`st_data()` — Load copy of current Stata dataset

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
<th>Remarks and examples</th>
<th>Conformability</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>real scalar</code></td>
<td><code>st_data(real scalar i, real scalar j)</code></td>
<td></td>
<td>(1,2)</td>
</tr>
<tr>
<td><code>real matrix</code></td>
<td><code>st_data(real matrix i, rowvector j)</code></td>
<td></td>
<td>(1,2,3)</td>
</tr>
<tr>
<td><code>real matrix</code></td>
<td><code>st_data(real matrix i, rowvector j, scalar selectvar)</code></td>
<td>(1,2,3)</td>
<td></td>
</tr>
<tr>
<td><code>string scalar</code></td>
<td><code>st_sdata(real scalar i, real scalar j)</code></td>
<td></td>
<td>(1,2)</td>
</tr>
<tr>
<td><code>string matrix</code></td>
<td><code>st_sdata(real matrix i, rowvector j)</code></td>
<td></td>
<td>(1,2,3)</td>
</tr>
<tr>
<td><code>string matrix</code></td>
<td><code>st_sdata(real matrix i, rowvector j, scalar selectvar)</code></td>
<td>(1,2,3)</td>
<td></td>
</tr>
</tbody>
</table>

where

1. `i` may be specified as a 1×1 scalar, as a 1×1 scalar containing missing, as a column vector of observation numbers, as a row vector specifying an observation range, or as a k×2 matrix specifying both.
 a. `st_data(1, 2)` returns the first observation on the second variable.
 b. `st_data(., 2)` returns all observations on the second variable.
 c. `st_data((1\2\5), 2)` returns observations 1, 2, and 5 on the second variable.
 d. `st_data((1,5), 2)` returns observations 1 through 5 on the second variable.
 e. `st_data((1,5\7,9), 2)` returns observations 1 through 5 and observations 7 through 9 on the second variable.

When a range is specified, any element of the range (i₁, i₂) may be specified to contribute zero observations if i₂ = i₁ - 1.

2. `j` may be specified as a real row vector or as a string scalar or string row vector.
 a. `st_data(., .)` returns the values of all variables, all observations of the Stata dataset.
 b. `st_data(., 1)` returns the value of the first variable, all observations.
 c. `st_data(., (3,1,9))` returns the values of the third, first, and ninth variables of all observations.
 d. `st_data(., ("mpg", "weight"))` returns the values of variables mpg and weight, all observations.
 e. `st_data(., ("mpg weight"))` does the same as d above.
f. \texttt{st_data(., ("gnp", "l.gnp"))} returns the values of gnp and the lag of gnp, all observations.

g. \texttt{st_data(., ("gnp l.gnp"))} does the same as f above.

h. \texttt{st_data(., ("mpg i.rep78"))} returns the value of mpg and the 5 pseudovariables associated with \texttt{i.rep78}. There are 5 pseudovariables because we are imagining that \texttt{auto.dta} is in memory; the actual number is a function of the values taken on by the variable in the sample specified. Factor variables can be specified only with string scalars; specifying ("mpg", "i.rep78") will not work.

3. \texttt{selectvar} may be specified as real or as a string. Observations for which \texttt{selectvar} ≠ 0 will be selected. If \texttt{selectvar} is real, it is interpreted as a variable number. If string, \texttt{selectvar} should contain the name of a Stata variable.

Specifying \texttt{selectvar} as "" or as missing (.) has the same result as not specifying \texttt{selectvar}; no observations are excluded.

Specifying \texttt{selectvar} as 0 means that observations with missing values of the variables specified by \texttt{j} are to be excluded.

Description

\texttt{st_data(i, j)} returns the numeric value of the \texttt{i}th observation of the \texttt{j}th Stata variable. Observations are numbered 1 through \texttt{st_nobs()}. Variables are numbered 1 through \texttt{st_nvar()}.

\texttt{st_data(i, j)} is similar to \texttt{st_data(i, j)} except

1. \texttt{i} may be specified as a vector or matrix to obtain multiple observations simultaneously,

2. \texttt{j} may be specified using names or indices (indices are faster), and

3. \texttt{j} may be specified to obtain multiple variables simultaneously.

The net effect is that \texttt{st_data()} can return a scalar (the value of one variable in one observation), a row vector (the value of many variables in an observation), a column vector (the value of a variable in many observations), or a matrix (the value of many variables in many observations).

\texttt{st_data(i, j, selectvar)} works like \texttt{st_data(i, j)} except that only observations for which \texttt{selectvar} ≠ 0 are returned.

\texttt{st_sdata()} and \texttt{st_sdata()} are the string variants of \texttt{st_data()} and \texttt{st_data()}. \texttt{st_sdata()} and \texttt{st_sdata()} are for use with numeric variables; they return missing (.) when used with string variables. \texttt{st_sdata()} and \texttt{st_sdata()} are for use with string variables; they return empty string ("") when used with numeric variables.

Remarks and examples

Remarks are presented under the following headings:

- Description of \texttt{st_data()} and \texttt{st_sdata()}
- Description of \texttt{st_data()} and \texttt{st_sdata()}
- Details of observation subscripting using \texttt{st_data()} and \texttt{st_sdata()}
Description of _st_data() and _st_sdata()

_st_data() returns one variable’s value in one observation. You refer to variables and observations by their numbers. The first variable in the Stata dataset is 1; the first observation is 1.

<table>
<thead>
<tr>
<th>_st_data(1, 1)</th>
<th>value of 1st obs., 1st variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>_st_data(1, 2)</td>
<td>value of 1st obs., 2nd variable</td>
</tr>
<tr>
<td>_st_data(2, 1)</td>
<td>value of 2nd obs., 1st variable</td>
</tr>
</tbody>
</table>

_st_sdata() works the same way. _st_data() is for use with numeric variables, and _st_sdata() is for use with string variables.

_st_data() and _st_sdata() are the fastest way to obtain the value of a variable in one observation.

Description of st_data() and st_sdata()

st_data() can be used just like _st_data(), and used that way, it produces the same result.

Variables, however, can be referred to by their names or their numbers:

<table>
<thead>
<tr>
<th>st_data(1, 1)</th>
<th>value of 1st obs., 1st variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>st_data(1, 2)</td>
<td>value of 1st obs., 2nd variable</td>
</tr>
<tr>
<td>st_data(2, 1)</td>
<td>value of 2nd obs., 1st variable</td>
</tr>
<tr>
<td>st_data(1, "mpg")</td>
<td>value of 1st obs, variable mpg</td>
</tr>
<tr>
<td>st_data(2, "mpg")</td>
<td>value of 2nd obs, variable mpg</td>
</tr>
</tbody>
</table>

Also, you may specify more than one variable:

<table>
<thead>
<tr>
<th>st_data(2, (1,2,3))</th>
<th>value of 2nd obs., variables 1, 2, and 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>st_data(2, ("mpg","weight","displ"))</td>
<td>value of 2nd obs., variables mpg, weight, and displ</td>
</tr>
<tr>
<td>st_data(2, "mpg weight displ")</td>
<td>(same as previous)</td>
</tr>
</tbody>
</table>

Used this way, st_data() returns a row vector.

Similarly, you may obtain multiple observations:

<table>
<thead>
<tr>
<th>st_data((1\2\3), 10)</th>
<th>values of obs. 1, 2, and 3, variable 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>st_data((1,5), 10)</td>
<td>values of obs. 1 through 5, variable 10</td>
</tr>
<tr>
<td>st_data((1,5)(7,9), 10)</td>
<td>values of obs. 1 through 5 and 7 through 9, variable 10</td>
</tr>
</tbody>
</table>

st_sdata() works the same way as st_data().
Details of observation subscripting using \texttt{st_data()} and \texttt{st_sdata()}

1. \texttt{i} may be specified as a scalar: the specified, single observation is returned. \texttt{i} must be between 1 and \texttt{st_nobs()}; see \texttt{[M-5] st_nvar()}.

2. \texttt{i} may be specified as a scalar containing missing value: all observations are returned.

3. \texttt{i} may be specified as a column vector: the specified observations are returned. Each element of \texttt{i} must be between 1 and \texttt{st_nobs()} or may be missing. Missing is interpreted as \texttt{st_nobs()}.

4. \texttt{i} may be specified as a \(1 \times 2\) row vector: the specified range of observations is returned; \((c_1, c_2)\) returns the \(c_2 - c_1 + 1\) observations \(c_1\) through \(c_2\).

 \(c_2 - c_1 + 1\) must evaluate to a number greater than or equal to 0. In general, \(c_1\) and \(c_2\) must be between 1 and \texttt{st_nobs()}, but if \(c_2 - c_1 + 1 = 0\), then \(c_1\) may be between 1 and \texttt{st_nobs()} + 1 and \(c_2\) may be between 0 and \texttt{st_nobs()}. Regardless, \(c_1 == .\) or \(c_2 == .\) is interpreted as \texttt{st_nobs()}.

5. \texttt{i} may be specified as a \(k \times 2\) matrix: \(((1,5),(7,7),(20,30))\) specifies observations 1 through 5, 7, and 20 through 30.

Conformability

\[
\begin{align*}
\texttt{st_data}(i, j), \texttt{st_sdata}(i, j): \\
i: & \quad 1 \times 1 \\
j: & \quad 1 \times 1 \\
result: & \quad 1 \times 1 \\
\texttt{st_data}(i, j), \texttt{st_sdata}(i, j): \\
i: & \quad n \times 1 \text{ or } n_2 \times 2 \\
j: & \quad 1 \times k \text{ or } 1 \times 1 \text{ containing } k \text{ elements when expanded} \\
result: & \quad n \times k \\
\texttt{st_data}(i, j, selectvar), \texttt{st_sdata}(i, j, selectvar): \\
i: & \quad n \times 1 \text{ or } n_2 \times 2 \\
j: & \quad 1 \times k \text{ or } 1 \times 1 \text{ containing } k \text{ elements when expanded} \\
selectvar: & \quad 1 \times 1 \\
result: & \quad (n - e) \times k, \text{ where } e \text{ is number of observations excluded by selectvar}
\end{align*}
\]

Diagnostics

\[
\begin{align*}
\texttt{st_data}(i, j) \text{ returns missing (.) if } i \text{ or } j \text{ is out of range; it does not abort with error.} \\
\texttt{st_sdata}(i, j) \text{ returns "" if } i \text{ or } j \text{ is out of range; it does not abort with error.} \\
\texttt{st_data}(i, j) \text{ and } \texttt{st_sdata}(i, j) \text{ abort with error if any element of } i \text{ or } j \text{ is out of range. } j \text{ may be specified as variable names or variable indices. If names are specified, abbreviations are allowed. If you do not want this and no factor variables nor time-series–operated variables are specified, use } \texttt{st_varindex()} \text{ (see \texttt{[M-5] st_varindex()}) to translate variable names into variable indices.}
\end{align*}
\]
Also see

[M-5] st_view() — Make matrix that is a view onto current Stata dataset

[M-5] st_store() — Modify values stored in current Stata dataset

[M-4] stata — Stata interface functions

[D] putmata — Put Stata variables into Mata and vice versa