Title stata.com

invorder() — Permutation vector manipulation

Syntax Description Remarks and examples Conformability
Diagnostics Also see

Syntax

```
real vector invorder(real vector p)
real vector revorder(real vector p)
```

where p is assumed to be a permutation vector.

Description

invorder(p) returns the permutation vector that undoes the permutation performed by p. revorder(p) returns the permutation vector that is the reverse of the permutation performed by p.

Remarks and examples

stata.com

See [M-1] permutation for a description of permutation vectors. To summarize,

- 1. Permutation vectors p are used to permute the rows or columns of a matrix X: $r \times c$. If p is intended to permute the rows of X, the permuted X is obtained via Y = X[p, .]. If p is intended to permute the columns of X, the permuted X is obtained via Y = X[., p].
- 2. If p is intended to permute the rows of X, it is called a row-permutation vector. Row-permutation vectors are $r \times 1$ column vectors.
- 3. If p is intended to permute the columns of X, it is called a column-permutation vector. Column-permutation vectors are $1 \times c$ row vectors.
- 4. Row-permutation vectors contain a permutation of the integers 1 to r.
- 5. Column-permutation vectors contain a permutation of the integers 1 to c.

Let us assume that p is a row-permutation vector, so that

$$Y = X[p, .]$$

invorder (p) returns the row-permutation vector that undoes p:

$$X = Y[invorder(p), .]$$

That is, using the matrix notation of [M-1] permutation,

$$Y = PX$$
 implies $X = P^{-1}Y$

If p is the permutation vector corresponding to permutation matrix P, invorder (p) is the permutation vector corresponding to permutation matrix P^{-1} .

revorder (p) returns the permutation vector that reverses the order of p. For instance, say that row-permutation vector p permutes the rows of X so that the diagonal elements are in ascending order. Then revorder (p) would permute the rows of X so that the diagonal elements would be in descending order.

Conformability

```
\begin{array}{cccc} \text{invorder}(p), \, \text{revorder}(p) \colon & \\ p \colon & r \times 1 & \text{or} & 1 \times c \\ \textit{result} \colon & r \times 1 & \text{or} & 1 \times c \end{array}
```

Diagnostics

invorder (p) and revorder (p) can abort with error or can produce meaningless results when p is not a permutation vector.

Also see

```
[M-1] permutation — An aside on permutation matrices and vectors
```

[M-4] manipulation — Matrix manipulation