svsolve() — Solve AX=B for X using singular value decomposition

Syntax

\[
\text{numeric matrix} \quad \text{svsolve}(A, B) \\
\text{numeric matrix} \quad \text{svsolve}(A, B, \text{rank}) \\
\text{numeric matrix} \quad \text{svsolve}(A, B, \text{rank}, \text{tol}) \\
\text{real scalar} \quad _\text{svsolve}(A, B) \\
\text{real scalar} \quad _\text{svsolve}(A, B, \text{tol})
\]

where
- \(A\): numeric matrix
- \(B\): numeric matrix
- \(\text{rank}\): irrelevant; real scalar returned
- \(\text{tol}\): real scalar

Description

\text{svsolve}(A, B, \ldots) \text{ uses singular value decomposition to solve } AX = B \text{ and return } X. \text{ When } A \text{ is singular, } \text{svsolve()} \text{ computes the minimum-norm least-squares generalized solution. When } \text{rank} \text{ is specified, it is placed the rank of } A.

_\text{svsolve}(A, B, \ldots) \text{ does the same thing, except that it destroys the contents of } A \text{ and it overwrites } B \text{ with the solution. Returned is the rank of } A.

In both cases, \(\text{tol}\) specifies the tolerance for determining whether \(A\) is of full rank. \(\text{tol}\) is interpreted in the standard way—as a multiplier for the default if \(\text{tol} > 0\) is specified and as an absolute quantity to use in place of the default if \(\text{tol} \leq 0\) is specified.

Remarks and examples

\text{svsolve}(A, B, \ldots) \text{ is suitable for use with square or nonsquare, full-rank or rank-deficient matrix } A. \text{ When } A \text{ is of full rank, } \text{qrsolve()} \text{ returns the same solution as } \text{lusolve()} \text{ (see [M-5] lusolve()), ignoring roundoff error. When } A \text{ is singular, } \text{svsolve()} \text{ returns the minimum-norm least-squares generalized solution. } \text{qrsolve()} \text{ (see [M-5] qrsolve()), an alternative, returns a generalized least-squares solution that amounts to dropping rows of } A.

Remarks are presented under the following headings:

- Derivation
- Relationship to inversion
- Tolerance
Derivation

We wish to solve for \(X \)

\[AX = B \] \hspace{1cm} (1)

Perform singular value decomposition on \(A \) so that we have \(A = USV' \). Then (1) can be rewritten as

\[USV'X = B \]

Premultiplying by \(U' \) and remembering that \(U'U = I \), we have

\[SV'X = U'B \]

Matrix \(S \) is diagonal and thus its inverse is easily calculated, and we have

\[V'X = S^{-1}U'B \]

When we premultiply by \(V \), remembering that \(VV' = I \), the solution is

\[X = VS^{-1}U'B \] \hspace{1cm} (2)

See [M-5] \texttt{svd()} for more information on the SVD.

Relationship to inversion

For a general discussion, see \textit{Relationship to inversion} in [M-5] \texttt{lusolve()}.

For an inverse based on the SVD, see [M-5] \texttt{pinv()}. \texttt{pinv(A)} amounts to \texttt{svsolve(A, I(rows(A)))}, although \texttt{pinv()} has separate code that uses less memory.

Tolerance

In (2) above, we are required to calculate the inverse of diagonal matrix \(S \). The generalized solution is obtained by substituting zero for the \(i \)th diagonal element of \(S^{-1} \), where the \(i \)th diagonal element of \(S \) is less than or equal to \(\text{eta} \) in absolute value. The default value of \(\text{eta} \) is

\[\text{eta} = \text{epsilon}(1) \times \text{rows}(A) \times \text{max}(S) \]

If you specify \(\text{tol} > 0 \), the value you specify is used to multiply \(\text{eta} \). You may instead specify \(\text{tol} \leq 0 \) and then the negative of the value you specify is used in place of \(\text{eta} \); see [M-1] \texttt{tolerance}.

Conformability

\[\text{svsolve}(A, B, \text{rank}, \text{tol}): \]

\text{input:}
- \(A \): \(m \times n \)
- \(B \): \(m \times k \)
- \(\text{tol} \): \(1 \times 1 \) (optional)

\text{output:}
- \(\text{rank} \): \(1 \times 1 \) (optional)
- \(\text{result} \): \(n \times k \)

\[\text{svsolve}(A, B, \ldots) \]

\text{input:}
- \(A \): \(m \times n \)
- \(B \): \(m \times k \)
- \(\text{tol} \): \(1 \times 1 \) (optional)

\text{output:}
- \(A \): \(0 \times 0 \)
- \(B \): \(m \times k \)
- \(\text{result} \): \(1 \times 1 \)

Diagnostics

\[\text{svsolve}(A, B, \ldots) \text{ and } \text{svsolve}(A, B, \ldots) \text{ return missing results if } A \text{ or } B \text{ contain missing.} \]

\[\text{svsolve}(A, B, \ldots) \text{ aborts with error if } A \text{ (but not } B) \text{ is a view.} \]

Also see

[M-5] \text{solvelower}() — Solve \(AX=B \) for \(X \), \(A \) triangular

[M-5] \text{cholsolve}() — Solve \(AX=B \) for \(X \) using Cholesky decomposition

[M-5] \text{lusolve}() — Solve \(AX=B \) for \(X \) using LU decomposition

[M-5] \text{qrsolve}() — Solve \(AX=B \) for \(X \) using QR decomposition

[M-4] \text{matrix} — Matrix functions

[M-4] \text{solvers} — Functions to solve \(AX=B \) and to obtain \(A \) inverse