trace() — Trace of square matrix

Syntax

- `numeric scalar trace(numeric matrix A)`
- `numeric scalar trace(numeric matrix A, numeric matrix B)`
- `numeric scalar trace(numeric matrix A, numeric matrix B, real scalar t)`

Description

`trace(A)` returns the sum of the diagonal elements of `A`. Returned result is real if `A` is real, complex if `A` is complex.

`trace(A, B)` returns `trace(AB)`, the calculation being made without calculating or storing the off-diagonal elements of `AB`. Returned result is real if `A` and `B` are real and is complex otherwise.

`trace(A, B, t)` returns `trace(AB)` if `t = 0` and returns `trace(A′B)` otherwise, where, if either `A` or `B` is complex, transpose is understood to mean conjugate transpose. Returned result is real if `A` and `B` are real and is complex otherwise.

Remarks and examples

`trace(A, B)` returns the same result as `trace(A*B)` but is more efficient if you do not otherwise need to calculate `A*B`.

`trace(A, B, 1)` returns the same result as `trace(A′B)` but is more efficient.

For real matrices `A` and `B`,

\[
\text{trace}(A′) = \text{trace}(A) \\
\text{trace}(AB) = \text{trace}(BA)
\]

and for complex matrices,

\[
\text{trace}(A′) = \text{conj}(\text{trace}(A)) \\
\text{trace}(AB) = \text{trace}(BA)
\]

where, for complex matrices, transpose is understood to mean conjugate transpose.
Thus for real matrices,

<table>
<thead>
<tr>
<th>To calculate</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>trace(AB)</td>
<td>trace(A, B)</td>
</tr>
<tr>
<td>trace(A'B)</td>
<td>trace(A, B, 1)</td>
</tr>
<tr>
<td>trace(AB')</td>
<td>trace(A, B, 1)</td>
</tr>
<tr>
<td>trace(A'B')</td>
<td>trace(A, B)</td>
</tr>
</tbody>
</table>

and for complex matrices,

<table>
<thead>
<tr>
<th>To calculate</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>trace(AB)</td>
<td>trace(A, B)</td>
</tr>
<tr>
<td>trace(A'B)</td>
<td>trace(A, B, 1)</td>
</tr>
<tr>
<td>trace(AB')</td>
<td>conj(trace(A, B, 1))</td>
</tr>
<tr>
<td>trace(A'B')</td>
<td>conj(trace(A, B))</td>
</tr>
</tbody>
</table>

Transpose in the first column means conjugate transpose.

Conformability

trace(A):

- \(A: \ n \times n \)
- \(result: \ 1 \times 1 \)

trace(A, B):

- \(A: \ n \times m \)
- \(B: \ m \times n \)
- \(result: \ 1 \times 1 \)

trace(A, B, t)

- \(A: \ n \times m \) if \(t = 0 \), \(m \times n \) otherwise
- \(B: \ m \times n \)
- \(t: \ 1 \times 1 \)
- \(result: \ 1 \times 1 \)

Diagnostics

trace(A) aborts with error if \(A \) is not square.

trace(A, B) and trace(A, B, t) abort with error if the matrices are not conformable or their product is not square.

The trace of a \(0 \times 0 \) matrix is 0.
Also see

[M-4] matrix — Matrix functions