
Title stata.com

pointers — Pointers

Syntax Description Remarks and examples Diagnostics
References Also see

Syntax

pointer
[
(totype)

] [
orgtype

] [
function

]
. . .

where totype is[
eltype

] [
orgtype

] [
function

]
and where eltype and orgtype are

eltype orgtype

transmorphic matrix

numeric vector

real rowvector

complex colvector

string scalar

pointer
[
(towhat)

]
pointer

[
(totype)

] [
orgtype

]
can be used in front of declarations, be they function declarations,

argument declarations, or variable definitions.

Description

Pointers are objects that contain the addresses of other objects. The * prefix operator obtains the
contents of an address. Thus if p is a pointer, *p refers to the contents of the object to which p points.
Pointers are an advanced programming concept. Most programs, including involved and complicated
ones, can be written without them.

In Mata, pointers are commonly used to

1. put a collection of objects under one name and

2. pass functions to functions.

One need not understand everything about pointers merely to pass functions to functions; see [M-2] ftof.

1

http://stata.com
http://www.stata.com/manuals13/m-2ftof.pdf#m-2ftof

2 pointers — Pointers

Remarks and examples stata.com

Remarks are presented under the following headings:

What is a pointer?
Pointers to variables
Pointers to expressions
Pointers to functions
Pointers to pointers
Pointer arrays
Mixed pointer arrays
Definition of NULL
Use of parentheses
Pointer arithmetic
Listing pointers
Declaration of pointers
Use of pointers to collect objects
Efficiency

What is a pointer?

A pointer is the address of a variable or a function. Say that variable X contains a matrix. Another
variable p might contain 137,799,016, and if 137,799,016 were the address at which X were stored,
then p would be said to point to X. Addresses are seldom written in base 10, so rather than saying p
contains 137,799,016, we would be more likely to say that p contains 0x836a568, which is the way
we write numbers in base 16. Regardless of how we write addresses, however, p contains a number
and that number corresponds to the address of another variable.

In our program, if we refer to p, we are referring to p’s contents, the number 0x836a568. The
monadic operator * is defined as “refer to the contents of the address” or “dereference”: *p means X.
We could code Y = *p or Y = X, and either way, we would obtain the same result. In our program,
we could refer to X[i, j] or (*p)[i, j], and either way, we would obtain the i, j element of X.

The monadic operator & is how we put addresses into p. To load p with the address of X, we code
p = &X.

The special address 0 (zero, written in hexadecimal as 0x0), also known as NULL, is how we record
that a pointer variable points to nothing. A pointer variable contains NULL or it contains the address
of another variable.

Or it contains the address of a function. Say that p contains 0x836a568 and that 0x836a568, rather
than being the address of matrix X, is the address of function f(). To get the address of f() into p,
just as we coded p = &X previously, we code p = &f(). The () at the end tells & that we want the
address of a function. We code () on the end regardless of the number of arguments f() requires
because we are not executing f(), we are just obtaining its address.

To execute the function at 0x836a568—now we will assume that f() takes two arguments and call
them i and j—we code (*p)(i, j) just as we coded (*p)[i, j] when p contained the address of
matrix X.

http://stata.com

pointers — Pointers 3

Pointers to variables

To create a pointer p to a variable, you code

p = &varname

For instance, if X is a matrix,

p = &X

stores in p the address of X. Subsequently, referring to *p and referring to X amount to the same
thing. That is, if X contained a 3 × 3 identity matrix and you coded

*p = Hilbert(4)

then after that you would find that X contained the 4 × 4 Hilbert matrix. X and *p are the same
matrix.

If X contained a 3 × 3 identity matrix and you coded

(*p)[2,3] = 4

you would then find X[2,3] equal to 4.

You cannot, however, point to the interior of objects. That is, you cannot code

p = &X[2,3]

and get a pointer that is equivalent to X[2,3] in the sense that if you later coded *p=2, you would
see the change reflected in X[2,3]. The statement p = &X[2,3] is valid, but what it does, we will
explain in Pointers to expressions below.

By the way, variables can be sustained by being pointed to. Consider the program

pointer(real matrix) scalar example(real scalar n)
{

real matrix tmp

tmp = I(3)
return(&tmp)

}

Ordinarily, variable tmp would be destroyed when example() concluded execution. Here, however,
tmp’s existence will be sustained because of the pointer to it. We might code

p = example(3)

and the result will be to create *p containing the 3 × 3 identity matrix. The memory consumed by
that matrix will be freed when it is no longer being pointed to, which will occur when p itself is
freed, or, before that, when the value of p is changed, perhaps by

p = NULL

For a discussion of pointers to structures, see [M-2] struct. For a discussion of pointers to classes,
see [M-2] class.

http://www.stata.com/manuals13/m-2struct.pdf#m-2struct
http://www.stata.com/manuals13/m-2class.pdf#m-2class

4 pointers — Pointers

Pointers to expressions

You can code

p = &(2+3)

and the result will be to create *p containing 5. Mata creates a temporary variable to contain the
evaluation of the expression and sets p to the address of the temporary variable. That temporary
variable will be freed when p is freed or, before that, when the value of p is changed, just as tmp
was freed in the example in the previous section.

When you code

p = &X[2,3]

the result is the same. The expression is evaluated and the result of the expression stored in a temporary
variable. That is why subsequently coding *p=2 does not change X[2,3]. All *p=2 does is change
the value of the temporary variable.

Setting pointers equal to the value of expressions can be useful. In the following code fragment, we
create n 5 × 5 matrices for later use:

pvec = J(1, n, NULL)
for (i=1; i<=n; i++) pvec[i] = &(J(5, 5, .))

Pointers to functions

When you code

p = &functionname()

the address of the function is stored in p. You can later execute the function by coding

. . . (*p)(. . .)

Distinguish carefully between

p = &functionname()

and

p = &(functionname())

The latter would execute functionname() with no arguments and then assign the returned result to a
temporary variable.

For instance, assume that you wish to write a function neat() that will calculate the derivative of
another function, which function you will pass to neat(). Your function, we will pretend, returns a
real scalar.

You could do that as follows

real scalar neat(pointer(function) p, other args. . .)
{

. . .
}

pointers — Pointers 5

although you could be more explicit as to the characteristics of the function you are passed:

real scalar neat(pointer(real scalar function) p, other args. . .)
{

. . .
}

In any case, inside the body of your function, where you want to call the passed function, you code

(*p)(arguments)

For instance, you might code

approx = ((*p)(x+delta)-(*p)(x)) / delta

The caller of your neat() function, wanting to use it with, say, function zeta i just wrote(),
would code

result = neat(&zeta_i_just_wrote(), other args. . .)

For an example of the use of pointers in sophisticated numerical calculations, see Støvring (2007).

Pointers to pointers

Pointers to pointers (to pointers . . .) are allowed, for instance, if X is a matrix,

p1 = &X
p2 = &p1

Here *p2 is equivalent to p1, and **p2 is equivalent to X.

Similarly, we can construct a pointer to a pointer to a function:

q1 = &f()
q2 = &p1

Here *q2 is equivalent to q1, and **q2 is equivalent to f().

When constructing pointers to pointers, never type &&—such as &&x—to obtain the address of the
address of x. Type &(&x) or & &x. && is a synonym for &, included for those used to coding in C.

Pointer arrays

You may create an array of pointers, such as

P = (&X1, &X2, &X3)

or

Q = (&f1(), &f2(), &f3())

Here *P[2] is equivalent to X2 and *Q[2] is equivalent to f2().

6 pointers — Pointers

Mixed pointer arrays

You may create mixed pointer arrays, such as

R = (&X, &f())

Here *R[2] is equivalent to f().

You may not, however, create arrays of pointers mixed with real, complex, or string elements. Mata
will abort with a type-mismatch error.

Definition of NULL

NULL is the special pointer value that means “points to nothing” or undefined. NULL is like 0 in many
ways—for instance, coding if (X) is equivalent to coding if (X!=NULL), but NULL is distinct from
zero in other ways. 0 is a numeric value; NULL is a pointer value.

Use of parentheses

Use parentheses to make your meaning clear.

In the table below, we assume

p = &X
P = (&X11, &X12 \ &X21, &X22)
q = &f()
Q = (&f11(), &f12() \ &f21(), &f22())

where X, X11, X12, X21, and X22 are matrices and f(), f11(), f12(), f21(), and f22() are functions.

Expression Meaning

*p X
*p[1,1] X
(*p)[1,1] X[1,1]

*P[1,2] X12
(*P[1,2])[3,4] X12[3,4]

*q(a,b) execute function q() of a, b;
dereference that

(*q)(a,b) f(a,b)
(*q[1,1])(a,b) f(a,b)

*Q[1,2](a,b) nonsense
(*Q[1,2])(a,b) f12(a,b)

pointers — Pointers 7

Pointer arithmetic

Arithmetic with pointers (which is to say, with addresses) is not allowed:

: y = 2

: x = &y

: x+2
<stmt>: 3012 undefined operation on pointer (e.g., p1>p2)

r(3012);

Do not confuse the expression x+2 with the expression *x+2, which is allowed and in fact evaluates
to 4.

You may use the equality and inequality operators == and != with pairs of pointer values:

if (p1 == p2) {
. . .

}

if (p1 != p2) {
. . .

}

Also pointer values may be assigned and compared with the value NULL, which is much like, but
still different from, zero: NULL is a 1 × 1 scalar containing an address value of 0. An unassigned
pointer has the value NULL, and you may assign the value NULL to pointers:

p = NULL

Pointer values may be compared with NULL,

if (p1 == NULL) {
. . .

}

if (p1 != NULL) {
. . .

}

but if you attempt to dereference a NULL pointer, you will get an error:

: x = NULL

: *x + 2
<stmt>: 3010 attempt to dereference NULL pointer

r(3010);

Concerning logical expressions, you may directly examine pointer values:

if (p1) {
. . .

}

The above is interpreted as if if (p1!=NULL) were coded.

http://www.stata.com/manuals13/m-2errors.pdf#m-2errorsRemarksandexamplesr(3012)
http://www.stata.com/manuals13/m-2errors.pdf#m-2errorsRemarksandexamplesr(3010)

8 pointers — Pointers

Listing pointers

You may list pointers:

: y = 2
: x = &y
: x

0x8359e80

What is shown, 0x8359e80, is the memory address of y during our Stata session. If you typed the
above lines, the address you would see could differ, but that does not matter.

Listing the value of pointers often helps in debugging because, by comparing addresses, you can
determine where pointers are pointing and whether some are pointing to the same thing.

In listings, NULL is presented as 0x0.

Declaration of pointers

Declaration of pointers, as with all declarations (see [M-2] declarations), is optional. That basic syntax
is

pointer
[
(totype)

]
orgtype

[
function

]
. . .

For instance,

pointer(real matrix) scalar p1

declares that p1 is a pointer scalar and that it points to a real matrix, and

pointer(complex colvector) rowvector p2

declares that p2 is a rowvector of pointers and that each pointer points to a complex colvector, and

pointer(real scalar function) scalar p3

declares that p3 is a pointer scalar, and that it points to a function that returns a real scalar, and

pointer(pointer(real matrix function) rowvector) colvector p4

declares that p4 is a column vector of pointers to pointers, the pointers to which each element points
are rowvectors, and each of those elements points to a function returning a real matrix.

You can omit the pieces you wish.

pointer() scalar p5

declares that p5 is a pointer scalar—to what being uncertain.

pointer scalar p5

means the same thing.

pointer p6

declares that p6 is a pointer, but whether it is a matrix, vector, or scalar, is unsaid.

http://www.stata.com/manuals13/m-2declarations.pdf#m-2declarations

pointers — Pointers 9

Use of pointers to collect objects

Assume that you wish to write a function in two parts: result setup() and repeated result().

In the first part, result setup(), you will be passed a matrix and a function by the user, and you
will make a private calculation that you will use later, each time repeated result() is called.
When repeated result() is called, you will need to know the matrix, the function, and the value
of the private calculation that you previously made.

One solution is to adopt the following design. You request the user code

resultinfo = result_setup(setup args. . .)

on the first call, and

value = repeated_result(resultinfo, other args. . .)

on subsequent calls. The design is that you will pass the information between the two functions in
resultinfo. Here resultinfo will need to contain three things: the original matrix, the original
function, and the private result you calculated. The user, however, never need know the details, and
you will simply request that the user declare resultinfo as a pointer vector.

Filling in the details, you code

pointer vector result_setup(real matrix X, pointer(function) f)
{

real matrix privmat
pointer vector info

. . .
privmat = . . .
. . .
info = (&X, f, &privmat)
return(info)

}

real matrix repeated_result(pointer vector info, . . .)
{

pointer(function) scalar f
pointer(matrix) scalar X
pointer(matrix) scalar privmat

f = info[2]
X = info[1]
privmat = info[3]

. . .

. . . (*f)(. . .) . . .

. . . (*X) . . .

. . . (*privmat) . . .

. . .
}

10 pointers — Pointers

It was not necessary to unload info[] into the individual scalars. The lines using the passed values
could just as well have read

. . . (*info[2])(. . .) . . .

. . . (*info[1]) . . .

. . . (*info[3]) . . .

Efficiency

When calling subroutines, it is better to pass the evaluation of pointer scalar arguments rather than
the pointer scalar itself, because then the subroutine can run a little faster. Say that p points to a real
matrix. It is better to code

. . . mysub(*p) . . .

rather than

. . . mysub(p) . . .

and then to write mysub() as

function mysub(real matrix X)
{

. . . X . . .
}

rather than

function mysub(pointer(real matrix) scalar p)
{

. . . (*p) . . .
}

Dereferencing a pointer (obtaining *p from p) does not take long, but it does take time. Passing *p
rather than p can be important if mysub() loops and performs the evaluation of *p hundreds of
thousands or millions of times.

Diagnostics

The prefix operator * (called the dereferencing operator) aborts with error if it is applied to a nonpointer
object.

Arithmetic may not be performed on undereferenced pointers. Arithmetic operators abort with error.

The prefix operator & aborts with error if it is applied to a built-in function.

References
Gould, W. W. 2011. Advanced Mata: Pointers. The Stata Blog: Not Elsewhere Classified.

http://blog.stata.com/2011/09/11/advanced-mata-pointers/.

Støvring, H. 2007. A generic function evaluator implemented in Mata. Stata Journal 7: 542–555.

http://blog.stata.com/2011/09/11/advanced-mata-pointers/
http://blog.stata.com/2011/09/11/advanced-mata-pointers/
http://www.stata-journal.com/sjpdf.html?articlenum=pr0034

pointers — Pointers 11

Also see
[M-2] intro — Language definition

http://www.stata.com/manuals13/m-2intro.pdf#m-2intro

