
Title stata.com

tokenget() — Advanced parsing

Syntax Description Remarks and examples Conformability
Diagnostics Also see

Syntax

t = tokeninit(
[

wchars
[
, pchars

[
, qchars

[
, allownum

[
, allowhex

]]]]]
)

t = tokeninitstata()

void tokenset(t, string scalar s)

string rowvector tokengetall(t)

string scalar tokenget(t)

string scalar tokenpeek(t)

string scalar tokenrest(t)

real scalar tokenoffset(t)

void tokenoffset(t, real scalar offset)

string scalar tokenwchars(t)

void tokenwchars(t, string scalar wchars)

string rowvector tokenpchars(t)

void tokenpchars(t, string rowvector pchars)

string rowvector tokenqchars(t)

void tokenqchars(t, string rowvector qchars)

real scalar tokenallownum(t)

void tokenallownum(t, real scalar allownum)

real scalar tokenallowhex(t)

void tokenallowhex(t, real scalar allowhex)

where

t is transmorphic and contains the parsing environment information. You obtain a t from
tokeninit() or tokeninitstata() and then pass t to the other functions.

wchars is a string scalar containing the characters to be treated as white space, such as " ",
(" "+char(9)), or "".

1

http://stata.com

2 tokenget() — Advanced parsing

pchars is a string rowvector containing the strings to be treated as parsing characters, such as
"" and (">", "<", ">=", "<="). "" and J(1,0,"") are given the same interpretation:
there are no parsing characters.

qchars is a string rowvector containing the character pairs to be treated as quote characters.
"" (that is, empty string) is given the same interpretation as J(1,0,""); there are no quote
characters. qchars = (‘""""’) (that is, the two-character string quote indicates that " is
to be treated as open quote and " is to be treated as close quote. qchars = (‘""""’,
‘"‘""’"’) indicates that, in addition, ‘" is to be treated as open quote and "’ as close
quote. In a syntax that did not use < and > as parsing characters, qchars = ("<>") would
indicate that < is to be treated as open quote and > as close quote.

allownum is a string scalar containing 0 or 1. allownum = 1 indicates that numbers such
as 12.23 and 1.52e+02 are to be returned as single tokens even in violation of other parsing
rules.

allowhex is a string scalar containing 0 or 1. allowhex = 1 indicates that numbers such as
1.921fb54442d18X+001 and 1.0x+a are to be returned as single tokens even in violation of
other parsing rules.

Description

These functions provide advanced parsing. If you simply wish to convert strings into row vectors by
separating on blanks, converting "mpg weight displ" into ("mpg", "weight", "displ"), see
[M-5] tokens().

Remarks and examples stata.com

Remarks are presented under the following headings:

Concepts
White-space characters
Parsing characters
Quote characters
Overrides
Setting the environment to parse on blanks with quote binding
Setting the environment to parse full Stata syntax
Setting the environment to parse tab-delimited files

Function overview
tokeninit() and tokeninitstata()
tokenset()
tokengetall()
tokenget(), tokenpeek(), and tokenrest()
tokenoffset()
tokenwchars(), tokenpchars(), and tokenqchars()
tokenallownum and tokenallowhex()

Concepts

Parsing refers to splitting a string into pieces, which we will call tokens. Parsing as implemented by
the token*() functions is defined by (1) the white-space characters wchars, (2) the parsing characters
pchars, and (3) the quote characters qchars.

http://www.stata.com/manuals13/m-5j.pdf#m-5J()Remarksandexamplesvoid_matrices
http://www.stata.com/manuals13/m-5j.pdf#m-5J()Remarksandexamplesvoid_matrices
http://www.stata.com/manuals13/m-5tokens.pdf#m-5tokens()
http://stata.com

tokenget() — Advanced parsing 3

White-space characters

Consider the string "this that what". If there are no white-space characters, no parsing characters,
and no quote characters, that is, if wchars = pchars = qchars = "", then the result of parsing "this
that what" would be one token that would be the string just as it is: "this that what".

If wchars were instead " ", then parsing "this that what" results in ("this", "that", "what").
Parsing "this that what" (note the multiple blanks) would result in the same thing. White-space
characters separate one token from the next but are not otherwise significant.

Parsing characters

If we instead left wchars = "" and set pchars = " ", "this that what" parses into
("this", " ", "that", " ", "what") and parsing "this that what" results in
("this", " ", "that", " ", " ", " ", "what").

pchars are like wchars except that they are themselves significant.

pchars do not usually contain space. A more reasonable definition of pchars is ("+", "-").
Then parsing "x+y" results in ("x", "+", "y"). Also, the parsing characters can be character
combinations. If pchars = ("+", "-", "++", "--"), then parsing "x+y++" results in ("x", "+",
"y", "++") and parsing "x+++y" results in ("x", "++", "+", "y"). Longer pchars are matched
before shorter ones regardless of the order in which they appear in the pchars vector.

Quote characters

qchars specifies the quote characters. Pieces of the string being parsed that are surrounded by quotes
are returned as one token, ignoring the separation that would usually occur because of the wchars
and pchars definitions. Consider the string

mystr= "x = y"

Let wchars = " " and pchars include "=". That by itself would result in the above string parsing
into the five tokens

mystr = "x = y"

Now let qchars = (‘""""’); that is, qchars is the two-character string "". Parsing then results in
the three tokens

mystr = "x = y"

Each element of qchars contains a character pair: the open character followed by the close character.
We defined those two characters as " and " above, that is, as being the same. The two characters
can differ. We might define the first as ‘ and the second as ’. When the characters are different,
quotations can nest. The quotation "he said "hello"" makes no sense because that parses into
("he said ", hello, ""). The quotation ‘he said ‘hello’’, however, makes perfect sense and
results in the single token ‘he said ‘hello’’.

The quote characters can themselves be multiple characters. You can define open quote as ‘" and
close as "’: qchars = (‘"‘""’"’). Or you can define multiple sets of quotation characters, such
as qchars = (‘""""’, ‘"‘""’"’).

4 tokenget() — Advanced parsing

The quote characters do not even have to be quotes at all. In some context you might find it
convenient to specify them as ("()"). With that definition, “(2 × (3 + 2))” would parse into one
token. Specifying them like this can be useful, but in general we recommend against it. It is usually
better to write your code so that quote characters really are quote characters and to push the work
of handling other kinds of nested expressions back onto the caller.

Overrides

The token*() functions provide two overrides: allownum and allowhex. These have to do
with parsing numbers. First, consider life without overrides. You have set wchars = " " and
pchars = ("=", "+", "-", "*", "/"). You attempt to parse

y = x + 1e+13

The result is

y = x + 1e + 13

when what you wanted was

y = x + 1e+13

Setting allownum = 1 will achieve the desired result. allownum specifies that, when a token could
be interpreted as a number, the number interpretation is to be taken even in violation of the other
parsing rules.

Setting allownum = 1 will not find numbers buried in the middle of strings, such as the 1e+3 in
"xis1e+3", but if the number occurs at the beginning of the token according to the parsing rules
set by wchars and pchars, allownum = 1 will continue the token in violation of those rules if that
results in a valid number.

The override allowhex is similar and Stata specific. Stata (and Mata) provide a unique and useful
way of writing hexadecimal floating-point numbers in a printable, short, and precise way: π can be
written 1.921fb54442d18X+001. Setting allowhex = 1 allows such numbers.

Setting the environment to parse on blanks with quote binding

Stata’s default rule for parsing do-file arguments is “parse on blanks and bind on quotes”. The settings
for duplicating that behavior are

wchars = " "

pchars = ("")

qchars = (‘""""’, ‘"‘""’"’)

allownum = 0

allowhex = 0

tokenget() — Advanced parsing 5

This behavior can be obtained by coding

t = tokeninit(" ", "", (‘""""’, ‘"‘""’"’), 0, 0)

or by coding

t = tokeninit()

because in tokeninit() the arguments are optional and “parse on blank with quote binding” is the
default.

With those settings, parsing ‘"first second "third fourth" fifth"’ results in
("first", "second", ‘""third fourth""’, "fifth").

This result is a little different from that of Stata because the third token includes the quote binding
characters. Assume that the parsed string was obtained by coding

res = tokengetall(t)

The following code will remove the open and close quotes, should that be desirable.

for (i=1; i<=cols(res); i++) {
if (substr(res[i], 1, 1)==‘"""’) {

res[i] = substr(res[i], 2, strlen(res[i])-2)
}
else if (substr(res[i], 1, 2)=="‘" + ‘"""’) {

res[i] = substr(res[i], 3, strlen(res[i])-4)
}

}

Setting the environment to parse full Stata syntax

To parse full Stata syntax, the settings are

wchars = " "

pchars = ("\", "~", "!", "=", ":", ";", ",",
"?", "!", "@", "#", "==", "!=", ">=",

"<=", "<", ">", "&", "|", "&&", "||",
"+", "-", "++", "--", "*", "/", "^",
"(", ")", "[", "]", "{", "}")

qchars = (‘""""’, ‘"‘""’"’, char(96)+char(39))

allownum = 1

allowhex = 1

The above is a slight oversimplification. Stata is an interpretive language and Stata does not require
users to type filenames in quotes, although Stata does allow it. Thus "\" is sometimes a parsing
character and sometimes not, and the same is true of "/". As Stata parses a line from left to right,
it will change pchars between two tokenget() calls when the next token could be or is known to
be a filename. Sometimes Stata peeks ahead to decide which way to parse. You can do the same by
using the tokenpchars() and tokenpeek() functions.

To obtain the above environment, code

t = tokeninitstata()

6 tokenget() — Advanced parsing

Setting the environment to parse tab-delimited files

The token*() functions can be used to parse lines from tab-delimited files. A tab-delimited file
contains lines of the form

〈field1〉〈tab〉〈field2〉〈tab〉〈field3〉

The parsing environment variables are

wchars = ""

pchars = (char(9)) (i.e., tab)

qchars = ("")

allownum = 0

allowhex = 0

To set this environment, code

t = tokeninit("", char(9), "", 0, 0)

Say that you then parse the line

Farber, William〈tab〉 2201.00〈tab〉12

The results will be

("Farber, William", char(9), " 2201.00", char(9), "12")

If the line were

Farber, William〈tab〉〈tab〉12

the result would be

("Farber, William", char(9), char(9), "12")

The tab-delimited format is not well defined when the missing fields occur at the end of the line. A
line with the last field missing might be recorded

Farber, William〈tab〉 2201.00〈tab〉

or

Farber, William〈tab〉 2201.00

A line with the last two fields missing might be recorded

Farber, William〈tab〉〈tab〉

or

Farber, William〈tab〉

or

Farber, William

tokenget() — Advanced parsing 7

The following program would correctly parse lines with missing fields regardless of how they are
recorded:

real rowvector readtabbed(transmorphic t, real scalar n)
{

real scalar i
string rowvector res
string scalar token

res = J(1, n, "")
i = 1
while ((token = tokenget(t))!="") {

if (token==char(9)) i++
else res[i] = token

}
return(res)

}

Function overview

The basic way to proceed is to initialize the parsing environment and store it in a variable,

t = tokeninit(. . .)

and then set the string s to be parsed,

tokenset(t, s)

and finally use tokenget() to obtain the tokens one at a time (tokenget() returns "" when the
end of the line is reached), or obtain all the tokens at once using tokengetall(t). That is, either

while((token = tokenget(t)) != "") {
. . . process token . . .

}

or

tokens = tokengetall(t)
for (i=1; i<=cols(tokens); i++) {

. . . process tokens[i] . . .
}

After that, set the next string to be parsed,

tokenset(t, nextstring)

and repeat.

tokeninit() and tokeninitstata()

tokeninit() and tokeninitstata() are alternatives. tokeninitstata() is generally unnec-
essary unless you are writing a fairly complicated function.

Whichever function you use, code

t = tokeninit(. . .)

8 tokenget() — Advanced parsing

or

t = tokeninitstata()

If you declare t, declare it transmorphic. t is in fact a structure containing all the details of your
parsing environment, but that is purposely hidden from you so that you cannot accidentally modify
the environment.

tokeninit() allows up to five arguments:

t = tokeninit(wchars, pchars, qchars, allownum, allowhex)

You may omit arguments from the end. If omitted, the default values of the arguments are

allowhex = 0

allownum = 0

qchars = (‘""""’, ‘"‘""’"’)

pchars = ("")

wchars = " "

Notes

1. Concerning wchars:

a. wchars is a string scalar. The white-space characters appear one after the other in
the string. The order in which the characters appear is irrelevant.

b. Specify wchars as " " to treat blank as white space.

c. Specify wchars as " "+char(9) to treat blank and tab as white space. Including
tab is necessary only when strings to be parsed are obtained from a file; strings
obtained from Stata already have the tab characters removed.

d. Any character can be treated as a white-space character, including letters.

e. Specify wchars as "" to specify that there are no white-space characters.

2. Concerning pchars:

a. pchars is a string rowvector. Each element of the vector is a separate parse character.
The order in which the parse characters are specified is irrelevant.

b. Specify pchars as ("+", "-") to make + and - parse characters.

c. Parse characters may be character combinations such as ++ or >=. Character
combinations may be up to four characters long.

d. Specify pchars as "" or J(1,0,"") to specify that there are no parse characters.
It makes no difference which you specify, but you will realize that J(1,0,"") is
more logically consistent if you think about it.

3. Concerning qchars:

a. qchars is a string rowvector. Each element of the vector contains the open
followed by the close characters. The order in which sets of quote characters are
specified is irrelevant.

http://www.stata.com/manuals13/m-5j.pdf#m-5J()Remarksandexamplesvoid_matrices

tokenget() — Advanced parsing 9

b. Specify qchars as (‘""""’) to make " an open and close character.

c. Specify qchars as (‘""""’, ‘"‘""’"’) to make "" and ‘""’ quote characters.

d. Individual quote characters can be up to two characters long.

e. Specify qchars as "" or J(1,0,"") to specify that there are no quote characters.

tokenset()

After tokeninit() or tokeninitstata(), you are not yet through with initialization. You must
tokenset(s) to specify the string scalar you wish to parse. You tokenset() one line, parse it,
and if you have more lines, you tokenset() again and repeat the process. Often you will need to
parse only one line. Perhaps you wish to write a program to parse the argument of a complicated
option in a Stata ado-file. The structure is

program . . .
. . .
syntax . . . [, . . . MYoption(string) . . .]
mata: parseoption(‘"‘myoption’"’)
. . .

end

mata:
void parseoption(string scalar option)
{

transmorphic t

t = tokeninit(. . .)
tokenset(t, option)
. . .

}
end

Notes

1. When you tokenset(s), the contents of s are not stored. Instead, a pointer to s is stored.
This approach saves memory and time, but it means that if you change s after setting it,
you will change the subsequent behavior of the token*() functions.

2. Simply changing s is not sufficient to restart parsing. If you change s, you must tokenset(s)
again.

tokengetall()

You have two alternatives in how to process the tokens. You can parse the entire line into a row
vector containing all the individual tokens by using tokengetall(),

tokens = tokengetall(t)

or you can use tokenget() to process the tokens one at a time, which is discussed in the next
section.

Using tokengetall(), tokens[1] will be the first token, tokens[2] the second, and so on. There
are, in total, cols(tokens) tokens. If the line was empty or contained only white-space characters,
cols(tokens) will be 0.

http://www.stata.com/manuals13/m-5j.pdf#m-5J()Remarksandexamplesvoid_matrices

10 tokenget() — Advanced parsing

tokenget(), tokenpeek(), and tokenrest()

tokenget() returns the tokens one at a time and returns "" when the end of the line is reached.
The basic loop for processing all the tokens in a line is

while ((token = tokenget(t)) != "") {
. . .

}

tokenpeek() allows you to peek ahead at the next token without actually getting it, so whatever is
returned will be returned again by the next call to tokenget(). tokenpeek() is suitable only for
obtaining the next token after tokenget(). Calling tokenpeek() twice in a row will not return
the next two tokens; it will return the next token twice. To obtain the next two tokens, code

. . .
current = tokenget(t) // get the current token
. . .
t2 = t // copy parse environment
next_1 = tokenget(t2) // peek at next token
next_1 = tokenget(t2) // peek at token after that
. . .
current = tokenget(t) // get next token

If you declare t2, declare it transmorphic.

tokenrest() returns the unparsed portion of the tokenset() string. Assume that you have
just gotten the first token by using tokenget(). tokenrest() would return the rest of the
original string, following the first token, unparsed. tokenrest(t) returns substr(original string,
tokenoffset(t), .).

tokenoffset()

tokenoffset() is useful only when you are using the tokenget() rather than tokengetall()
style of programming. Let the original string you tokenset() be “this is an example”. Right after
you have tokenset() this string, tokenoffset() is 1:

this is an example
|

tokenoffset() = 1

After getting the first token (say it is "this"), tokenoffset() is 5:

this is an example
|

tokenoffset() = 5

tokenoffset() is always located on the first character following the last character parsed.

tokenget() — Advanced parsing 11

The syntax of tokenoffset() is

tokenoffset(t)

and

tokenoffset(t, newoffset)

The first returns the current offset value. The second resets the parser’s location within the string.

tokenwchars(), tokenpchars(), and tokenqchars()

tokenwchars(), tokenpchars(), and tokenqchars() allow resetting the current wchars, pchars,
and qchars. As with tokenoffset(), they come in two syntaxes.

With one argument, t, they return the current value of the setting. With two arguments, t and newvalue,
they reset the value.

Resetting in the midst of parsing is an advanced issue. The most useful of these functions is
tokenpchars(), since for interactive grammars, it is sometimes necessary to switch on and off a
certain parsing character such as /, which in one context means division and in another is a file
separator.

tokenallownum and tokenallowhex()

These two functions allow obtaining the current values of allownum and allowhex and resetting them.

Conformability

tokeninit(wchars, pchars, qchars, allownum, allowhex):
wchars: 1 × 1 (optional)
pchars: 1 × cp (optional)
qchars: 1 × cq (optional)

allownum: 1 × 1 (optional)
allowhex: 1 × 1 (optional)

result: transmorphic

tokeninitstata():
result: transmorphic

tokenset(t, s):
t: transmorphic
s: 1 × 1

result: void

tokengetall(t):
t: transmorphic

result: 1 × k

tokenget(t), tokenpeek(t), tokenrest(t):
t: transmorphic

result: 1 × 1

12 tokenget() — Advanced parsing

tokenoffset(t), tokenwchars(t), tokenallownum(t), tokenallowhex(t):
t: transmorphic

result: 1 × 1

tokenoffset(t, newvalue), tokenwchars(t, newvalue),
tokenallownum(t, newvalue), tokenallowhex(t, newvalue):

t: transmorphic
newvalue: 1 × 1

result: void

tokenpchars(t), tokenqchars(t):
t: transmorphic

result: 1 × c

tokenpchars(t, newvalue), tokenqchars(t, newvalue):
t: transmorphic

newvalue: 1 × c
result: void

Diagnostics

None.

Also see

[M-5] tokens() — Obtain tokens from string

[M-4] programming — Programming functions

[M-4] string — String manipulation functions

http://www.stata.com/manuals13/m-5tokens.pdf#m-5tokens()
http://www.stata.com/manuals13/m-4programming.pdf#m-4programming
http://www.stata.com/manuals13/m-4string.pdf#m-4string

