (β,Σ,uj) about the value of uj that maximizes it. Taking first and second derivatives,
we obtain

h′ (β,Σ,uj) =
∂h (β,Σ,uj)

∂uj
= Z′j {yj −m(β,uj)} − Σ−1uj

h′′ (β,Σ,uj) =
∂2h (β,Σ,uj)

∂uj∂u′j
= −

{
Z′jV(β,uj)Zj + Σ−1

}
where m(β,uj) is the vector function with the ith element equal to the conditional mean of yij
given uj , that is, exp(xijβ + zijuj). V(β,uj) is the diagonal matrix whose diagonal entries vij
are the conditional variances of yij given uj , namely,

vij = exp (xijβ+ zijuj)

because equality of mean and variance is a characteristic of the Poisson distribution.
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The maximizer of h (β,Σ,uj) is ûj such that h′ (β,Σ, ûj) = 0. The integrand in (2) is proportional
to the posterior density f(uj |yj), so ûj also represents the posterior mode, a plausible estimator of
uj in its own right.

Given the above derivatives, the second-order Taylor approximation then takes the form

h (β,Σ,uj) ≈ h (β,Σ, ûj) +
1

2
(uj − ûj)

′
h′′ (β,Σ, ûj) (uj − ûj) (3)

The first-derivative term vanishes because h′ (β,Σ, ûj) = 0. Therefore,∫
exp {h (β,Σ,uj)} duj ≈ exp {h (β,Σ, ûj)}

×
∫

exp

[
−1

2
(uj − ûj)

′ {−h′′ (β,Σ, ûj)} (uj − ûj)

]
duj

= exp {h (β,Σ, ûj)} (2π)q/2 |−h′′ (β,Σ, ûj)|
−1/2

(4)

because the latter integrand can be recognized as the “kernel” of a multivariate normal density.

Combining the above with (2) (and taking logs) gives the Laplacian log-likelihood contribution of
the jth cluster,

LLap
j (β,Σ) = −1

2
log |Σ| − log |Rj |+ h (β,Σ, ûj)− c(yj)

where Rj is an upper-triangular matrix such that −h′′ (β,Σ, ûj) = RjR
′
j . Pinheiro and Chao (2006)

show that ûj and Rj can be efficiently computed as the iterative solution to a least-squares problem
by using matrix decomposition methods similar to those used in fitting LME models (Bates and
Pinheiro 1998; Pinheiro and Bates 2000; [ME] mixed).

The fidelity of the Laplacian approximation is determined wholly by the accuracy of the approxi-
mation in (3). An alternative that does not depend so heavily on this approximation is integration via
AGQ (Naylor and Smith 1982; Liu and Pierce 1994).

The application of AGQ to this particular problem is from Pinheiro and Bates (1995). When we
reexamine the integral in question, a transformation of integration variables yields∫

exp {h (β,Σ,uj)} duj = |Rj |−1
∫

exp
{
h
(
β,Σ, ûj +R−1j t

)}
dt

= (2π)q/2 |Rj |−1
∫

exp
{
h
(
β,Σ, ûj +R−1j t

)
+ t′t/2

}
φ(t)dt

(5)

where φ(·) is the standard multivariate normal density. Because the integrand is now expressed as
some function multiplied by a normal density, it can be estimated by applying the rules of standard
Gauss–Hermite quadrature. For a predetermined number of quadrature points NQ, define ak =

√
2a∗k

and wk = w∗k/
√
π, for k = 1, . . . , NQ, where (a∗k, w

∗
k) are a set of abscissas and weights for

Gauss–Hermite quadrature approximations of
∫
exp(−x2)f(x)dx, as obtained from Abramowitz and

Stegun (1972, 924).

http://www.stata.com/manuals13/memixed.pdf#memixed
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Define ak = (ak1 , ak2 , . . . , akq )
′; that is, ak is a vector that spans the NQ abscissas over the

dimension q of the random effects. Applying quadrature rules to (5) yields the AGQ approximation,∫
exp {h (β,Σ,uj)} duj

≈ (2π)q/2 |Rj |−1
NQ∑
k1=1

· · ·
NQ∑
kq=1

[
exp

{
h
(
β,Σ, ûj +R−1j ak

)
+ a′kak/2

} q∏
p=1

wkp

]
≡ (2π)q/2Ĝj(β,Σ)

resulting in the AGQ log-likelihood contribution of the jth cluster,

LAGQ
j (β,Σ) = −1

2
log |Σ|+ log

{
Ĝj(β,Σ)

}
− c(yj)

The “adaptive” part of adaptive Gaussian quadrature lies in the translation and rescaling of the
integration variables in (5) by using ûj and R−1j , respectively. This transformation of quadrature
abscissas (centered at 0 in standard form) is chosen to better capture the features of the integrand,
through which (4) can be seen to resemble a multivariate normal distribution with mean ûj and
variance R−1j R−Tj . AGQ is therefore not as dependent as the Laplace method upon the approximation
in (3). In AGQ, (3) serves merely to redirect the quadrature abscissas, with the AGQ approximation
improving as the number of quadrature points, NQ, increases. In fact, Pinheiro and Bates (1995)
point out that AGQ with only one quadrature point (a = 0 and w = 1) reduces to the Laplacian
approximation.

The log likelihood for the entire dataset is then simply the sum of the contributions of theM individual
clusters, namely, L(β,Σ) =

∑M
j=1 L

Lap
j (β,Σ) for Laplace and L(β,Σ) =

∑M
j=1 L

AGQ
j (β,Σ) for

AGQ.

Maximization of L(β,Σ) is performed with respect to (β, θ), where θ is a vector comprising the
unique elements of the matrix square root of Σ. This is done to ensure that Σ is always positive
semidefinite. If the matlog option is specified, then θ instead consists of the unique elements of
the matrix logarithm of Σ. For well-conditioned problems, both methods produce equivalent results,
yet our experience deems the former as more numerically stable near the boundary of the parameter
space.

Once maximization is achieved, parameter estimates are mapped from (β̂, θ̂) to (β̂, γ̂), where
γ̂ is a vector containing the unique (estimated) elements of Σ, expressed as logarithms of standard
deviations for the diagonal elements and hyperbolic arctangents of the correlations for off-diagonal
elements. This last step is necessary to (a) obtain a parameterization under which parameter estimates
can be displayed and interpreted individually, rather than as elements of a matrix square root (or
logarithm), and (b) parameterize these elements such that their ranges each encompass the entire real
line.

Parameter estimates are stored in e(b) as (β̂, γ̂), with the corresponding variance–covariance matrix
stored in e(V). Parameter estimates can be displayed in this metric by specifying the estmetric option.
However, in meqrpoisson output, variance components are most often displayed either as variances
and covariances (the default) or as standard deviations and correlations (option stddeviations).

The approach outlined above can be extended from two-level models to models with three or more
levels; see Pinheiro and Chao (2006) for details.
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