
Title stata.com

xl() — Excel file I/O class

Syntax Description Remarks and examples Also see

Syntax

If you are reading this entry for the first time, skip to Description. If you are trying to import or
export an Excel file from or to Stata, see [D] import excel. If you are trying to export a table created
by Stata to Excel, see [P] putexcel.

The syntax diagrams below describe a Mata class. For help with class programming in Mata, see
[M-2] class.

Syntax is presented under the following headings:

Step 1: Initialization
Step 2: Creating and opening an Excel workbook
Step 3: Setting the Excel worksheet
Step 4: Reading and writing data from and to an Excel worksheet
Utility functions for use in all steps

Step 1: Initialization

B = xl()

Step 2: Creating and opening an Excel workbook

(void) B.create book("filename", "sheetname"
[
, { "xls" | "xlsx" }

]
)

(void) B.load book("filename")

(void) B.clear book("filename")

(void) B.set mode("open" | "closed")
(void) B.close book()

Step 3: Setting the Excel worksheet

(void) B.add sheet("sheetname")

(void) B.set sheet("sheetname")

(void) B.clear sheet("sheetname")

string colvector B.get sheets()

1

http://stata.com
http://www.stata.com/manuals13/dimportexcel.pdf#dimportexcel
http://www.stata.com/manuals13/pputexcel.pdf#pputexcel
http://www.stata.com/manuals13/m-2class.pdf#m-2class

2 xl() — Excel file I/O class

Step 4: Reading and writing data from and to an Excel worksheet

(void) B.set missing(
[

real scalar num | string scalar val
]
)

string matrix B.get string(real vector row, real vector col)

real matrix B.get number(real vector row, real vector col[
, { "asdate" | "asdatetime" }

]
)

string matrix B.get cell type(real vector row, real vector col)

(void) B.put string(real scalar row, real scalar col, string matrix s)

(void) B.put number(real scalar row, real scalar col, real matrix r[
, { "asdate" | "asdatetime" }

]
)

Utility functions for use in all steps

(varies) B.query(
[
"item"

]
)

real vector B.get colnum(string vector)

(void) B.set keep cell format("on" | "off")
(void) B.set error mode("on" | "off")
real scalar B.get last error()

string scalar B.get last error message()

where item can be

filename
mode
filetype
sheetname
missing

Description

The xl() class allows you to create Excel 1997/2003 (.xls) files and Excel 2007/2013 (.xlsx)
files and load them from and to Mata matrices. The two Excel file types have different data size
limits that you can read about in the technical note Excel data size limits of [D] import excel. The
xl() class is supported on Windows, Mac, and Linux.

http://www.stata.com/manuals13/dimportexcel.pdf#dimportexcelTechnicalnoteExceldatasizelimits
http://www.stata.com/manuals13/dimportexcel.pdf#dimportexcel

xl() — Excel file I/O class 3

Remarks and examples stata.com

Remarks are presented under the following headings:
Definition of B
Specifying the Excel workbook
Specifying the Excel worksheet
Reading data from Excel
Writing data to Excel
Dealing with missing values
Dealing with dates
Utility functions
Handling errors
Error codes

Definition of B

A variable of type xl is called an instance of the xl() class. B is an instance of xl(). You can use
the class interactively:

b = xl()
b.create_book("results", "Sheet1")
...

In a function, you would declare one instance of the xl() class B as a scalar.

void myfunc()
{

class xl scalar b

b = xl()
b.create_book("results", "Sheet1")
...

}

When using the class inside other functions, you do not need to create the instance explicitly as long
as you declare the member-instance variable to be a scalar:

void myfunc()
{

class xl scalar b

b.create_book("results", "Sheet1")
...

}

Specifying the Excel workbook

To read from or write to an existing Excel workbook, you need to tell xl() class about that workbook.
To create a new workbook to write to, you need to tell xl() class what to name that workbook and
what type of Excel file that workbook should be. Excel 1997/2003 (.xls) files and Excel 2007/2010
(.xlsx) files can be created. You must either load or create a workbook before you can use any
sheet or read or write member functions of xl() class.

B.create book("filename", "sheetname",
[
, { "xls" | "xlsx" }

]
)

creates an Excel workbook named filename with the sheet sheetname. By default, an .xls file
is created. If you use the optional .xlsx argument, then an .xlsx file is created.

http://stata.com
http://www.stata.com/manuals13/m-6glossary.pdf#m-6GlossaryMataglossaryinstance
http://www.stata.com/manuals13/m-2class.pdf#m-2classRemarksandexamplesmember

4 xl() — Excel file I/O class

B.load book("filename")
loads an existing Excel workbook. Once it is loaded, you can read from or write to the workbook.

B.clear book("filename")
removes all worksheets from an existing Excel workbook.

To create an .xlsx workbook, code

b = xl()
b.create_book("results", "Sheet1", "xlsx")

To load an .xls workbook, code

b = xl()
b.load_book("Budgets.xls")

The xl() class will open and close the workbook for each member function you use that reads from
or writes to the workbook. This is done by default, so you do not have to worry about opening and
closing a file handle. This can be slow if you are reading or writing data at the cell level. In these
cases, you should leave the workbook open, deal with your data, and then close the workbook. The
following member functions allow you to control how the class handles file I/O.

B.set mode("open" | "closed")
sets whether the workbook file is left open for reading or writing data. set mode("closed"),
the default, means that the workbook is opened and closed after every sheet or read or write
member function.

B.close book()
closes a workbook file if the file has been left open using set mode("open").

Below is an example of how to speed up file I/O when writing data.

b = xl()
b.create_book("results", "year1")

b.set_mode("open")
for(i=1;i<10000;i++) {

b.put_number(i,1,i)
...

}
b.close_book()txt

Specifying the Excel worksheet

The following member functions are used to set the active worksheet the xl() class will use to read
data from or write data to. By default, if you do not specify a worksheet, xl() class will use the
first worksheet in the workbook.

B.add sheet("sheetname")
adds a new worksheet named sheetname to the workbook and sets the active worksheet to that
sheet.

B.set sheet("sheetname")
sets the active worksheet to sheetname in the xl() class.

xl() — Excel file I/O class 5

The following member functions are sheet utilities:

B.clear sheet("sheetname")
clears all cell values for sheetname.

B.get sheets() returns a string colvector of all the sheetnames in the current workbook.

You may need to make a change to all the sheets in a workbook. get sheets() can help you do
this.

void myfunc()
{

class xl scalar b
string colvector sheets
real scalar i

b.load_book("results")
sheets = b.get_sheets()

for(i=1;i<rows(sheets);i++) {
b.set_sheet(sheets[i])
b.clear_sheet(sheets[i])
...

}
}

To create a new workbook with multiple new sheets, code

b.create_book("Budgets", "Budget 2009")

for(i=10;i<13;i++) {
sheet = "Budget 20" + strofreal(i)
b.add_sheet(sheet)

}

Reading data from Excel

The following member functions of xl() class are used to read data. Both row and col can be a
real scalar or a 1× 2 real vector.

B.get string(row, col)
returns a string matrix containing values in a cell range depending on the range specified in
row and col.

B.get number(row, col
[
, { "asdate" | "asdatetime" }

]
)

returns a real matrix containing values in an Excel cell range depending on the range specified
in row and col.

B.get cell type(row, col)
returns a string matrix containing the string values numeric, string, date, datetime,
or blank for each Excel cell in the Excel cell range specified in row and col.

To get the value in cell A1 from Excel into a string scalar, code

string scalar val

val = b.get_string(1,1)

6 xl() — Excel file I/O class

If A1 contained the value "Yes", then val would contain "Yes". If A1 contained the numeric value
1, then val would contain 1. get string() will convert numeric values to strings.

To get the value in cell A1 from Excel into a real scalar, code

real scalar val

val = b.get_number(1,1)

If A1 contained the value "Yes", then val would contain a missing value. get number will return
a missing value for a string value. If A1 contained the numeric value 1, then val would contain the
value 1.

To read a range of data into Mata, you must specify the cell range by using a 1× 2 rowvector. To
read row 1, columns B through F of a worksheet, code

string rowvector cells
real rowvector cols

cols = (2,6)
cells = b.get_string(1,cols)

To read rows 1 through 3 and columns B through D of a worksheet, code

real matrix cells
real rowvector rows, cols

rows = (1,3)
cols = (2,4)
cells = b.get_number(rows,cols)

Writing data to Excel

The following member functions of xl() class are used to write data. row and col are real scalars.
When you write a matrix or vector, row and col are the starting (upper-left) cell in the Excel worksheet
to which you want to begin saving.

B.put string(row, col, s)
writes a string scalar, vector, or matrix to an Excel worksheet.

B.put number(row, col, r
[
, { "asdate" | "asdatetime" }

]
)

writes a real scalar, vector, or matrix to an Excel worksheet.

To write the string "Auto Dataset" in cell A1 of a worksheet, code

b.put_string(1, 1, "Auto Dataset")

To write mpg, rep78, and headroom to cells B1 through D1 in a worksheet, code

names = ("mpg", "rep78", "headroom")
b.put_string(1, 2, names)

To write values 22, 17, 22, 20, and 15 to cells B2 through B6 in a worksheet, code

mpg_vals = (22\17\22\20\15)
b.put_number(2, 2, mpg_vals)

xl() — Excel file I/O class 7

Dealing with missing values

set missing() sets how Mata missing values are to be treated when writing data to a worksheet.
Here are the three syntaxes:

B.set missing() specifies that missing values be written as blank cells. This is the default.

B.set missing(num) specifies that missing values be written as the real scalar num.

B.set missing(val) specifies that missing values be written as the string scalar val.

Let’s look at an example.

my_mat = J(1,3,.)

b.load_book("results")
b.set_sheet("Budget 2012")

b.set_missing(-99)
b.put_number(1, 1, my_mat)
b.set_missing("no data")
b.put_number(2, 1, my_mat)
b.set_missing()
b.put_number(3, 1, my_mat)

This code would write the numeric value -99 in cells A1 through C1 and "no data" in cells A2
through C2; cells A3 through C3 would be blank.

Dealing with dates

Say that cell A1 contained the date value 1/1/1960. If you coded

mydate = b.get_number(1,1)
mydate
21916

the value displayed, 21916, is the number of days since 31dec1899. If we used the optional
get number() argument "asdate" or "asdatetime", mydate would contain 0 because the date
1/1/1960 is 0 for both td and tc dates. To store 1/1/1960 in Mata, code

mysdate = b.get_string(1,1)
mysdate
1/1/1960

To write dates to Excel, you must tell xl() class how to convert the date to Excel’s date or datetime
format. To write the date 1/1/1960 00:00:00 to Excel, code

b.put_number(1,1,0, "asdatetime")

To write the dates 1/1/1960, 1/2/1960, and 1/3/1960 to Excel column A, rows 1 through 3, code

date_vals = (0\1\2)
b.put_number(1, 1, date_vals, "asdate")

Note: Excel has two different date systems; see the technical note Dates and times in [D] import
excel.

http://www.stata.com/manuals13/m-5date.pdf#m-5date()Syntaxtd
http://www.stata.com/manuals13/m-5date.pdf#m-5date()Syntaxtc
http://www.stata.com/manuals13/dimportexcel.pdf#dimportexcelTechnicalnoteDatesandtimes
http://www.stata.com/manuals13/dimportexcel.pdf#dimportexcel
http://www.stata.com/manuals13/dimportexcel.pdf#dimportexcel

8 xl() — Excel file I/O class

Utility functions

The following functions can be used whenever you have an instance of xl() class.

query() returns information about an xl() class. Here are the syntaxes for query():
void B.query()
string scalar B.query("filename")
real scalar B.query("mode")
real scalar B.query("filetype")
string scalar B.query("sheetname")
transmorphic scalar B.query("missing")

B.query()
lists the current values and setting of the class.

B.query("filename")
returns the filename of the current workbook.

B.query("mode")
returns 0 if the workbook is always closed by member functions or returns 1 if the current
workbook is open.

B.query("filetype")
returns 0 if the workbook is of type .xls or returns 1 if the workbook is of type .xlsx.

B.query("sheetname")
returns the active sheetname in a string scalar.

B.query("missing")
returns J(1,0,.) (if set to blanks), a string scalar, or a real scalar depending on
what was set with set missing().

When working with different Excel file types, you need to know the type of Excel file you are using
because the two file types have different column and row limits. You can use xl.query("filetype")
to obtain that information.

...
if (xl.query("filetype")) {

...
}
else {

...
}

B.get colnum()
returns a vector of column numbers based on the Excel column labels in the string vector
argument.

To get the column number for Excel columns AA and AD, code
: col = b.get_colnum("AA","AD")
: col

1 2

1 27 30

xl() — Excel file I/O class 9

The following function is used for cell formats and styles.

B.set keep cell format("on" | "off")
sets whether the put number() class member functions preserve a cell’s style and format
when writing a value. By default, preserving a cell’s style and format is off.

The following functions are used for error handling with an instance of class xl.

B.set error mode("on" | "off")
sets whether xl() class member functions issue errors. By default, errors are turned on.

B.get last error()
returns the last error code issued by the xl() class if set error mode() is set off.

B.get last error message()
returns the last error message issued by the xl() class if set error mode() is set off.

Handling errors

Turning errors off for an instance of xl() class is useful when using the class in an ado-file. You
should issue a Stata error code in the ado-file instead of a Mata error code. For example, in Mata,
when trying to load a file that does not exist within an instance, you will receive the error code
r(16103):

: b = xl()
: b.load_book("zzz")
file zzz.xls could not be loaded
r(16103);

The correct Stata error code for this type of error is 603, not 16103. To issue the correct error, code

b = xl()
b.set_error_mode("off")
b.load_book("zzz")
if (b.get_last_error()==16103) {

error(603)
}

You should also turn off errors if you set mode("open") because you need to close your Excel
file before exiting your ado-file. You should code

b = xl()
b.set_mode("open")
b.set_error_mode("off")
b.load_book("zzz")
...
b.put_string(1,300, "zzz.xls")
if (b.get_last_error()==16103) {

b.close_book()
error(603)

}

If set mode("closed") is used, you do not have to worry about closing the Excel file because it
is done automatically.

http://www.stata.com/manuals13/m-1ado.pdf#m-1ado

10 xl() — Excel file I/O class

Error codes

The error codes specific to the xl() class are the following:

Code Meaning

16101 file not found
16102 file already exists
16103 file could not be opened
16104 file could not be closed
16105 file is too big
16106 file could not be saved
16111 worksheet not found
16112 worksheet already exists
16113 could not clear worksheet
16114 could not add worksheet
16115 could not read from worksheet
16116 could not write to worksheet
16121 invalid syntax
16122 invalid range

Also see

[M-2] class — Object-oriented programming (classes)

[M-4] io — I/O functions

[M-5] docx*() — Generate Office Open XML (.docx) file

[D] import excel — Import and export Excel files

[P] putexcel — Export results to an Excel file

http://www.stata.com/manuals13/m-2class.pdf#m-2class
http://www.stata.com/manuals13/m-4io.pdf#m-4io
http://www.stata.com/manuals13/m-5_docx.pdf#m-5_docx*()
http://www.stata.com/manuals13/dimportexcel.pdf#dimportexcel
http://www.stata.com/manuals13/pputexcel.pdf#pputexcel

