trace() — Trace of square matrix

Syntax Diagnostics	Description Also see	Remarks and examples	Conformability

Syntax

Title

numeric scalar	trace(numeric matrix A)
numeric scalar	<pre>trace(numeric matrix A, numeric matrix B)</pre>
numeric scalar	<pre>trace(numeric matrix A, numeric matrix B, real scalar t)</pre>

Description

trace (A) returns the sum of the diagonal elements of A. Returned result is real if A is real, complex if A is complex.

trace(A, B) returns trace(AB), the calculation being made without calculating or storing the off-diagonal elements of AB. Returned result is real if A and B are real and is complex otherwise.

trace(A, B, t) returns trace(AB) if t = 0 and returns trace(A'B) otherwise, where, if either A or B is complex, transpose is understood to mean conjugate transpose. Returned result is real if A and B are real and is complex otherwise.

Remarks and examples

trace(A, B) returns the same result as trace(A*B) but is more efficient if you do not otherwise need to calculate A*B.

trace(A, B, 1) returns the same result as trace(A'B) but is more efficient.

For real matrices A and B,

```
trace(A') = trace(A)
trace(AB) = trace(BA)
```

and for complex matrices,

```
trace(A') = conj(trace(A))
trace(AB) = trace(BA)
```

where, for complex matrices, transpose is understood to mean conjugate transpose.

stata.com

Thus for real matrices,

To calculate	Code
trace(AB) trace($A'B$) trace(AB') trace($A'B'$)	trace(A, B) $trace(A, B, 1)$ $trace(A, B, 1)$ $trace(A, B)$

and for complex matrices,

To calculate	Code
trace(AB) $trace(A'B)$ $trace(AB')$ $trace(AB')$ $trace(A'B')$	<pre>trace(A, B) trace(A, B, 1) conj(trace(A, B, 1)) conj(trace(A, B))</pre>

Transpose in the first column means conjugate transpose.

Conformability

<pre>trace(A):</pre>	
<i>A</i> :	$n \times n$
result:	1×1
<pre>trace(A, B):</pre>	
A:	$n \times m$
<i>B</i> :	$m \times n$
result:	1×1
trace(A, B, t)	
<i>A</i> :	$n \times m$ if $t = 0, m \times n$ otherwise
<i>B</i> :	$m \times n$
<i>t</i> :	1×1
result:	1×1

Diagnostics

trace(A) aborts with error if A is not square.

trace(A, B) and trace(A, B, t) abort with error if the matrices are not conformable or their product is not square.

The trace of a 0×0 matrix is 0.

Also see

[M-4] matrix — Matrix functions