
Title stata.com

op increment — Increment and decrement operators

Syntax Description Remarks and examples Conformability
Diagnostics Also see

Syntax
++i increment before
--i decrement before

i++ increment after
i-- decrement after

where i must be a real scalar.

Description

++i and i++ increment i; they perform the operation i=i+1. ++i performs the operation before the
evaluation of the expression in which it appears, whereas i++ performs the operation afterward.

--i and i-- decrement i; they perform the operation i=i-1. --i performs the operation before the
evaluation of the expression in which is appears, whereas i-- performs the operation afterward.

Remarks and examples stata.com

These operators are used in code, such as

x[i++] = 2

x[--i] = 3

for (i=0; i<100; i++) {
. . .

}

if (++n > 10) {
. . .

}

Where these expressions appear, results are as if the current value of i were substituted, and in
addition, i is incremented, either before or after the expression is evaluated. For instance,

x[i++] = 2

is equivalent to

x[i] = 2 ; i = i + 1

and

x[++i] = 3

1

http://stata.com
http://stata.com


2 op increment — Increment and decrement operators

is equivalent to

i = i + 1 ; x[i] = 3

Coding

for (i=0; i<100; i++) {
. . .

}

or

for (i=0; i<100; ++i) {
. . .

}

is equivalent to

for (i=0; i<100; i=i+1) {
. . .

}

because it does not matter whether the incrementation is performed before or after the otherwise null
expression.

if (++n > 10) {
. . .

}

is equivalent to

n = n + 1
if (n > 10) {

. . .
}

whereas

if (n++ > 10) {
. . .

}

is equivalent to

if (n > 10) {
n = n + 1
. . .

}
else n = n + 1

The ++ and -- operators may be used only with real scalars and are usually associated with indexing
or counting. They result in fast and readable code.



op increment — Increment and decrement operators 3

Conformability

++i, --i, i++, and i--:
i: 1 × 1

result: 1 × 1

Diagnostics

++ and -- are allowed with real scalars only. That is, ++i or i++ is valid, assuming i is a real
scalar, but x[i,j]++ is not valid.

++ and -- abort with error if applied to a variable that is not a real scalar.

++i, i++, --i, and i-- should be the only reference to i in the expression. Do not code, for
instance,

x[i++] = y[i]
x[++i] = y[i]
x[i] = y[i++]
x[i] = y[++i]

The value of i in the above expressions is formally undefined; whatever is its value, you cannot
depend on that value being obtained by earlier or later versions of the compiler. Instead code

i++ ; x[i] = y[i]

or code

x[i] = y[i] ; i++

according to the desired outcome.

It is, however, perfectly reasonable to code

x[i++] = y[j++]

That is, multiple ++ and -- operators may occur in the same expression; it is multiple references to
the target of the ++ and -- that must be avoided.

Also see
[M-2] exp — Expressions

[M-2] intro — Language definition

http://www.stata.com/manuals13/m-2exp.pdf#m-2exp
http://www.stata.com/manuals13/m-2intro.pdf#m-2intro

