Title

norm() — Matrix and vector norms

Syntax Diagnostics Description Also see Remarks and examples

Conformability

Syntax

real scalar norm(numeric matrix A)

real scalar norm(numeric matrix A, real scalar p)

Description

norm(A) returns norm(A, 2).

norm(A, p) returns the value of the norm of A for the specified p. The possible values and the meaning of p depend on whether A is a vector or a matrix.

When A is a vector, norm(A, p) returns

$sum(abs(A):^p) ^ (1/p)$	if $1 \leq p < .$
<pre>max(abs(A))</pre>	if $p \ge .$

When A is a matrix, returned is

 p
 norm(A, p)

 0
 sqrt(trace(conj(A)'A))

 1
 max(colsum(abs(A)))

 2
 max(svdsv(A))

 .
 max(rowsum(abs(A)))

Remarks and examples

stata.com

norm(A) and norm(A, p) calculate vector norms and matrix norms. A may be real or complex and need not be square when it is a matrix.

The formulas presented above are not the actual ones used in calculation. In the vector-norm case when $1 \le p < ...$, the formula is applied to $A:/\max(abs(A))$ and the result then multiplied by $\max(abs(A))$. This prevents numerical overflow. A similar technique is used in calculating the matrix norm for p = 0, and that technique also avoids storage of $\operatorname{conj}(A)'A$.

Conformability

norm(A): A: $r \times c$ result: 1×1

```
norm(A, p):

A: r \times c

p: 1 \times 1

result: 1 \times 1
```

Diagnostics

The norm() is defined to return 0 if A is void and missing if any element of A is missing.

norm(A, p) aborts with error if p is out of range. When A is a vector, p must be greater than or equal to 1. When A is a matrix, p must be 0, 1, 2, or . (missing).

norm(A) and norm(A, p) return missing if the 2-norm is requested and the singular value decomposition does not converge, an event not expected to occur; see [M-5] svd().

Also see

[M-4] matrix — Matrix functions