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Syntax

meologit depvar fe equation
[
|| re equation

] [
|| re equation . . .

] [
, options

]
where the syntax of fe equation is[

indepvars
] [

if
] [

in
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all
representing one group comprising all observations.

fe options Description

Model

offset(varname) include varname in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
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2 meologit — Multilevel mixed-effects ordered logistic regression

options Description

Model

constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

or report fixed-effects coefficients as odds ratios
nocnsreport do not display constraints
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
nolrtest do not perform likelihood-ratio test comparing with ordered logistic

regression
display options control column formats, row spacing, line width, display of omitted

variables and base and empty cells, and factor-variable labeling

Integration

intmethod(intmethod) integration method
intpoints(#) set the number of integration (quadrature) points for all levels;

default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values
startgrid

[
(gridspec)

]
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead
dnumerical use numerical derivative techniques
coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect, all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects, and one common pairwise
covariance

identity equal variances for random effects, all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated
fixed(matname) user-selected variances and covariances constrained to specified

values; the remaining variances and covariances unrestricted
pattern(matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted

http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptionsOptionsconstraintsdescrip
http://www.stata.com/manuals13/r.pdf#rvce_option
http://www.stata.com/manuals13/memeglm.pdf#memeglmOptionsstartvalues()
http://www.stata.com/manuals13/memeglm.pdf#memeglmOptionsstartgrid()
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intmethod Description

mvaghermite mean-variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature
ghermite nonadaptive Gauss–Hermite quadrature
laplace Laplacian approximation; the default for crossed random-effects

models

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by is allowed; see [U] 11.1.10 Prefix commands.
startvalues(), startgrid, noestimate, dnumerical, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Multilevel mixed-effects models > Ordered logistic regression

Description

meologit fits mixed-effects logistic models for ordered responses. The actual values taken on by
the response are irrelevant except that larger values are assumed to correspond to “higher” outcomes.
The conditional distribution of the response given the random effects is assumed to be multinomial,
with success probability determined by the logistic cumulative distribution function.

Options

� � �
Model �

offset(varname) specifies that varname be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.

http://www.stata.com/manuals13/u11.pdf#u11.4.3Factorvariables
http://www.stata.com/manuals13/u11.pdf#u11.4.4Time-seriesvarlists
http://www.stata.com/manuals13/u11.pdf#u11.1.10Prefixcommands
http://www.stata.com/manuals13/u20.pdf#u20Estimationandpostestimationcommands
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
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covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(matname) covariance structure, (co)variance (i, j) is constrained to equal the
value specified in the i, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (i, j) and (k, l) are constrained to be equal if matname[i, j] = matname[k, l].

noconstant suppresses the constant (intercept) term; may be specified for any or all of the random-
effects equations.

constraints(constraints), collinear; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#); see [R] estimation options.

or reports estimated fixed-effects coefficients transformed to odds ratios, that is, exp(β) rather than β.
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated. or may be specified either at estimation or upon replay.

nocnsreport; see [R] estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

nolrtest prevents meologit from performing a likelihood-ratio test that compares the mixed-effects
ordered logistic model with standard (marginal) ordered logistic regression. This option may also
be specified upon replay to suppress this test from the output.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvla-
bel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt), sformat(% fmt), and
nolstretch; see [R] estimation options.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean and variance adaptive Gauss–Hermite quadrature; mcaghermite
performs mode and curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive
Gauss–Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals13/rvce_option.pdf#rvce_option
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals13/d.pdf#dformat
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
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For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. Those that require
special mention for meologit are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with meologit but are not shown in the dialog box:

startvalues(svmethod), startgrid
[
(gridspec)

]
, noestimate, and dnumerical; see [ME]

meglm.

coeflegend; see [R] estimation options.

Remarks and examples stata.com

For a general introduction to me commands, see [ME] me.

meologit is a convenience command for meglm with a logit link and an ordinal family; see
[ME] meglm.

Remarks are presented under the following headings:
Introduction
Two-level models
Three-level models

Introduction

Mixed-effects ordered logistic regression is ordered logistic regression containing both fixed effects
and random effects. An ordered response is a variable that is categorical and ordered, for instance,
“poor”, “good”, and “excellent”, which might indicate a person’s current health status or the repair
record of a car. In the absence of random effects, mixed-effects ordered logistic regression reduces
to ordered logistic regression; see [R] ologit.

Comprehensive treatments of mixed models are provided by, for example, Searle, Casella, and Mc-
Culloch (1992); Verbeke and Molenberghs (2000); Raudenbush and Bryk (2002); Demidenko (2004);
Hedeker and Gibbons (2006); McCulloch, Searle, and Neuhaus (2008); and Rabe-Hesketh and Skro-
ndal (2012). Agresti (2010, chap. 10) and Rabe-Hesketh and Skrondal (2012, chap. 11) are good
introductory readings on applied multilevel modeling of ordinal data.

http://www.stata.com/manuals13/rmaximize.pdf#rmaximizeSyntaxalgorithm_spec
http://www.stata.com/manuals13/rmaximize.pdf#rmaximize
http://www.stata.com/manuals13/memeglm.pdf#memeglmOptionsstartval
http://www.stata.com/manuals13/memeglm.pdf#memeglmOptionsstartval
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://stata.com
http://www.stata.com/manuals13/meme.pdf#meme
http://www.stata.com/manuals13/memeglm.pdf#memeglm
http://www.stata.com/manuals13/rologit.pdf#rologit
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meologit allows for many levels of nested clusters of random effects. For example, in a three-level
model you can specify random effects for schools and then random effects for classes nested within
schools. In this model, the observations (presumably, the students) comprise the first level, the classes
comprise the second level, and the schools comprise the third.

However, for simplicity, for now we consider the two-level model, where for a series of M
independent clusters, and conditional on a set of fixed effects xij , a set of cutpoints κ, and a set of
random effects uj , the cumulative probability of the response being in a category higher than k is

Pr(yij > k|xij ,κ,uj) = H(xijβ+ zijuj − κk) (1)

for j = 1, . . . ,M clusters, with cluster j consisting of i = 1, . . . , nj observations. The cutpoints κ
are labeled κ1, κ2, . . . , κK−1, where K is the number of possible outcomes. H(·) is the logistic
cumulative distribution function that represents cumulative probability.

The 1 × p row vector xij are the covariates for the fixed effects, analogous to the covariates
you would find in a standard logistic regression model, with regression coefficients (fixed effects)
β. In our parameterization, xij does not contain a constant term because its effect is absorbed into
the cutpoints. For notational convenience here and throughout this manual entry, we suppress the
dependence of yij on xij .

The 1 × q vector zij are the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
zij is simply the scalar 1. The random effects uj are M realizations from a multivariate normal
distribution with mean 0 and q× q variance matrix Σ. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of Σ, known
as variance components. One special case of (1) places zij = xij , so that all covariate effects are
essentially random and distributed as multivariate normal with mean β and variance Σ.

From (1), we can derive the probability of observing outcome k as

Pr(yij = k|κ,uj) = Pr(κk−1 < xijβ+ zijuj + εij ≤ κk)

= Pr(κk−1 − xijβ− zijuj < εij ≤ κk − xijβ− zijuj)

= H(κk − xijβ− zijuj)−H(κk−1 − xijβ− zijuj)

where κ0 is taken as −∞ and κK is taken as +∞.

From the above, we may also write the model in terms of a latent linear response, where observed
ordinal responses yij are generated from the latent continuous responses, such that

y∗ij = xijβ+ zijuj + εij

and

yij =


1 if y∗ij ≤ κ1
2 if κ1 < y∗ij ≤ κ2
...
K if κK−1 < y∗ij

The errors εij are distributed as logistic with mean 0 and variance π2/3 and are independent of uj .

Model (1) is an example of a generalized linear mixed model (GLMM), which generalizes the
linear mixed-effects (LME) model to non-Gaussian responses. You can fit LMEs in Stata by using
mixed and fit GLMMs by using meglm. Because of the relationship between LMEs and GLMMs, there
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is insight to be gained through examination of the linear mixed model. This is especially true for
Stata users because the terminology, syntax, options, and output for fitting these types of models are
nearly identical. See [ME] mixed and the references therein, particularly in the Introduction, for more
information.

Log-likelihood calculations for fitting any generalized mixed-effects model require integrating out
the random effects. One widely used modern method is to directly estimate the integral required to
calculate the log likelihood by Gauss–Hermite quadrature or some variation thereof. Because the log
likelihood itself is estimated, this method has the advantage of permitting likelihood-ratio tests for
comparing nested models. Also, if done correctly, quadrature approximations can be quite accurate,
thus minimizing bias.

meologit supports three types of Gauss–Hermite quadrature and the Laplacian approximation
method; see Methods and formulas of [ME] meglm for details.

Below we present two short examples of mixed-effects ordered logistic regression; refer to
[ME] melogit for additional examples including crossed random-effects models and to [ME] me and
[ME] meglm for examples of other random-effects models.

Two-level models
We begin with a simple application of (1) as a two-level model, because a one-level model, in our

terminology, is just standard ordered logistic regression; see [R] ologit.

Example 1

We use the data from the Television, School, and Family Smoking Prevention and Cessation Project
(Flay et al. 1988; Rabe-Hesketh and Skrondal 2012, chap. 11), where schools were randomly assigned
into one of four groups defined by two treatment variables. Students within each school are nested in
classes, and classes are nested in schools. In this example, we ignore the variability of classes within
schools and fit a two-level model; we incorporate classes in a three-level model in example 2. The
dependent variable is the tobacco and health knowledge (THK) scale score collapsed into four ordered
categories. We regress the outcome on the treatment variables and their interaction and control for
the pretreatment score.

http://www.stata.com/manuals13/memixed.pdf#memixed
http://www.stata.com/manuals13/memixed.pdf#memixedRemarksandexamplesIntroduction
http://www.stata.com/manuals13/memeglm.pdf#memeglmMethodsandformulas
http://www.stata.com/manuals13/memeglm.pdf#memeglm
http://www.stata.com/manuals13/memelogit.pdf#memelogit
http://www.stata.com/manuals13/meme.pdf#meme
http://www.stata.com/manuals13/memeglm.pdf#memeglm
http://www.stata.com/manuals13/rologit.pdf#rologit
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. use http://www.stata-press.com/data/r13/tvsfpors

. meologit thk prethk cc##tv || school:

Fitting fixed-effects model:

Iteration 0: log likelihood = -2212.775
Iteration 1: log likelihood = -2125.509
Iteration 2: log likelihood = -2125.1034
Iteration 3: log likelihood = -2125.1032

Refining starting values:

Grid node 0: log likelihood = -2136.2426

Fitting full model:

Iteration 0: log likelihood = -2136.2426 (not concave)
Iteration 1: log likelihood = -2120.2577
Iteration 2: log likelihood = -2119.7574
Iteration 3: log likelihood = -2119.7428
Iteration 4: log likelihood = -2119.7428

Mixed-effects ologit regression Number of obs = 1600
Group variable: school Number of groups = 28

Obs per group: min = 18
avg = 57.1
max = 137

Integration method: mvaghermite Integration points = 7

Wald chi2(4) = 128.06
Log likelihood = -2119.7428 Prob > chi2 = 0.0000

thk Coef. Std. Err. z P>|z| [95% Conf. Interval]

prethk .4032892 .03886 10.38 0.000 .327125 .4794534
1.cc .9237904 .204074 4.53 0.000 .5238127 1.323768
1.tv .2749937 .1977424 1.39 0.164 -.1125744 .6625618

cc#tv
1 1 -.4659256 .2845963 -1.64 0.102 -1.023724 .0918728

/cut1 -.0884493 .1641062 -0.54 0.590 -.4100916 .233193
/cut2 1.153364 .165616 6.96 0.000 .8287625 1.477965
/cut3 2.33195 .1734199 13.45 0.000 1.992053 2.671846

school
var(_cons) .0735112 .0383106 .0264695 .2041551

LR test vs. ologit regression: chibar2(01) = 10.72 Prob>=chibar2 = 0.0005

Those of you familiar with the mixed command or other me commands will recognize the syntax
and output. Below we comment on the items specific to ordered outcomes.

1. The estimation table reports the fixed effects, the estimated cutpoints (κ1, κ2, κ3), and the estimated
variance components. The fixed effects can be interpreted just as you would the output from ologit.
We find that students with higher preintervention scores tend to have higher postintervention scores.
Because of their interaction, the impact of the treatment variables on the knowledge score is not
straightforward; we defer this discussion to example 1 of [ME] meologit postestimation. You can
also specify the or option at estimation or on replay to display the fixed effects as odds ratios
instead.

2. Underneath the fixed effects and the cutpoints, the table shows the estimated variance components.
The random-effects equation is labeled school, meaning that these are random effects at the school
level. Because we have only one random effect at this level, the table shows only one variance
component. The estimate of σ2

u is 0.07 with standard error 0.04. The reported likelihood-ratio test

http://www.stata.com/manuals13/memeologitpostestimation.pdf#memeologitpostestimationRemarksandexamplesex1
http://www.stata.com/manuals13/memeologitpostestimation.pdf#memeologitpostestimation
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shows that there is enough variability between schools to favor a mixed-effects ordered logistic
regression over a standard ordered logistic regression; see Distribution theory for likelihood-ratio
test in [ME] me for a discussion of likelihood-ratio testing of variance components.

We now store our estimates for later use.

. estimates store r_2

Three-level models
Two-level models extend naturally to models with three or more levels with nested random effects.

Below we continue with example 1.

Example 2

In this example, we fit a three-level model incorporating classes nested within schools as an
additional level. The fixed-effects part remains the same.

http://www.stata.com/manuals13/meme.pdf#memeRemarksandexamplesDistributiontheoryforlikelihood-ratiotest
http://www.stata.com/manuals13/meme.pdf#memeRemarksandexamplesDistributiontheoryforlikelihood-ratiotest
http://www.stata.com/manuals13/meme.pdf#meme
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. meologit thk prethk cc##tv || school: || class:

Fitting fixed-effects model:

Iteration 0: log likelihood = -2212.775
Iteration 1: log likelihood = -2125.509
Iteration 2: log likelihood = -2125.1034
Iteration 3: log likelihood = -2125.1032

Refining starting values:

Grid node 0: log likelihood = -2152.1514

Fitting full model:

Iteration 0: log likelihood = -2152.1514 (not concave)
Iteration 1: log likelihood = -2125.9213 (not concave)
Iteration 2: log likelihood = -2120.1861
Iteration 3: log likelihood = -2115.6177
Iteration 4: log likelihood = -2114.5896
Iteration 5: log likelihood = -2114.5881
Iteration 6: log likelihood = -2114.5881

Mixed-effects ologit regression Number of obs = 1600

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

school 28 18 57.1 137
class 135 1 11.9 28

Integration method: mvaghermite Integration points = 7

Wald chi2(4) = 124.39
Log likelihood = -2114.5881 Prob > chi2 = 0.0000

thk Coef. Std. Err. z P>|z| [95% Conf. Interval]

prethk .4085273 .039616 10.31 0.000 .3308814 .4861731
1.cc .8844369 .2099124 4.21 0.000 .4730161 1.295858
1.tv .236448 .2049065 1.15 0.249 -.1651614 .6380575

cc#tv
1 1 -.3717699 .2958887 -1.26 0.209 -.951701 .2081612

/cut1 -.0959459 .1688988 -0.57 0.570 -.4269815 .2350896
/cut2 1.177478 .1704946 6.91 0.000 .8433151 1.511642
/cut3 2.383672 .1786736 13.34 0.000 2.033478 2.733865

school
var(_cons) .0448735 .0425387 .0069997 .2876749

school>class
var(_cons) .1482157 .0637521 .063792 .3443674

LR test vs. ologit regression: chi2(2) = 21.03 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Notes:

1. Our model now has two random-effects equations, separated by ||. The first is a random intercept
(constant only) at the school level (level three), and the second is a random intercept at the class
level (level two). The order in which these are specified (from left to right) is significant—meologit
assumes that class is nested within school.
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2. The information on groups is now displayed as a table, with one row for each grouping. You can
suppress this table with the nogroup or the noheader option, which will suppress the rest of the
header as well.

3. The variance-component estimates are now organized and labeled according to level. The variance
component for class is labeled school>class to emphasize that classes are nested within schools.

Compared with the two-level model from example 1, the estimate of the variance of the random
intercept at the school level dropped from 0.07 to 0.04. This is not surprising because we now use two
random components versus one random component to account for unobserved heterogeneity among
students. We can use lrtest and our stored estimation result from example 1 to see which model
provides a better fit:

. lrtest r_2 .

Likelihood-ratio test LR chi2(1) = 10.31
(Assumption: r_2 nested in .) Prob > chi2 = 0.0013

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

The likelihood-ratio test favors the three-level model. For more information about the likelihood-ratio
test in the context of mixed-effects models, see Distribution theory for likelihood-ratio test in [ME] me.

The above extends to models with more than two levels of nesting in the obvious manner, by
adding more random-effects equations, each separated by ||. The order of nesting goes from left to
right as the groups go from biggest (highest level) to smallest (lowest level).

Stored results
meologit stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k dv) number of dependent variables
e(k cat) number of categories
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(k rs) number of variances
e(k rc) number of covariances
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) significance
e(ll c) log likelihood, comparison model
e(chi2 c) χ2, comparison model
e(df c) degrees of freedom, comparison model
e(p c) significance, comparison model
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

http://www.stata.com/manuals13/meme.pdf#memeRemarksandexamplesDistributiontheoryforlikelihood-ratiotest
http://www.stata.com/manuals13/meme.pdf#meme
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Macros
e(cmd) meologit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(covariates) list of covariates
e(ivars) grouping variables
e(model) ologit
e(title) title in estimation output
e(link) logit
e(family) ordinal
e(clustvar) name of cluster variable
e(offset) offset
e(intmethod) integration method
e(n quad) number of integration points
e(chi2type) Wald; type of model χ2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums
e(V) variance–covariance matrix of the estimator
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
Without a loss of generality, consider a two-level ordered logistic model. The probability of

observing outcome k for response yij is then

pij = Pr(yij = k|κ,uj) = Pr(κk−1 < ηij + εit ≤ κk)

=
1

1 + exp(−κk + ηij)
− 1

1 + exp(−κk−1 + ηij)

where ηij = xijβ+ zijuj + offsetij , κ0 is taken as −∞, and κK is taken as +∞. Here xij does
not contain a constant term because its effect is absorbed into the cutpoints.

For cluster j, j = 1, . . . ,M , the conditional distribution of yj = (yj1, . . . , yjnj
)′ given a set of

cluster-level random effects uj is
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f(yj |κ,uj) =
nj∏
i=1

p
Ik(yij)
ij

= exp

nj∑
i=1

{
Ik(yij) log(pij)

}
where

Ik(yij) =
{
1 if yij = k
0 otherwise

Because the prior distribution of uj is multivariate normal with mean 0 and q× q variance matrix
Σ, the likelihood contribution for the jth cluster is obtained by integrating uj out of the joint density
f(yj ,uj),

Lj(β,κ,Σ) = (2π)−q/2 |Σ|−1/2
∫
f(yj |κ,uj) exp

(
−u′jΣ−1uj/2

)
duj

= (2π)−q/2 |Σ|−1/2
∫

exp {h (β,κ,Σ,uj)} duj
(2)

where

h (β,κ,Σ,uj) =

nj∑
i=1

{
Ik(yij) log(pij)

}
− u′jΣ

−1uj/2

and for convenience, in the arguments of h(·) we suppress the dependence on the observable data
(yj , rj ,Xj ,Zj).

The integration in (2) has no closed form and thus must be approximated. meologit offers
four approximation methods: mean–variance adaptive Gauss–Hermite quadrature (default unless a
crossed random-effects model is fit), mode-curvature adaptive Gauss–Hermite quadrature, nonadaptive
Gauss–Hermite quadrature, and Laplacian approximation (default for crossed random-effects models).

The Laplacian approximation is based on a second-order Taylor expansion of h (β,κ,Σ,uj) about
the value of uj that maximizes it; see Methods and formulas in [ME] meglm for details.

Gaussian quadrature relies on transforming the multivariate integral in (2) into a set of nested
univariate integrals. Each univariate integral can then be evaluated using a form of Gaussian quadrature;
see Methods and formulas in [ME] meglm for details.

The log likelihood for the entire dataset is simply the sum of the contributions of the M individual
clusters, namely, L(β,κ,Σ) =

∑M
j=1 Lj(β,κ,Σ).

Maximization ofL(β,κ,Σ) is performed with respect to (β,κ,σ2), where σ2 is a vector comprising
the unique elements of Σ. Parameter estimates are stored in e(b) as (β̂, κ̂, σ̂2), with the corresponding
variance–covariance matrix stored in e(V).
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