The vertical (or) bar separates required arguments from optional arguments in function declarations. The bar may appear at most once.

Description

Mata functions may have various numbers of arguments. How you write programs that allow these optional arguments is described below.

Remarks and examples

Remarks are presented under the following headings:

- What are optional arguments?
- How to code optional arguments
- Examples revisited

What are optional arguments?

Example 1

You write a function named `ditty()`. Function `ditty()` allows the caller to specify two or three arguments:

```plaintext
real matrix  ditty(real matrix A, real matrix B, real scalar scale)
real matrix  ditty(real matrix A, real matrix B)
```

If the caller specifies only two arguments, results are as if the caller had specified the third argument equal to missing; that is, `ditty(A, B)` is equivalent to `ditty(A, B, .)`
Example 2

You write function `gash()`. Function `gash()` allows the caller to specify one or two arguments:

```plaintext
real matrix gash(real matrix A, real matrix B)
real matrix gash(real matrix A)
```

If the caller specifies only one argument, results are as if `J(0,0,.)` were specified for the second.

Example 3

You write function `easygoing()`. Function `easygoing()` takes three arguments but allows the caller to specify three, two, one, or even no arguments:

```plaintext
real scalar easygoing(real matrix A, real matrix B, real scalar scale)
real scalar easygoing(real matrix A, real matrix B)
real scalar easygoing(real matrix A)
real scalar easygoing()
```

If `scale` is not specified, results are as if `scale = 1` were specified. If `B` is not specified, results are as if `B = A` were specified. If `A` is not specified, results are as if `A = I(2)` were specified.

Example 4

You write function `midsection()`. `midsection()` takes three arguments, but users may specify only two—the first and last—if they wish.

```plaintext
real matrix midsection(real matrix A, real vector w, real matrix B)
real matrix midsection(real matrix A, real matrix B)
```

If `w` is not specified, results are as if `w = J(1,cols(A),1)` was specified.

How to code optional arguments

When you code

```plaintext
function nebulous(a, b, c)
{
    ...
}
```

you are stating that function `nebulous()` requires three arguments. If the caller specifies fewer or more, execution will abort.
If you code

```c
function nebulous(a, b, |c)
{
    ...
}
```

you are stating that the last argument is optional. Note the vertical or bar in front of `c`.

If you code

```c
function nebulous(a, |b, c)
{
    ...
}
```

you are stating that the last two arguments are optional; the user may specify one, two, or three arguments.

If you code

```c
function nebulous(|a, b, c)
{
    ...
}
```

you are stating that all arguments are optional; the user may specify zero, one, two, or three arguments.
The arguments that the user does not specify will be filled in according to the arguments’ type,

<table>
<thead>
<tr>
<th>If the argument type is ...</th>
<th>The default value will be ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>undeclared</td>
<td>J(0, 0, .)</td>
</tr>
<tr>
<td>transmorphic matrix</td>
<td>J(0, 0, .)</td>
</tr>
<tr>
<td>real matrix</td>
<td>J(0, 0, .)</td>
</tr>
<tr>
<td>complex matrix</td>
<td>J(0, 0, 1i)</td>
</tr>
<tr>
<td>string matrix</td>
<td>J(0, 0, "")</td>
</tr>
<tr>
<td>pointer matrix</td>
<td>J(0, 0, NULL)</td>
</tr>
<tr>
<td>transmorphic rowvector</td>
<td>J(1, 0, .)</td>
</tr>
<tr>
<td>real rowvector</td>
<td>J(1, 0, .)</td>
</tr>
<tr>
<td>complex rowvector</td>
<td>J(1, 0, 1i)</td>
</tr>
<tr>
<td>string rowvector</td>
<td>J(1, 0, "")</td>
</tr>
<tr>
<td>pointer rowvector</td>
<td>J(1, 0, NULL)</td>
</tr>
<tr>
<td>transmorphic colvector</td>
<td>J(0, 1, .)</td>
</tr>
<tr>
<td>real colvector</td>
<td>J(0, 1, .)</td>
</tr>
<tr>
<td>complex colvector</td>
<td>J(0, 1, 1i)</td>
</tr>
<tr>
<td>string colvector</td>
<td>J(0, 1, "")</td>
</tr>
<tr>
<td>pointer colvector</td>
<td>J(0, 1, NULL)</td>
</tr>
<tr>
<td>transmorphic vector</td>
<td>J(1, 0, .)</td>
</tr>
<tr>
<td>real vector</td>
<td>J(1, 0, .)</td>
</tr>
<tr>
<td>complex vector</td>
<td>J(1, 0, 1i)</td>
</tr>
<tr>
<td>string vector</td>
<td>J(1, 0, "")</td>
</tr>
<tr>
<td>pointer vector</td>
<td>J(1, 0, NULL)</td>
</tr>
<tr>
<td>transmorphic scalar</td>
<td>J(1, 1, .)</td>
</tr>
<tr>
<td>real scalar</td>
<td>J(1, 1, .)</td>
</tr>
<tr>
<td>complex scalar</td>
<td>J(1, 1, C(.))</td>
</tr>
<tr>
<td>string scalar</td>
<td>J(1, 1, ")</td>
</tr>
<tr>
<td>pointer scalar</td>
<td>J(1, 1, NULL)</td>
</tr>
</tbody>
</table>

Also, the function `args()` (see [M-5] args()) will return the number of arguments that the user specified.

The vertical bar can be specified only once. That is sufficient, as we will show.

Examples revisited

Example 1

In this example, real matrix function `ditty(A, B, scale)` allowed real scalar `scale` to be optional. If `scale` was not specified, results were as if `scale=.` had been specified. This can be coded

```plaintext
real matrix ditty(real matrix A, real matrix B, |real scalar scale) {
  ...
}
```
The body of the code is written just as if \textit{scale} were not optional because, if the caller does not specify the argument, the missing argument is automatically filled in with missing, per the table above.

\section*{Example 2}

Real matrix function \texttt{gash}(A, B) allowed real matrix \(B\) to be optional, and if not specified, \(B = J(0,0,\ldots)\) was assumed. Hence, this is coded just as example 1 was coded:

\begin{verbatim}
real matrix gash(real matrix A, |real matrix B)
{
...
}
\end{verbatim}

\section*{Example 3}

Real scalar function \texttt{easygoing}(A, B, \textit{scale}) allowed all arguments to be optional. \textit{scale} = 1 was assumed, \(B = A\), and if necessary, \(A = I(2)\).

\begin{verbatim}
real scalar easygoing(|real matrix A, real matrix B, real scalar scale)
{
...
if (args()==2) scale = 1
else if (args==1) {
 B = A
 scale = 1
}
else if (args()==0) {
 A = B = I(2)
 scale = 1 ;
}
...
}
\end{verbatim}

\section*{Example 4}

Real matrix function \texttt{midsection}(A, \(w\), B) allowed \(w\)—its middle argument—to be omitted. If \(w\) was not specified, \(J(1, \text{cols}(A), 1)\) was assumed. Here is one solution:

\begin{verbatim}
real matrix midsection(a1, a2, |a3)
{
 if (args()==3) return(midsection_u(a1, a2, a3))
 else return(midsection_u(a1, J(1,cols(a1),1), a2))
}
real matrix midsection_u(real matrix A, real vector w, real matrix B)
{
 ...
}
\end{verbatim}
We will never tell callers about the existence of midsection_u() even though midsection_u() is our real program.

What we did above was write midsection() to take two or three arguments, and then we called midsection_u() with the arguments in the correct position.

Also see

[M-2] intro — Language definition