solve_tol() — Tolerance used by solvers and inverters

SyntaxDescriptionRemarks and examplesConformabilityDiagnosticsAlso see

Syntax

real scalar solve_tol(numeric matrix Z, real scalar usertol)

Description

solve_tol(Z, usertol) returns the tolerance used by many Mata solvers to solve AX = B and by many Mata inverters to obtain A^{-1} . usertol is the tolerance specified by the user or is missing value if the user did not specify a tolerance.

Remarks and examples

stata.com

The tolerance used by many Mata solvers to solve AX = B and by many Mata inverters to obtain A^{-1} is

$$eta = s * \frac{\operatorname{trace}\left(\operatorname{abs}\left(Z\right)\right)}{n} \tag{1}$$

where s = 1e-13 or a value specified by the user, *n* is the min(rows(*Z*), cols(*Z*)), and *Z* is a matrix related to *A*, usually by some form of decomposition, but could be *A* itself (for instance, if *A* were triangular). See, for instance, [M-5] solvelower() and [M-5] cholsolve().

When usertol > 0 and usertol < . is specified, solvetol() returns *eta* calculated with s = usertol.

When usertol ≤ 0 is specified, solvetol() returns *-usertol*.

When $usertol \geq .$ is specified, solvetol() returns a default result, calculated as

- 1. If external real scalar _solvetolerance does not exist, as is usually the case, the value of *eta* is returned using s = 1e-13.
- 2. If external real scalar _solvetolerance does exist,
 - a. If $_$ solvetolerance > 0, the value of *eta* is returned using s = solvetolerance.
 - b. If $_$ solvetolerance ≤ 0 , $_$ solvetolerance is returned.

Conformability

solve_tol(Z, usertol): $Z: r \times c$ $usertol: 1 \times 1$ $result: 1 \times 1$

Diagnostics

 $solve_tol(Z, usertol)$ skips over missing values in Z in calculating (1); n is defined as the number of nonmissing elements on the diagonal.

Also see

[M-4] utility — Matrix utility functions