Title

Syntax

fullsvd() — Full singular value decomposition

Syntax Diagnostics	Description	Remarks and examples	Conformability
Blaghootioo	1.00 000		
void	fullsvd(numeric matrix A, U, s,	Vt)
numeric matri.	<pre>fullsdiag(numeric colvector s, real scalar k)</pre>		
void	_fullsvd(numeric matrix A, U, s,	Vt)

 $_svd_la(numeric matrix A, U, s, Vt)$

Description

real scalar

fullsvd(A, U, s, Vt) calculates the singular value decomposition of $m \times n$ matrix A, returning the result in U, s, and Vt. Singular values in s are sorted from largest to smallest.

fullsdiag(s, k) converts column vector s returned by fullsvd() into matrix S. In all cases, the appropriate call for this function is

S = fullsdiag(s, rows(A) - cols(A))

_fullsvd(A, U, s, Vt) does the same as fullsvd(), except that, in the process, it destroys A. Use of _fullsvd() in place of fullsvd() conserves memory.

_svd_la() is the interface into the [M-1] LAPACK SVD routines and is used in the implementation of the previous functions. There is no reason you should want to use it. _svd_la() is similar to _fullsvd(). It differs in that it returns a real scalar equal to 1 if the numerical routines fail to converge, and it returns 0 otherwise. The previous SVD routines set s to contain missing values in this unlikely case.

Remarks and examples

stata.com

Remarks are presented under the following headings:

Introduction Relationship between the full and thin SVDs The contents of s Possibility of convergence problems

Documented here is the full SVD, appropriate in all cases, but of interest mainly when $A: m \times n$, m < n. There is a thin SVD that conserves memory when $m \ge n$; see [M-5] svd(). The relationship between the two is discussed in *Relationship between the full and thin SVDs* below.

Introduction

The SVD is used to compute accurate solutions to linear systems and least-squares problems, to compute the 2-norm, and to determine the numerical rank of a matrix.

The singular value decomposition (SVD) of A: $m \times n$ is given by

A = USV'

where

U: $m \times m$ and orthogonal (unitary)S: $m \times n$ and diagonalV: $n \times n$ and orthogonal (unitary)

When A is complex, the transpose operator ' is understood to mean the conjugate transpose operator.

Diagonal matrix S contains the singular values and those singular values are real even when A is complex. It is usual (but not required) that S is arranged so that the largest singular value appears first, then the next largest, and so on. The SVD routines documented here do this.

The full SVD routines return U and Vt = V'. S is returned as a column vector s, and S can be obtained by

S = fullsdiag(s, rows(A) - cols(A))

so we will write the SVD as

A = U * fullsdiag(s, rows(A) - cols(A)) * Vt

Function fullsvd(A, U, s, Vt) returns the U, s, and Vt corresponding to A.

Relationship between the full and thin SVDs

A popular variant of the SVD is known as the thin SVD and is suitable for use when $m \ge n$. Both SVDs have the same formula,

A = USV'

but U and S have reduced dimensions in the thin version:

Matrix	Full SVD	Thin SVD
<i>U</i> :	$m \times m$	$m \times n$
<i>S</i> :	$m \times n$	$n \times n$
V:	$n \times n$	$n \times n$

When m = n, the two variants are identical.

The thin SVD is of use when m > n, because then only the first *m* diagonal elements of *S* are nonzero, and therefore only the first *m* columns of *U* are relevant in A = USV'. There are considerable memory savings to be had in calculating the thin SVD when $m \gg n$.

As a result, many people call the thin SVD the SVD and ignore the full SVD altogether. If the matrices you deal with have $m \ge n$, you will want to do the same. To obtain the thin SVD, see [M-5] svd().

Regardless of the dimension of your matrix, you may wish to obtain only the singular values. In this case, see svdsv() documented in [M-5] svd(). That function is appropriate in all cases.

The contents of s

Given A: $m \times n$, the singular values are returned in s: $\min(m, n) \times 1$.

Let's consider the m = n case first. A is $m \times m$ and the m singular values are returned in s, an $m \times 1$ column vector. If A were 3×3 , perhaps we would get back

If we needed it, we could obtain S from s simply by creating a diagonal matrix from s

: S = diag(s) : S [symmetric] 1 2 3 1 13.47 2 0 5.8 3 0 0 2.63

although the official way we are supposed to do this is

: S = fullsdiag(s, rows(A)-cols(A))

and that will return the same result.

Now let's consider m < n. Let's pretend that A is 3×4 . The singular values will be returned in 3×1 vector s. For instance, s might still contain

:	s	
		1
	1	13.47
	2	5.8
	3	2.63

The S matrix here needs to be 3×4 , and fullsdiag() will form it:

<pre>fullsdiag(s, rows(A)-cols(A))</pre>				
	1	2	3	4
1	13.47	0	0	0
3	0	0	2.63	0

The final case is m > n. We will pretend that A is 4×3 . The s vector we get back will look the same

S	1
1	13.47
2	5.8
3	2.63

:

but this time, we need a 4×3 rather than a 3×4 matrix formed from it.

:	ful	llsdiag(s,	rows(A)	-cols(A))
		1	2	3
	1	13.47	0	0
	2	0	5.8	0
	3	0	0	2.63
	4	0	0	0

Possibility of convergence problems

See Possibility of convergence problems in [M-5] svd(); what is said there applies equally here.

Conformability

<pre>fullsvd(A, U, s,</pre>	<i>Vt</i>):
input:	
A:	$m \times n$
output:	
U:	$m \times m$
<i>s</i> :	$\min(m,n) \times 1$
Vt:	$n \times n$
result:	void
<pre>fullsdiag(s, k):</pre>	
input:	
<i>s</i> :	$r \times 1$
<i>k</i> :	1×1
output:	
result:	$r + k \times r$, if $k \ge 0$ $r \times r - k$, otherwise
_fullsvd(A, U, s	, Vt):
input:	
A:	$m \times n$
output:	
<i>A</i> :	0×0
U:	$m \times m$
<i>s</i> :	$\min(m,n) \times 1$
Vt:	$n \times n$
result:	void

```
\_svd\_la(A, U, s, Vt):
input:
                A:
                          m \times n
output:
                A:
                          m \times n,
                                    but contents changed
                U:
                          m \times m
                 s:
                          \min(m, n) \times 1
                Vt:
                          n \times n
                          1 \times 1
            result:
```

Diagnostics

fullsvd(A, U, s, Vt) and _fullsvd(A, s, Vt) return missing results if A contains missing. In all other cases, the routines should work, but there is the unlikely possibility of convergence problems, in which case missing results will also be returned; see *Possibility of convergence problems* in [M-5] svd().

_fullsvd() aborts with error if A is a view.

Direct use of _svd_la() is not recommended.

Also see

- [M-5] svd() Singular value decomposition
- [M-5] svsolve() Solve AX=B for X using singular value decomposition
- [M-5] **pinv**() Moore–Penrose pseudoinverse
- [M-5] norm() Matrix and vector norms
- [M-5] rank() Rank of matrix
- [M-4] matrix Matrix functions