diag() — Create diagonal matrix

Syntax	Description	Remarks and examples	Conformability
Diagnostics	Also see		

Syntax

numeric matrix diag(numeric matrix Z)

numeric matrix diag(numeric vector z)

Description

diag() creates diagonal matrices.

diag(Z), Z a matrix, extracts the principal diagonal of Z to create a new matrix. Z must be square.

diag(z), z a vector, creates a new matrix with the elements of z on its diagonal.

Remarks and examples

Do not confuse diag() with its functional inverse, diagonal(); see [M-5] diagonal(). diag() creates a matrix from a vector (or matrix); diagonal() extracts the diagonal of a matrix into a vector.

Use of diag() should be avoided because it wastes memory. The colon operators will allow you to use vectors directly:

Desired calculation	Equivalent			
$\overline{\operatorname{diag}(v) * X},$				
v is a column	v: *X			
v is a row	v':*X			
v is a matrix	diagonal(v):* X			
X*diag(v)				
v is a column	X:*v'			
v is a row	X:*v			
v is a matrix	X:*diagonal(v)'			

In the above table, it is assumed that v is real. If v might be complex, the transpose operators that appear must be changed to transposeonly() calls, because we do not want the conjugate. For instance, v':*X would become transposeonly(v):*X.

stata.com

Conformability

diag(Z): Z: $m \times n$ result: $\min(m, n) \times \min(m, n)$ diag(z): z: $1 \times n$ or $n \times 1$ result: $n \times n$

Diagnostics

None.

Also see

[M-5] _diag() — Replace diagonal of a matrix

[M-5] diagonal() — Extract diagonal into column vector

[M-5] isdiagonal() — Whether matrix is diagonal

[M-4] manipulation — Matrix manipulation