Title

fullsvd() — Full singular value decomposition

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
<th>Remarks and examples</th>
<th>Conformability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax

- `void fullsvd(numeric matrix A, U, s, Vt)`
- `numeric matrix fullsdiag(numeric colvector s, real scalar k)`
- `void _fullsvd(numeric matrix A, U, s, Vt)`
- `real scalar _svd_la(numeric matrix A, U, s, Vt)`

Description

`fullsvd(A, U, s, Vt)` calculates the singular value decomposition of \(m \times n \) matrix \(A \), returning the result in \(U, s, \) and \(Vt \). Singular values in \(s \) are sorted from largest to smallest.

`fullsdiag(s, k)` converts column vector \(s \) returned by `fullsvd()` into matrix \(S \). In all cases, the appropriate call for this function is

\[
S = fullsdiag(s, \text{rows}(A)-\text{cols}(A))
\]

`_fullsvd(A, U, s, Vt)` does the same as `fullsvd()`, except that, in the process, it destroys \(A \). Use of `_fullsvd()` in place of `fullsvd()` conserves memory.

`_svd_la()` is the interface into the [M-1] LAPACK SVD routines and is used in the implementation of the previous functions. There is no reason you should want to use it. `_svd_la()` is similar to `_fullsvd()`. It differs in that it returns a real scalar equal to 1 if the numerical routines fail to converge, and it returns 0 otherwise. The previous SVD routines set \(s \) to contain missing values in this unlikely case.

Remarks and examples

Remarks are presented under the following headings:

- Introduction
- Relationship between the full and thin SVDs
- The contents of \(s \)
- Possibility of convergence problems

Documented here is the full SVD, appropriate in all cases, but of interest mainly when \(A: m \times n, m < n \). There is a thin SVD that conserves memory when \(m \geq n \); see [M-5] `svd()`. The relationship between the two is discussed in Relationship between the full and thin SVDs below.
Introduction

The SVD is used to compute accurate solutions to linear systems and least-squares problems, to compute the 2-norm, and to determine the numerical rank of a matrix.

The singular value decomposition (SVD) of $A: m \times n$ is given by

$$A = USV'$$

where

- U: $m \times m$ and orthogonal (unitary)
- S: $m \times n$ and diagonal
- V: $n \times n$ and orthogonal (unitary)

When A is complex, the transpose operator $'$ is understood to mean the conjugate transpose operator.

Diagonal matrix S contains the singular values and those singular values are real even when A is complex. It is usual (but not required) that S is arranged so that the largest singular value appears first, then the next largest, and so on. The SVD routines documented here do this.

The full SVD routines return U and $Vt = V'$. S is returned as a column vector s, and S can be obtained by

$$S = \text{fullsdiag}(s, \text{rows}(A)-\text{cols}(A))$$

so we will write the SVD as

$$A = U \ast \text{fullsdiag}(s, \text{rows}(A)-\text{cols}(A)) \ast Vt$$

Function \text{fullsvd}(A, U, s, Vt) returns the U, s, and Vt corresponding to A.

Relationship between the full and thin SVDs

A popular variant of the SVD is known as the thin SVD and is suitable for use when $m \geq n$. Both SVDs have the same formula,

$$A = USV'$$

but U and S have reduced dimensions in the thin version:

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Full SVD</th>
<th>Thin SVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>U:</td>
<td>$m \times m$</td>
<td>$m \times n$</td>
</tr>
<tr>
<td>S:</td>
<td>$m \times n$</td>
<td>$n \times n$</td>
</tr>
<tr>
<td>V:</td>
<td>$n \times n$</td>
<td>$n \times n$</td>
</tr>
</tbody>
</table>

When $m = n$, the two variants are identical.

The thin SVD is of use when $m > n$, because then only the first m diagonal elements of S are nonzero, and therefore only the first m columns of U are relevant in $A = USV'$. There are considerable memory savings to be had in calculating the thin SVD when $m \gg n$.

As a result, many people call the thin SVD the SVD and ignore the full SVD altogether. If the matrices you deal with have $m \geq n$, you will want to do the same. To obtain the thin SVD, see [M-5] \text{svd}().

Regardless of the dimension of your matrix, you may wish to obtain only the singular values. In this case, see \text{svdsv}() documented in [M-5] \text{svd}(). That function is appropriate in all cases.
The contents of s

Given \(A: m \times n \), the singular values are returned in \(s: \min(m,n) \times 1 \).

Let’s consider the \(m = n \) case first. \(A \) is \(m \times m \) and the \(m \) singular values are returned in \(s \), an \(m \times 1 \) column vector. If \(A \) were \(3 \times 3 \), perhaps we would get back

\[
\begin{bmatrix}
1 & 13.47 \\
2 & 5.8 \\
3 & 2.63
\end{bmatrix}
\]

If we needed it, we could obtain \(S \) from \(s \) simply by creating a diagonal matrix from \(s \)

\[
S = \text{diag}(s)
\]

\[
\begin{bmatrix}
1 & 2 & 3 \\
1 & 13.47 & 0 \\
2 & 0 & 5.8 \\
3 & 0 & 0 & 2.63
\end{bmatrix}
\]

although the official way we are supposed to do this is

\[
S = \text{fullsdig}(s, \text{rows}(A)-\text{cols}(A))
\]

and that will return the same result.

Now let’s consider \(m < n \). Let’s pretend that \(A \) is \(3 \times 4 \). The singular values will be returned in \(3 \times 1 \) vector \(s \). For instance, \(s \) might still contain

\[
\begin{bmatrix}
1 & 13.47 \\
2 & 5.8 \\
3 & 2.63
\end{bmatrix}
\]

The \(S \) matrix here needs to be \(3 \times 4 \), and \text{fullsdig}() will form it:

\[
\begin{bmatrix}
1 & 2 & 3 & 4 \\
1 & 13.47 & 0 & 0 & 0 \\
2 & 0 & 5.8 & 0 & 0 \\
3 & 0 & 0 & 2.63 & 0
\end{bmatrix}
\]

The final case is \(m > n \). We will pretend that \(A \) is \(4 \times 3 \). The \(s \) vector we get back will look the same
but this time, we need a 4×3 rather than a 3×4 matrix formed from it.

\[
\begin{array}{ccc}
1 & 13.47 & 0 \\
2 & 0 & 5.8 \\
3 & 0 & 0 \\
4 & 0 & 0 \\
\end{array}
\]

Possibility of convergence problems

See Possibility of convergence problems in [M-5] \texttt{svd()}; what is said there applies equally here.

Conformability

\[
\texttt{fullsvd}(A, U, s, Vt):
\]

\begin{itemize}
\item \textit{input:} \\
\quad A: $m \times n$
\item \textit{output:} \\
\quad U: $m \times m$
\quad s: $\min(m,n) \times 1$
\quad Vt: $n \times n$
\item \textit{result:} \texttt{void}
\end{itemize}

\[
\texttt{fullsdiag}(s, k):
\]

\begin{itemize}
\item \textit{input:} \\
\quad s: $r \times 1$
\quad k: 1×1
\item \textit{output:} \\
\quad \textit{result:} $r + k \times r$, if $k \geq 0$
\quad \texttt{r \times r - k}$, otherwise
\end{itemize}

\[
\texttt{fullsvd}(A, U, s, Vt):
\]

\begin{itemize}
\item \textit{input:} \\
\quad A: $m \times n$
\item \textit{output:} \\
\quad A: 0×0
\quad U: $m \times m$
\quad s: $\min(m,n) \times 1$
\quad Vt: $n \times n$
\item \textit{result:} \texttt{void}
\end{itemize}
_svd_la(A, U, s, Vt):

input:
A: \(m \times n \)

output:
A: \(m \times n \), but contents changed
U: \(m \times m \)
\(s \): \(\min(m, n) \times 1 \)
Vt: \(n \times n \)
result: \(1 \times 1 \)

Diagnostics

fullsvd(\(A, U, s, Vt \)) and _fullsvd(\(A, s, Vt \)) return missing results if \(A \) contains missing. In all other cases, the routines should work, but there is the unlikely possibility of convergence problems, in which case missing results will also be returned; see Possibility of convergence problems in [M-5] svd().

_fullsvd() aborts with error if \(A \) is a view.

Direct use of _svd_la() is not recommended.

Also see

[M-5] svd() — Singular value decomposition
[M-5] svsolve() — Solve \(AX=B \) for \(X \) using singular value decomposition
[M-5] pinv() — Moore–Penrose pseudoinverse
[M-5] norm() — Matrix and vector norms
[M-5] rank() — Rank of matrix
[M-4] matrix — Matrix functions