lusolve() — Solve AX=B for X using LU decomposition

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
<th>Remarks and examples</th>
<th>Conformability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax

- `numeric matrix lusolve(numeric matrix A, numeric matrix B)`
- `numeric matrix lusolve(numeric matrix A, numeric matrix B, real scalar tol)`
- `void _lusolve(numeric matrix A, numeric matrix B)`
- `void _lusolve(numeric matrix A, numeric matrix B, real scalar tol)`
- `real scalar _lusolve_la(numeric matrix A, numeric matrix B)`
- `real scalar _lusolve_la(numeric matrix A, numeric matrix B, real scalar tol)`

Description

`lusolve(A, B)` solves $AX=B$ and returns X. `lusolve()` returns a matrix of missing values if A is singular.

`lusolve(A, B, tol)` does the same thing but allows you to specify the tolerance for declaring that A is singular; see **Tolerance** under Remarks and examples below.

`_lusolve(A, B)` and `_lusolve(A, B, tol)` do the same thing except that, rather than returning the solution X, they overwrite B with the solution and, in the process of making the calculation, they destroy the contents of A.

`_lusolve_la(A, B)` and `_lusolve_la(A, B, tol)` are the interfaces to the [M-1] LAPACK routines that do the work. They solve $AX=B$ for X, returning the solution in B and, in the process, using as workspace (overwriting) A. The routines return 1 if A was singular and 0 otherwise. If A was singular, B is overwritten with a matrix of missing values.

Remarks and examples

The above functions solve $AX=B$ via LU decomposition and are accurate. An alternative is `qrsolve()` (see [M-5] qrsolve()), which uses QR decomposition. The difference between the two solutions is not, practically speaking, accuracy. When A is of full rank, both routines return equivalent results, and the LU approach is quicker, using approximately $O(2/3n^3)$ operations rather than $O(4/3n^3)$, where A is $n \times n$.

The difference arises when A is singular. Then the LU-based routines documented here return missing values. The QR-based routines documented in [M-5] qrsolve() return a generalized (least squares) solution.

For more information on LU and QR decomposition, see [M-5] lud() and see [M-5] qrd().
Remarks are presented under the following headings:

Derivation
Relationship to inversion
Tolerance

Derivation

We wish to solve for \(X \)

\[
AX = B
\]

(1)

Perform LU decomposition on \(A \) so that we have \(A = PLU \). Then (1) can be written as

\[
PLUX = B
\]

or, premultiplying by \(P' \) and remembering that \(P'P = I \),

\[
LUX = P'B
\]

(2)

Define

\[
Z = UX
\]

(3)

Then (2) can be rewritten as

\[
LZ = P'B
\]

(4)

It is easy to solve (4) for \(Z \) because \(L \) is a lower-triangular matrix. Once \(Z \) is known, it is easy to solve (3) for \(X \) because \(U \) is upper triangular.

Relationship to inversion

Another way to solve

\[
AX = B
\]

is to obtain \(A^{-1} \) and then calculate

\[
X = A^{-1}B
\]

It is, however, better to solve \(AX = B \) directly because fewer numerical operations are required, and the result is therefore more accurate and obtained in less computer time.

Indeed, rather than thinking about how solving a system of equations can be implemented via inversion, it is more productive to think about how inversion can be implemented via solving a system of equations. Obtaining \(A^{-1} \) amounts to solving

\[
AX = I
\]

Thus \texttt{lusolve()} (or any other solve routine) can be used to obtain inverses. The inverse of \(A \) can be obtained by coding

\[
: \text{Ainv} = \text{lusolve}(A, \text{I(rows(A)))}
\]

In fact, we provide \texttt{luinv()} (see \texttt{M-5 luinv()}) for obtaining inverses via LU decomposition, but \texttt{luinv()} amounts to making the above calculation, although a little memory is saved because the matrix \(I \) is never constructed.

Hence, everything said about \texttt{lusolve()} applies equally to \texttt{luinv()}.
Tolerance

The default tolerance used is

$$eta = (1e-13) \times \text{trace}(|U|)/n$$

where U is the upper-triangular matrix of the LU decomposition of A: $n \times n$. A is declared to be singular if any diagonal element of U is less than or equal to eta.

If you specify $tol > 0$, the value you specify is used to multiply eta. You may instead specify $tol \leq 0$, and then the negative of the value you specify is used in place of eta; see [M-1] tolerance.

So why not specify $tol = 0$? You do not want to do that because, as matrices become close to being singular, results can become inaccurate. Here is an example:

```plaintext
: rseed(12345)
: A = lowertriangle(runiform(4,4))
: trux = runiform(4,1)
: b = A*trux
: /* the above created an Ax=b problem, and we have placed the true
> value of x in trux. We now obtain the solution via lusolve()
> and compare trux with the value obtained:
> */
: x = lusolve(A, b, 0)
: trux, x
```

```
1 .7997150919 .7997150919 ← The discussed numerical
2 .9102488109 .9102488109 instability can cause this
3 .442547889 .3593109488 output to vary a little
4 .756650276 .8337468202 across different computers
```

We would like to see the second column being nearly equal to the first—the estimated x being nearly equal to the true x—but there are substantial differences.

Even though the difference between x and $xtrue$ is substantial, the difference between them is small in the prediction space:

```plaintext
: A*trux-b, A*x-b
```

```
1 0 -2.77556e-17
2 0 0
3 0 0
4 0 0
```

What made this problem so difficult was the line $A[3,3] = 1e-15$. Remove that and you would find that the maximum difference between x and $trux$ would be $2.22045e-16$.

The degree to which the residuals $A*x-b$ are a reliable measure of the accuracy of x depends on the condition number of the matrix, which can be obtained by [M-5] cond(), which for A, is $3.23984e+15$. If the matrix is well conditioned, small residuals imply an accurate solution for x. If the matrix is ill conditioned, small residuals are not a reliable indicator of accuracy.

Another way to check the accuracy of x is to set $tol = 0$ and to see how well x could be obtained were $x = x$:
lusolve() — Solve AX=B for X using LU decomposition

: x = lusolve(A, b, 0)
: x2 = lusolve(A, A*x, 0)

If x and x2 are virtually the same, then you can safely assume that x is the result of a numerically accurate calculation. You might compare x and x2 with mreldif(x2,x); see [M-5] reldif(). In our example, mreldif(x2,x) is .03, a large difference.

If A is ill conditioned, then small changes in A or B can lead to radical differences in the solution for X.

Conformability

lusolve(A, B, tol):

input:
A: n x n
B: n x k
tol: 1 x 1 (optional)

output:
result: n x k

_lusolve(A, B, tol):

input:
A: n x n
B: n x k
tol: 1 x 1 (optional)

output:
A: 0 x 0
B: n x k

_lusolve_la(A, B, tol):

input:
A: n x n
B: n x k
tol: 1 x 1 (optional)

output:
A: 0 x 0
B: n x k
result: 1 x 1

Diagnostics

lusolve(A, B, ...), _lusolve(A, B, ...), and _lusolve_la(A, B, ...) return a result containing missing if A or B contain missing values. The functions return a result containing all missing values if A is singular.

_lusolve(A, B, ...) and _lusolve_la(A, B, ...) abort with error if A or B is a view.

_lusolve_la(A, B, ...) should not be used directly; use _lusolve().
Also see

[M-5] luinv() — Square matrix inversion

[M-5] lud() — LU decomposition

[M-5] solvelower() — Solve AX=B for X, A triangular

[M-5] cholsolve() — Solve AX=B for X using Cholesky decomposition

[M-5] qrsolve() — Solve AX=B for X using QR decomposition

[M-5] svsolve() — Solve AX=B for X using singular value decomposition

[M-4] matrix — Matrix functions

[M-4] solvers — Functions to solve AX=B and to obtain A inverse