
Title stata.com

setbreakintr() — Break-key processing

Syntax Description Remarks and examples Conformability
Diagnostics Also see

Syntax

real scalar setbreakintr(real scalar val)

real scalar querybreakintr()

real scalar breakkey()

void breakkeyreset()

Description

setbreakintr(val) turns the break-key interrupt off (val==0) or on (val!=0) and returns the value
of the previous break-key mode, 1, it was on, or 0, it was off.

querybreakintr() returns 1 if the break-key interrupt is on and 0 otherwise.

breakkey() (for use in setbreakintr(0) mode) returns 1 if the break key has been pressed since
it was last reset.

breakkeyreset() (for use in setbreakintr(0) mode) resets the break key.

Remarks and examples stata.com

Remarks are presented under the following headings:

Default break-key processing
Suspending the break-key interrupt
Break-key polling

Default break-key processing

By default, if the user presses Break, Mata stops execution and returns control to the console, setting
the return code to 1.

To obtain this behavior, there is nothing you need do. You do not need to use these functions.

Suspending the break-key interrupt

The default behavior is known as interrupt-on-break and is also known as setbreakintr(1) mode.

The alternative is break-key suspension, also known as setbreakintr(0) mode.

1

http://stata.com
http://stata.com

2 setbreakintr() — Break-key processing

For instance, you have several steps that must be performed in their entirety or not at all. The way
to do this is

val = setbreakintr(0)
. . .
. . . (critical code) . . .
. . .
(void) setbreakintr(val)

The first line stores in val the current break-key processing mode and then sets the mode to break-key
suspension. The critical code then runs. If the user presses Break during the execution of the critical
code, that will be ignored. Finally, the code restores the previous break-key processing mode.

Break-key polling

In coding large, interactive systems, you may wish to adopt the break-key polling style of coding
rather than interrupt-on-break. In this alternative style of coding, you turn off interrupt-on-break:

val = setbreakintr(0)

and, from then on in your code, wherever you are willing to interrupt your code, you ask (poll
whether) the break key has been pressed:

. . .
if (breakkey()) {

. . .
}
. . .

In this style of coding, you must decide where and when you are going to reset the break key, because
once the break key has been pressed, breakkey() will continue to return 1 every time it is called.
To reset the break key, code,

breakkeyreset()

You can also adopt a mixed style of coding, using interrupt-on-break in some places and polling in
others. Function querybreakintr() can then be used to determine the current mode.

Conformability

setbreakintr(val):
val: 1 × 1

result: 1 × 1

querybreakintr(), breakkey():
result: 1 × 1

breakkeyreset():
result: void

setbreakintr() — Break-key processing 3

Diagnostics

setbreakintr(1) aborts with break if the break key has been pressed since the last setbreak-
intr(0) or breakkeyreset(). Code breakkeyreset() before setbreakintr(1) if you do
not want this behavior.

After coding setbreakintr(1), remember to restore setbreakintr(0) mode. It is not, however,
necessary, to restore the original mode if exit() or error() is about to be executed.

breakkey(), once the break key has been pressed, continues to return 1 until breakkeyreset()
is executed.

There is absolutely no reason to use breakkey() in setbreakintr(0) mode, because the only
value it could return is 0.

Also see

[M-5] error() — Issue error message

[M-4] programming — Programming functions

http://www.stata.com/manuals13/m-5error.pdf#m-5error()
http://www.stata.com/manuals13/m-4programming.pdf#m-4programming

