
Title stata.com

qrd() — QR decomposition

Syntax Description Remarks and examples Conformability
Diagnostics Also see

Syntax

void qrd(numeric matrix A, Q, R)

void hqrd(numeric matrix A, H, tau, R1)

void hqrd(numeric matrix A, tau, R1)

numeric matrix hqrdmultq(numeric matrix H, rowvector tau,
numeric matrix X, real scalar transpose)

numeric matrix hqrdmultq1t(numeric matrix H, rowvector tau,
numeric matrix X)

numeric matrix hqrdq(numeric matrix H, numeric matrix tau)

numeric matrix hqrdq1(numeric matrix H, numeric matrix tau)

numeric matrix hqrdr(numeric matrix H)

numeric matrix hqrdr1(numeric matrix H)

void qrdp(numeric matrix A, Q, R, real rowvector p)

void hqrdp(numeric matrix A, H, tau, R1, real rowvector p)

void hqrdp(numeric matrix A, tau, R1, real rowvector p)

void hqrdp la(numeric matrix A, tau, real rowvector p)

Description

qrd(A, Q, R) calculates the QR decomposition of A: m × n, m ≥ n, returning results in Q and R.

hqrd(A, H, tau, R1) calculates the QR decomposition of A: m × n, m ≥ n, but rather than
returning Q and R, returns the Householder vectors in H and the scale factors tau—from which Q
can be formed—and returns an upper-triangular matrix in R1 that is a submatrix of R; see Remarks
and examples below for its definition. Doing this saves calculation and memory, and other routines
allow you to manipulate these matrices:

1. hqrdmultq(H, tau, X, transpose) returns QX or Q′X on the basis of the Q implied by
H and tau. QX is returned if transpose = 0, and Q′X is returned otherwise.

2. hqrdmultq1t(H, tau, X) returns Q′1X on the basis of the Q1 implied by H and tau.

3. hqrdq(H, tau) returns the Q matrix implied by H and tau. This function is rarely used.

1

http://stata.com

2 qrd() — QR decomposition

4. hqrdq1(H, tau) returns the Q1 matrix implied by H and tau. This function is rarely used.

5. hqrdr(H) returns the full R matrix. This function is rarely used. (It may surprise you that
hqrdr() is a function of H and not R1. R1 also happens to be stored in H, and there is
other useful information there, as well.)

6. hqrdr1(H) returns the R1 matrix. This function is rarely used.

hqrd(A, tau, R1) does the same thing as hqrd(A, H, tau, R1), except that it overwrites H into
A and so conserves even more memory.

qrdp(A, Q, R, p) is similar to qrd(A, Q, R): it returns the QR decomposition of A in Q and R.
The difference is that this routine allows for pivoting. New argument p specifies whether a column
is available for pivoting and, on output, p is overwritten with a permutation vector that records the
pivoting actually performed. On input, p can be specified as . (missing)—meaning all columns are
available for pivoting—or p can be specified as an n × 1 column vector containing 0s and 1s, with
1 meaning the column is fixed and so may not be pivoted.

hqrdp(A, H, tau, R1, p) is a generalization of hqrd(A, H, tau, R1) just as qrdp() is a
generalization of qrd().

hqrdp(A, tau, R1, p) does the same thing as hqrdp(A, H, tau, R1, p), except that hqrdp()
overwrites H into A.

hqrdp la() is the interface into the [M-1] LAPACK routine that performs the QR calculation; it
is used by all the above routines. Direct use of hqrdp la() is not recommended.

Remarks and examples stata.com

Remarks are presented under the following headings:
QR decomposition
Avoiding calculation of Q
Pivoting
Least-squares solutions with dropped columns

QR decomposition

The decomposition of square or nonsquare matrix A can be written as
A = QR (1)

where Q is an orthogonal matrix (Q′Q = I), and R is upper triangular. qrd(A, Q, R) will make
this calculation:

: A
1 2

1 7 4
2 9 6
3 9 6
4 7 2
5 3 1

: Q = R = .

: qrd(A, Q, R)

: Ahat = Q*R

: mreldif(Ahat, A)
3.55271e-16

http://www.stata.com/manuals13/m-1lapack.pdf#m-1LAPACK
http://stata.com

qrd() — QR decomposition 3

Avoiding calculation of Q

In fact, you probably do not want to use qrd(). Calculating the necessary ingredients for Q is not too
difficult, but going from those necessary ingredients to form Q is devilish. The necessary ingredients
are usually all you need, which are the Householder vectors and their scale factors, known as H and
tau. For instance, one can write down a mathematical function f (H, tau, X) that will calculate QX or
Q′X for some matrix X.

Also, QR decomposition is often carried out on violently nonsquare matrices A: m × n, m � n. We
can write

A
m×n

=

[
Q1
m×n

Q2
m×m−n

][R1
n×n
R2

m−n×n

]
= Q1R1

m×n
+ Q2R2

m×n

R2 is zero, and thus

A
m×n

=

[
Q1
m×n

Q2
m×m−n

][R1
n×n
0

m−n×n

]
= Q1R1

m×n

Thus it is enough to know Q1 and R1. Rather than defining QR decomposition as

A = QR, Q : m×m, R : m× n (1)

it is better to define it as
A = Q1R1 Q1 : m× n R1 : n× n (1′)

To appreciate the savings, consider the reasonable case where m = 4,000 and n = 3:

A = QR, Q : 4, 000× 4, 000, R : 4, 000× 3

versus,
A = Q1R1 Q1 : 4, 000× 3 R1 : 3× 3

Memory consumption is reduced from 125,094 kilobytes to 94 kilobytes, a 99.92% saving!

Combining the arguments, we need not save Q because Q1 is sufficient, we need not calculate Q1

because H and tau are sufficient, and we need not store R because R1 is sufficient.

That is what hqrd(A, H, tau, R1) does. Having used hqrd(), if you need to multiply the full Q
by some matrix X, you can use hqrdmultq(). Having used hqrd(), if you need the full Q, you can
use hqrdq() to obtain it, but by that point you will be making the devilish calculation you sought
to avoid and so you might as well have used qrd() to begin with. If you want Q1, you can use
hqrdq1(). Finally, having used hqrd(), if you need R or R1, you can use hqrdr() and hqrdr1():

4 qrd() — QR decomposition

: A
1 2

1 7 4
2 9 6
3 9 6
4 7 2
5 3 1

: H = tau = R1 = .

: hqrd(A, H, tau, R1)

: Ahat = hqrdq1(H, tau) * R1 // i.e., Q1*R1

: mreldif(Ahat, A)
3.55271e-16

Pivoting

The QR decomposition with column pivoting solves

AP = QR (2)

or, if you prefer,
AP = Q1R1 (2′)

where P is a permutation matrix; see [M-1] permutation. We can rewrite this as

A = QRP′ (3)

and
A = Q1R1P′ (3′)

Column pivoting can improve the numerical accuracy. The functions qrdp(A, Q, R, p) and
hqrdp(A, H, tau, R1, p) perform pivoting and return the permutation matrix P in permutation
vector form:

: A
1 2

1 7 4
2 9 6
3 9 6
4 7 2
5 3 1

: Q = R = p = .

: qrdp(A, Q, R, p)

: Ahat = (Q*R)[., invorder(p)] // i.e., QRP’

: mreldif(Ahat, A)
3.55271e-16

: H = tau = R1 = p = .

: hqrdp(A, H, tau, R1, p)

: Ahat = (hqrdq1(H, tau)*R1)[., invorder(p)] // i.e., Q1*R1*P’

: mreldif(Ahat, A)
3.55271e-16

http://www.stata.com/manuals13/m-1permutation.pdf#m-1permutation

qrd() — QR decomposition 5

Before calling qrdp() or hqrdp(), we set p equal to missing, specifying that all columns could be
pivoted. We could just as well have set p equal to (0, 0), which would have stated that both columns
were eligible for pivoting.

When pivoting is disallowed, and when A is not of full column rank, the order in which columns
appear affects the kind of generalized solution produced; later columns are, in effect, dropped. When
pivoting is allowed, the columns are reordered based on numerical accuracy considerations. In the
rank-deficient case, you no longer know ahead of time which columns will be dropped, because
you do not know in what order the columns will appear. Generally, you do not care, but there are
occasions when you do.

In such cases, you can specify which columns are eligible for pivoting and which are not—you specify
p as a vector and if pi==1, the ith column may not be pivoted. The pi==1 columns are (conceptually)
moved to appear first in the matrix, and the remaining columns are ordered optimally after that. The
permutation vector that is returned in p accounts for all of this.

Least-squares solutions with dropped columns

Least-square solutions are one popular use of QR decomposition. We wish to solve for x

Ax = b (A : m × n, m ≥ n) (4)

The problem is that there is no solution to (4) when m > n because we have more equations than
unknowns. Then we want to find x such that (Ax − b)′(Ax − b) is minimized.

If A is of full column rank then it is well known that the least-squares solution for x is given by
solveupper(R1, Q′1b) where solveupper() is an upper-triangular solver; see [M-5] solvelower().

If A is of less than full column rank and we do not care which columns are dropped, then we can
use the same solution: solveupper(R1, Q′1b).

Adding pivoting to the above hardly complicates the issue; the solution becomes solveupper(R1,
Q′1b)[invorder(p)].

For both cases, the full details are

: A
1 2 3

1 3 9 1
2 3 8 1
3 3 7 1
4 3 6 1

: b
1

1 7
2 3
3 12
4 0

: H = tau = R1 = p = .

: hqrdp(A, H, tau, R1, p)

: q1b = hqrdmultq1t(H, tau, b) // i.e., Q1’b

: xhat = solveupper(R1, q1b)[invorder(p)]

http://www.stata.com/manuals13/m-5solvelower.pdf#m-5solvelower()

6 qrd() — QR decomposition

: xhat
1

1 -1.166666667
2 1.2
3 0

The A matrix in the above example has less than full column rank; the first column contains a variable
with no variation and the third column contains the data for the intercept. The solution above is
correct, but we might prefer a solution that included the intercept. To do that, we need to specify
that the third column cannot be pivoted:

: p = (0, 0, 1)

: H = tau = R1 = .

: hqrdp(A, H, tau, R1, p)

: q1b = hqrdmultq1t(H, tau, b)

: xhat = solveupper(R1, q1b)[invorder(p)]

: xhat
1

1 0
2 1.2
3 -3.5

Conformability

qrd(A, Q, R):
input:

A: m × n, m ≥ n
output:

Q: m × m
R: m × n

hqrd(A, H, tau, R1):
input:

A: m × n, m ≥ n
output:

H: m × n
tau: 1 × n
R1: n × n

hqrd(A, tau, R1):
input:

A: m × n, m ≥ n
output:

A: m × n (contains H)
tau: 1 × n
R1: n × n

qrd() — QR decomposition 7

hqrdmultq(H, tau, X, transpose):
H: m × n

tau: 1 × n
X: m × c

transpose: 1 × 1
result: m × c

hqrdmultq1t(H, tau, X):
H: m × n

tau: 1 × n
X: m × c

result: n × c

hqrdq(H, tau):
H: m × n

tau: 1 × n
result: m × m

hqrdq1(H, tau):
H: m × n

tau: 1 × n
result: m × n

hqrdr(H):
H: m × n

result: m × n

hqrdr1(H):
H: m × n

result: n × n

qrdp(A, Q, R, p):
input:

A: m × n, m ≥ n
p: 1 × 1 or 1 × n

output:
Q: m × m
R: m × n
p: 1 × n

hqrdp(A, H, tau, R1, p):
input:

A: m × n, m ≥ n
p: 1 × 1 or 1 × n

output:
H: m × n

tau: 1 × n
R1: n × n

p: 1 × n

8 qrd() — QR decomposition

hqrdp(A, tau, R1, p):
input:

A: m × n, m ≥ n
p: 1 × 1 or 1 × n

output:
A: m × n (contains H)

tau: 1 × n
R1: n × n

p: 1 × n

hqrdp la(A, tau, p):
input:

A: m × n, m ≥ n
p: 1 × 1 or 1 × n

output:
A: m × n (contains H)

tau: 1 × n
p: 1 × n

Diagnostics

qrd(A, . . .), hqrd(A, . . .), hqrd(A, . . .), qrdp(A, . . .), hqrdp(A, . . .), and hqrdp(A,
. . .) return missing results if A contains missing values. That is, Q will contain all missing values.
R will contain missing values on and above the diagonal. p will contain the integers 1, 2,

hqrd(A, . . .) and hqrdp(A, . . .) abort with error if A is a view.

hqrdmultq(H, tau, X, transpose) and hqrdmultq1t(H, tau, X) return missing results if X
contains missing values.

� �
Alston Scott Householder (1904–1993) was born in Rockford, Illinois, and grew up in Alabama.
He studied philosophy at Northwestern and Cornell, and then mathematics, earning a doctorate in
the calculus of variations from the University of Chicago. Householder worked on mathematical
biology for several years at Chicago, but in 1946 he moved on to Oak Ridge National Laboratory
where he became the founding director of the Mathematics Division in 1948. There he moved
into numerical analysis, specializing in linear equations and eigensystems and helping to unify
the field through reviews and symposia. His last post was at the University of Tennessee.� �

Also see
[M-5] qrsolve() — Solve AX=B for X using QR decomposition

[M-5] qrinv() — Generalized inverse of matrix via QR decomposition

[M-4] matrix — Matrix functions

http://www.stata.com/manuals13/m-5qrsolve.pdf#m-5qrsolve()
http://www.stata.com/manuals13/m-5qrinv.pdf#m-5qrinv()
http://www.stata.com/manuals13/m-4matrix.pdf#m-4matrix

