Syntax

```plaintext
real matrix Lmatrix(real scalar n)
```

Description

\(\text{Lmatrix}(n) \) returns the \(n(n + 1)/2 \times n^2 \) elimination matrix \(L \) for which \(L \cdot \text{vec}(X) = \text{vech}(X) \), where \(X \) is an \(n \times n \) symmetric matrix.

Remarks and examples

Elimination matrices are frequently used in computing derivatives of functions of symmetric matrices. Section 9.6 of Lütkepohl (1996) lists many useful properties of elimination matrices.

Conformability

\(\text{Lmatrix}(n): \)

- \(n: \) \(1 \times 1 \)
- \(\text{result:} \) \(n(n + 1)/2 \times n^2 \)

Diagnostics

\(\text{Lmatrix}(n) \) aborts with error if \(n \) is less than 0 or is missing. \(n \) is interpreted as \(\text{trunc}(n) \).

Reference

Also see

- [M-5] Dmatrix() — Duplication matrix
- [M-5] Kmatrix() — Commutation matrix
- [M-5] vec() — Stack matrix columns
- [M-4] standard — Functions to create standard matrices