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eigensystem( ) — Eigenvectors and eigenvalues

Syntax Description Remarks and examples Conformability
Diagnostics References Also see

Syntax

void eigensystem(A, X, L
[
, rcond

[
, nobalance

] ]
)

void lefteigensystem(A, X, L
[
, rcond

[
, nobalance

] ]
)

complex rowvector eigenvalues(A
[
, rcond

[
, nobalance

] ]
)

void symeigensystem(A, X, L)

real rowvector symeigenvalues(A)

void eigensystem(A, X, L
[
, rcond

[
, nobalance

] ]
)

void lefteigensystem(A, X, L
[
, rcond

[
, nobalance

] ]
)

complex rowvector eigenvalues(A
[
, rcond

[
, nobalance

] ]
)

void symeigensystem(A, X, L)

real rowvector symeigenvalues(A)

where inputs are

A: numeric matrix
rcond: real scalar (whether rcond desired)

nobalance: real scalar (whether to suppress balancing)

and outputs are

X: numeric matrix of eigenvectors
L: numeric vector of eigenvalues

rcond: real vector of reciprocal condition numbers

The columns of X will contain the eigenvectors except when using lefteigensystem(), in which
case the rows of X contain the eigenvectors.

The following routines are used in implementing the above routines:

real scalar eigen la(real scalar todo, numeric matrix A, X, L, real scalar rcond,
real scalar nobalance)

real scalar symeigen la(real scalar todo, numeric matrix A, X, L)
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Description

These routines calculate eigenvectors and eigenvalues of square matrix A.

eigensystem(A, X, L, rcond, nobalance) calculates eigenvectors and eigenvalues of a general,
real or complex, square matrix A. Eigenvectors are returned in X and eigenvalues in L. The remaining
arguments are optional:

1. If rcond is not specified, then reciprocal condition numbers are not returned in rcond.

If rcond is specified and contains a value other than 0 or missing—rcond=1 is suggested—in
rcond will be placed a vector of the reciprocals of the condition numbers for the eigenvalues.
Each element of the new rcond measures the accuracy to which the corresponding eigenvalue
has been calculated; large numbers (numbers close to 1) are better and small numbers (numbers
close to 0) indicate inaccuracy; see Eigenvalue condition below.

2. If nobalance is not specified, balancing is performed to obtain more accurate results.

If nobalance is specified and is not zero nor missing, balancing is not used. Results are
calculated more quickly, but perhaps a little less accurately; see Balancing below.

lefteigensystem(A, X, L, rcond, nobalance) mirrors eigensystem(), the difference being
that lefteigensystem() solves for left eigenvectors solving XA = diag(L)*X instead of right
eigenvectors solving AX = X*diag(L).

eigenvalues(A, rcond, nobalance) returns the eigenvalues of square matrix A; the eigenvectors
are not calculated. Arguments rcond and nobalance are optional.

symeigensystem(A, X, L) and symeigenvalues(A) mirror eigensystem() and eigenval-
ues(), the difference being that A is assumed to be symmetric (Hermitian). The eigenvalues returned
are real. (Arguments rcond and nobalance are not allowed; rcond because symmetric matrices are
inherently well conditioned; nobalance because it is unnecessary.)

The underscore routines mirror the routines of the same name without underscores, the difference
being that A is damaged during the calculation and so the underscore routines use less memory.

eigen la() and symeigen la() are the interfaces into the [M-1] LAPACK routines used to
implement the above functions. Their direct use is not recommended.

Remarks and examples stata.com

Remarks are presented under the following headings:

Eigenvalues and eigenvectors
Left eigenvectors
Symmetric eigensystems
Normalization and order
Eigenvalue condition
Balancing
eigensystem( ) and eigenvalues( )
lefteigensystem( )
symeigensystem( ) and symeigenvalues( )

http://www.stata.com/manuals13/m-1lapack.pdf#m-1LAPACK
http://stata.com
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Eigenvalues and eigenvectors

A scalar λ is said to be an eigenvalue of square matrix A: n × n if there is a nonzero column vector
x: n × 1 (called the eigenvector) such that

Ax = λx (1)

(1) can also be written as
(A− λI)x = 0

where I is the n × n identity matrix. A nontrivial solution to this system of n linear homogeneous
equations exists if and only if

det(A− λI) = 0 (2)

This nth degree polynomial in λ is called the characteristic polynomial or characteristic equation of
A, and the eigenvalues λ are its roots, also known as the characteristic roots.

There are, in fact, n solutions (λi, xi) that satisfy (1)—although some can be repeated—and we can
compactly write the full set of solutions as

AX = X ∗ diag(L) (3)

where
X = (x1, x2, . . .) (X : n × n)

L = (λ1, λ2, . . .) (L : 1× n)

: A = (1, 2 \ 9, 4)

: X = .

: L = .

: eigensystem(A, X, L)

: X
1 2

1 -.316227766 -.554700196
2 -.948683298 .832050294

: L
1 2

1 7 -2

The first eigenvalue is 7, and the corresponding eigenvector is (−.316 \−.949). The second eigenvalue
is −2, and the corresponding eigenvector is (−.555 \ .832).

In general, eigenvalues and vectors can be complex even if A is real.

Left eigenvectors

What we have defined above is properly known as the right-eigensystem problem:

Ax = λx (1)
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In the above, x is a column vector. The left-eigensystem problem is to find the row vector x satisfying

xA = λx (1′)

The eigenvalue λ is the same in (1) and (1′), but x can differ.

The n solutions (λi, xi) that satisfy (1′) can be compactly written as

XA = diag(L) ∗ X (3′)

where

X =


x1
x2
...

xn


n×n

L =


λ1
λ2
...
λn


n×1

For instance,

: A = (1, 2 \ 9, 4)

: X = .

: L = .

: lefteigensystem(A, X, L)

: X
1 2

1 -.832050294 -.554700196
2 -.948683298 .316227766

: L
1

1 7
2 -2

The first eigenvalue is 7, and the corresponding eigenvector is (−.832, −.555). The second eigenvalue
is −2, and the corresponding eigenvector is (−.949, .316).

The eigenvalues are the same as in the previous example; the eigenvectors are different.

Symmetric eigensystems

Below we use the term symmetric to encompass Hermitian matrices, even when we do not emphasize
the fact.

Eigensystems of symmetric matrices are conceptually no different from general eigensystems, but
symmetry introduces certain simplifications:

1. The eigenvalues associated with symmetric matrices are real, whereas those associated with
general matrices may be real or complex.

2. The eigenvectors associated with symmetric matrices—which may be real or complex—are
orthogonal.

http://www.stata.com/manuals13/m-6glossary.pdf#m-6GlossaryMataglossaryHermitian_matrix
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3. The left and right eigenvectors of symmetric matrices are transposes of each other.

4. The eigenvectors and eigenvalues of symmetric matrices are more easily, and more accurately,
computed.

For item 3, let us begin with the right-eigensystem problem:

AX = X ∗ diag(L)

Taking the transpose of both sides results in

X′A = diag(L) ∗ X′

because A = A′ if A is symmetric (Hermitian).

symeigensystem(A, X, L) calculates right eigenvectors. To obtain the left eigenvectors, you simply
transpose X.

Normalization and order

If x is a solution to
Ax = λx

then so is cx, c: 1 × 1, c 6= 0.

The eigenvectors returned by the above routines are scaled to have length (norm) 1.

The eigenvalues are combined and returned in a vector (L) and the eigenvectors in a matrix (X). The
eigenvalues are ordered from largest to smallest in absolute value (or, if the eigenvalues are complex,
in length). The eigenvectors are ordered to correspond to the eigenvalues.

Eigenvalue condition

Optional argument rcond may be specified as a value other than 0 or missing—rcond = 1 is suggested—
and then rcond will be filled in with a vector containing the reciprocals of the condition numbers
for the eigenvalues. Each element of rcond measures the accuracy with which the corresponding
eigenvalue has been calculated; large numbers (numbers close to 1) are better and small numbers
(numbers close to 0) indicate inaccuracy.

The reciprocal condition number is calculated as abs(y*x), where y: 1 × n is the left eigenvector
and x: n × 1 is the corresponding right eigenvector. Since y and x each have norm 1, abs(y*x)
= abs(cos(theta)), where theta is the angle made by the vectors. Thus 0 ≤ abs(y*x) ≤ 1.
For symmetric matrices, y*x will equal 1. It can be proved that abs(y*x) is the reciprocal of the
condition number for a simple eigenvalue, and so it turns out that the sensitivity of the eigenvalue to
a perturbation is a function of how far the matrix is from symmetric on this scale.

Requesting that rcond be calculated increases the amount of computation considerably.
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Balancing

By default, balancing is performed for general matrices. Optional argument nobalance allows you to
suppress balancing.

Balancing is related to row-and-column equilibration; see [M-5] equilrc( ). Here, however, a diagonal
matrix D is found such that DAD−1 is better balanced, the eigenvectors and eigenvalues for DAD−1

are extracted, and then the eigenvectors and eigenvalues are adjusted by D so that they reflect those
for the original A matrix.

There is no gain from these machinations when A is symmetric, so the symmetric routines do not
have a nobalance argument.

eigensystem( ) and eigenvalues( )

1. Use L = eigenvalues(A) and eigensystem(A, X, L) for general matrices A.

2. Use L = eigenvalues(A) when you do not need the eigenvectors; it will save both time
and memory.

3. The eigenvalues returned by L = eigenvalues(A) and by eigensystem(A, X, L) are
of storage type complex even if the eigenvalues are real (that is, even if Im(L)==0). If the
eigenvalues are known to be real, you can save computer memory by subsequently coding

L = Re(L)

If you wish to test whether the eigenvalues are real, examine mreldifre(L); see
[M-5] reldif( ).

4. The eigenvectors returned by eigensystem(A, X, L) are of storage type complex even if
the eigenvectors are real (that is, even if Im(X)==0). If the eigenvectors are known to be
real, you can save computer memory by subsequently coding

X = Re(X)

If you wish to test whether the eigenvectors are real, examine mreldifre(X); see
[M-5] reldif( ).

5. If you are using eigensystem(A, X, L) interactively (outside a program), X and L must
be predefined. Type

: eigensystem(A, X=., L=.)

lefteigensystem( )

What was just said about eigensystem() applies equally well to lefteigensystem().

If you need only the eigenvalues, use L = eigenvalues(A). The eigenvalues are the same for both
left and right systems.

http://www.stata.com/manuals13/m-5_equilrc.pdf#m-5_equilrc()
http://www.stata.com/manuals13/m-5reldif.pdf#m-5reldif()
http://www.stata.com/manuals13/m-5reldif.pdf#m-5reldif()
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symeigensystem( ) and symeigenvalues( )

1. Use L = symeigenvalues(A) and symeigensystem(A, X, L) for symmetric or Her-
mitian matrices A.

2. Use L = symeigenvalues(A) when you do not need the eigenvectors; it will save both
time and memory.

3. The eigenvalues returned by L = symeigenvalues(A) and by symeigensystem(A, X,
L) are of storage type real. Eigenvalues of symmetric and Hermitian matrices are always
real.

4. The eigenvectors returned by symeigensystem(A, X, L) are of storage type real when
A is of storage type real and of storage type complex when A is of storage type complex.

5. If you are using symeigensystem(A, X, L) interactively (outside a program), X and L
must be predefined. Type

: symeigensystem(A, X=., L=.)

Conformability

eigensystem(A, X, L, rcond, nobalance):
input:

A: n × n
rcond: 1 × 1 (optional, specify as 1 to obtain rcond)

nobalance: 1 × 1 (optional, specify as 1 to prevent balancing)
output:

X: n × n (columns contain eigenvectors)
L: 1 × n

rcond: 1 × n (optional)
result: void

lefteigensystem(A, X, L, rcond, nobalance):
input:

A: n × n
rcond: 1 × 1 (optional, specify as 1 to obtain rcond)

nobalance: 1 × 1 (optional, specify as 1 to prevent balancing)
output:

X: n × n (rows contain eigenvectors)
L: n × 1

rcond: n × 1 (optional)
result: void

eigenvalues(A, rcond, nobalance):
input:

A: n × n
rcond: 1 × 1 (optional, specify as 1 to obtain rcond)

nobalance: 1 × 1 (optional, specify as 1 to prevent balancing)
output:

rcond: 1 × n (optional)
result: 1 × n (contains eigenvalues)
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symeigensystem(A, X, L):
input:

A: n × n
output:

X: n × n (columns contain eigenvectors)
L: 1 × n

result: void

symeigenvalues(A):
input:

A: n × n
output:

result: 1 × n (contains eigenvalues)

eigensystem(A, X, L, rcond, nobalance):
input:

A: n × n
rcond: 1 × 1 (optional, specify as 1 to obtain rcond)

nobalance: 1 × 1 (optional, specify as 1 to prevent balancing)
output:

A: 0 × 0
X: n × n (columns contain eigenvectors)
L: 1 × n

rcond: 1 × n (optional)
result: void

lefteigensystem(A, X, L, rcond, nobalance):
input:

A: n × n
rcond: 1 × 1 (optional, specify as 1 to obtain rcond)

nobalance: 1 × 1 (optional, specify as 1 to prevent balancing)
output:

A: 0 × 0
X: n × n (rows contain eigenvectors)
L: n × 1

rcond: n × 1 (optional)
result: void

eigenvalues(A, rcond, nobalance):
input:

A: n × n
rcond: 1 × 1 (optional, specify as 1 to obtain rcond)

nobalance: 1 × 1 (optional, specify as 1 to prevent balancing)
output:

A: 0 × 0
rcond: 1 × n (optional)
result: 1 × n (contains eigenvalues)
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symeigensystem(A, X, L):
input:

A: n × n
output:

A: 0 × 0
X: n × n (columns contain eigenvectors)
L: 1 × n

result: void

symeigenvalues(A):
input:

A: n × n
output:

A: 0 × 0
result: 1 × n (contains eigenvalues)

eigen la(todo, A, X, L, rcond, nobalance):
input:

todo: 1 × 1
A: n × n

rcond: 1 × 1
nobalance: 1 × 1

output:
A: 0 × 0
X: n × n
L: 1 × n or n × 1

rcond: 1 × n or n × 1 (optional)
result: 1 × 1 (return code)

symeigen la(todo, A, X, L):
input:

todo: 1 × 1
A: n × n

output:
A: 0 × 0
X: n × n
L: 1 × n

result: 1 × 1 (return code)

Diagnostics

All functions return missing-value results if A has missing values.

symeigensystem(), symeigenvalues(), symeigensystem(), and symeigenvalues() use
the lower triangle of A without checking for symmetry. When A is complex, only the real part of the
diagonal is used.
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Also see
[M-5] matexpsym( ) — Exponentiation and logarithms of symmetric matrices

[M-5] matpowersym( ) — Powers of a symmetric matrix

[M-4] matrix — Matrix functions
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